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Simple Summary: Metastatic pancreatic ductal adenocarcinoma has a dismal prognosis, and to
date no curative treatment options exist. The image guided tumor ablation technique irreversible
electroporation (IRE) employs high-voltage electrical pulses through the application of several needle
electrodes in and around the tumor in order to induce cell death. IRE ablation of the primary tumor
has the ability to reduce pancreatic tumor induced immune suppression while allowing the expansion
of tumor specific effector T cells, hereby possibly shifting the pancreatic tumor microenvironment
into a more immune permissive state. The addition of immune enhancing therapies to IRE might
work synergistically and could potentially induce a clinically significant treatment effect. This study
protocol describes the rationale and design of the PANFIRE-III trial that aims to assess the safety of
the combination of IRE with IMO-2125 (toll-like receptor 9 ligand) and/or nivolumab in patients
with metastatic pancreatic ductal adenocarcinoma.

Abstract: Irreversible electroporation (IRE) is a novel image-guided tumor ablation technique with the
ability to generate a window for the establishment of systemic antitumor immunity. IRE transiently
alters the tumor’s immunosuppressive microenvironment while simultaneously generating antigen
release, thereby instigating an adaptive immune response. Combining IRE with immunotherapeutic
drugs, i.e., electroimmunotherapy, has synergistic potential and might induce a durable antitumor
response. The primary objective of this study is to assess the safety of the combination of IRE with
IMO-2125 (a toll-like receptor 9 ligand) and/or nivolumab in patients with metastatic pancreatic
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ductal adenocarcinoma (mPDAC). In this randomized controlled phase I clinical trial, 18 patients
with mPDAC pretreated with chemotherapy will be enrolled in one of three study arms: A (control):
nivolumab monotherapy; B: percutaneous IRE of the primary tumor followed by nivolumab; or
C: intratumoral injection of IMO-2125 followed by percutaneous IRE of the primary tumor and
nivolumab. Assessments include contrast enhanced computed tomography (ceCT), 18F-FDG and
18F-BMS-986192 (PD-L1) positron emission tomography (PET)-CT, biopsies of the primary tumor
and metastases, peripheral blood samples, and quality of life and pain questionnaires. There is no
curative treatment option for patients with mPDAC, and palliative chemotherapy regimens only
moderately improve survival. Consequently, there is an urgent need for innovative and radically
different treatment approaches. Should electroimmunotherapy establish an effective and durable
anti-tumor response, it may ultimately improve PDAC’s dismal prognosis.

Keywords: irreversible electroporation (IRE); nivolumab; IMO-2125; CpG-ODN; metastatic pancre-
atic cancer; PDAC; checkpoint inhibition; toll-like receptor ligand; PET-C; ablation; immunotherapy

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of
cancer, with a 5-year overall survival (OS) rate of only 8% [1]. About 30% of newly diag-
nosed patients present with unresectable locally advanced pancreatic cancer (LAPC) and,
despite the introduction of new and more effective chemotherapeutic regimens, responses
remain temporary and result in a median OS of 12–14 months [2–4]. Several local treatment
strategies have been developed that aim to improve this dismal prognosis [5]. Among them
is irreversible electroporation (IRE), a non-thermal needle guided ablation technique that
utilizes high-voltage electrical pulses to permanently destabilize the phospholipid bilayer
of the tumor cell membrane, enforcing apoptotic and delayed necrotic cell death [6,7]. IRE
destroys all cells within the ablation zone but preserves extracellular collagenous matrix
structures and allows for the cellular regeneration of inlaying both the blood and lymphatic
vessels, making it an attractive local treatment option for LAPC [8]. Clinical efficacy studies
for the treatment of LAPC [9] revealed the technique to be of additive value to chemother-
apy by improving the OS from diagnosis ranging from 15.3 to 27.0 months [5,10–21].

1.1. Metastatic Disease

However, more than 50% of PDAC patients present with metastatic PDAC (mPDAC),
leaving only palliative chemotherapy as a treatment option. With the introduction of
FOLFIRINOX (5- fluorouracil, leucovorin, irinotecan, oxaliplatin) in 2012, the prognosis of
these patients advanced significantly. Within a trial setting, the median overall survival
(OS) improved from 6.8 to 11.1 months [22]. Real-world registry data from the Dutch
Cancer Registration (NKR-IKNL) reflected this prognostic improvement but also revealed
an attenuated reality with a median OS of 6.4 months in mPDAC patients, including
patients unfit for FOLFIRINOX that received ≥1 cycle of chemotherapy [23].

1.2. Immune Escape

PDAC has a low mutational burden, resulting in a limited amount of neo-antigens,
and its microenvironment is recognized as highly immunosuppressive, allowing the cancer
to progress freely [24]. Immune suppression caused by the tumor results from various
mechanisms that enable immune cell evasion and exclusion from the tumor microenviron-
ment. Immune evasion is established through the downregulation of antigen presenting
pathways (such as MHC-I) by tumor cells, the upregulation of inhibitory immune check-
point proteins, the restriction of dendritic cell (DC) maturation, and increased apoptotic
resistance, thus limiting the release of tumor antigens and immunogenic potential [25,26].
Furthermore, the priming of tumor-specific effector T cells is hampered by active immune
suppression through suppressive regulatory T cells (Tregs) and myeloid-derived suppres-
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sor cells (MDSC) in the tumor microenvironment [27–29]. Collectively, these mechanisms
can explain PDAC’s limited response to immunotherapy [30].

1.3. Anenestic Effects

Over the past few years, the interventional oncology community has expanded its
research focus from focal cytoreduction to the wider systemic influences that local tumor
therapy can produce [31]. The widely used term “abscopal” refers to a visual biological or
anatomical response that is distant from the treated site, and is historically connoted with
radiotherapy [32]. Thus, in this study protocol, we use the terms “enestic” (response in
targeted lesion) and “anenestic” (response in non-targeted lesion) to indicate the local and
systemic effects after (intratumoral) treatment, as proposed by the European Society for
Medical Oncology (ESMO) [33].

1.4. Pre-Clinical Evidence IRE Induced Immune Modulation

It is proposed that focal ablation can enhance antigen presentation, provoke inflam-
mation, and reduce tumor-induced immune suppression [34]. Here within, ablation may
represent a means to turn PDAC from an immunologically “cold” tumor into a “hot”,
immuno-permissive one. Although all ablative modalities may theoretically invoke this
mechanism, IRE might possess superior immune potentiating abilities in terms of protein
release and T cell activation compared to cryo- or heat ablation [35,36]. Additionally, IRE
preserves the larger blood vessels, allowing antigen presenting cells to infiltrate the lesion
and transport apoptotic antibodies back to the draining lymph nodes, after which tumor
antigen specific T cell activation is induced [37,38].

1.5. Clinical Evidence IRE Induced Immune Modulation

Clinical immune monitoring studies of IRE in pancreatic cancer revealed that high-
voltage electrical pulses are able to transiently alleviate tumor-induced immune sup-
pression by decreasing the frequency of circulating Tregs [39,40]. This allowed for the
simultaneous expansion of activated tumor antigen specific effector T cells, as evidenced
by the isolated upregulation of programmed death-1 (PD-1) expression and increased or
de novo Wilms Tumor-1 specific responses. The magnitude of the latter effects has been
correlated with improved OS [39,40].

1.6. Pro-Oncogenic Effects

Similar to the anenestic effects, clinical evidence for pro-oncogenic effects following
ablation likewise exists and has been linked to a higher rate of local progression and
distant tumor spread in different types of cancer [31]. The exact physiological working
mechanism of the immunogenic effects of IRE is not yet fully understood. Therefore,
potential pro-oncogenic effects should be taken into consideration. However, based on
previous clinical trials in LAPC, pro-oncogenic effects from IRE ablation in PANFIRE-III
are deemed unlikely [19,41].

1.7. Synergy with Immunotherapy

Although the IRE induced immune response is temporary, it may provide a clini-
cal window of opportunity for potentiation with local or systemic immune enhancing
drugs. This treatment combination is termed electroimmunotherapy [42]. PD-1 checkpoint
inhibition with nivolumab (Bristol-Meyers Squibb, New York, NY, USA) could release
the brakes of the IRE induced effector T cell response to synergistically strengthen the
efficacy of both therapies and ultimately establish a durable memory T cell response [43].
Furthermore, there is increasing evidence that the endogenous immune status prior to
treatment, influences the outcome of chemo-, radio-, and ablative therapies. High rates of
tumor-infiltrating lymphocytes (TILs) and type 1 interferon (IFN) response signatures are
linked to higher clinical response rates and represent favorable prognostic factors [44–48].
Such optimal immune priming may be achieved by the peri-ablative administration of
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IMO-2125 (Idera pharmaceuticals, Exton, PA, USA), a CpG (cytosine-phosphate-guanine)
type B oligodeoxynucleotide (CpG-B ODNs) functioning as a synthetic toll-like receptor
9 ligand (TLR9-L) that stimulates DCs [49]. Type 1 IFNs released by properly stimulated
plasmacytoid DCs activate tumor infiltrating effector T cells and natural killer (NK) cells
while recruiting and activating a myeloid DC subset with superior cross-priming abilities,
i.e., cDC1 [46,47,50]. These cDC1s can prime a new generation of tumor antigen-specific
effector T cells in the draining lymph nodes and may provide the push needed to kick-start
a more durable IRE-induced immune response as well as provide improved responsiveness
to the immune checkpoint blockade. See Figure 1 for an illustration of electroimmunother-
apy as performed in PANFIRE-III.
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Figure 1. Electroimmunotherapy. Illustrated is the proposed working mechanism of electroimmunotherapy and the three
separate treatment stages to achieve synergistic immune modulation as performed in PANFIRE-III study arm C. The primary
pancreatic tumor maintains an immunosuppressive microenvironment with the presence of regulatory T cells (Tregs), M2
Macrophages, T helper 2 cells, and suppressive cytokines (red icons), while the effector T cells (T helper 1 cells and cytotoxic
T cells) are downregulated. Stage (1): Priming of the tumor microenvironment. CpG (cytosine-phosphate-guanine) type B
oligodeoxynucleotide (CpG-B ODN) is injected into the primary tumor and diffuses to the primary tumor-draining lymph
nodes where it binds to toll-like receptor 9 (orange receptor) on plasmacytoid dendritic cells (DCs), which mature and
release type-1 IFN, which in turn can activate lymph node-resident conventional DCs (cDCs), causing these to mature
(purple cells). Effective DC maturation results in their improved ability for tumor antigen uptake and presentation and
stimulates type-1 IFN release (blue icons), resulting in the activation of cytotoxic- and helper T cells (green icons). Stage (2):
Ablative antigen release and downregulation of tumor induced immune suppression. Irreversible electroporation (IRE) of
the primary pancreatic tumor causes massive cell death resulting in antigen release (black dots). Antigens are taken up by
DCs and transported back to the lymph nodes for T cell cross priming to result in adaptive tumor specific T cell responses
(green icons). As IRE reduces the tumor mass, it reduces the secretion of immunosuppressive cytokines and consequently
reduces numbers of circulating suppressive immune cell subsets (red icons). The tumor microenvironment shifts from
immune suppressive (pre-IRE, red icons) to immune permissive (post-IRE, green icons). Stage (3): Enhancing the induced
effector T cell response by intra venous injection of the anti-PD-1 monoclonal antibody (mAb). PD-L1 on the cancer cell
surface binds to PD-1 on the T cell surface, inhibiting immune cell activity. Anti-PD-1 mAb (PD-1 checkpoint inhibitor)
binds to the PD-1 receptors on the T cells, thereby blocking the receipt of inhibitory signals via PD-L1 and allowing the
T cells to uninhibitedly attack the tumor cells (not illustrated). NB: new insights suggest that the PD-1 blockade can also
release co-stimulatory signaling in T cells through CD28, leading to increased priming in tumor-draining lymph nodes.
Thus, the combination of all three treatment modalities (IRE, CpG, Anti-PD-1) may work synergistically and together may
alter the tumor microenvironment to induce a systemic immune response and ultimately cause an “anenestic” effect in
distant metastatic lesions (illustrated in the liver). (Reprinted with permission of Geboers et al. [51].)
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1.8. Hypothesis

We hypothesize that combining IRE, which reduces immune suppression and stimu-
lates a tumor-specific immune response, with PD-1 checkpoint inhibition using nivolumab
and preceded by effective DC priming through intra-tumoral injection of IMO-2125 might
establish in vivo immunization and durable treatment results in mPDAC patients.

2. Materials and Methods
2.1. Objectives

The primary objective of this study is to assess the safety of combining IRE + systemic
nivolumab ± intratumoral IMO-2125 in mPDAC patients with at least stable disease after
pretreatment with FOLFIRINOX.

The secondary objective aims to assess the (biological) efficacy of IRE + systemic
nivolumab ± intratumoral IMO-2125 compared to nivolumab monotherapy in terms of
local (enestic) or systemic (anenestic) anti-tumor responses, survival, and quality of life.

2.2. Design

The PANFIRE III trial is an investigator initiated, prospective, randomized controlled
phase I trial performed in the Amsterdam University Medical Centers under the aegis of the
national multidisciplinary Dutch Pancreatic Cancer Group (DPCG). The trial is registered
at ClinicalTrials.gov under number NCT04612530. A total of 18 patients will be included
and will divided over 3 arms. See Figure 2.

• Arm A (control arm): intravenous administration of 240 mg nivolumab every 2 weeks
for the first 3 doses followed by intravenous administration of 480 mg every 4 weeks
until disease progression.

• Arm B: percutaneous CT-guided (partial) IRE of the primary pancreatic tumor. After
2 weeks, this will be followed by the intravenous administration of 240 mg nivolumab
every 2 weeks for 2 doses followed by intravenous administration of 480 mg every
4 weeks until disease progression.

• Arm C: single intratumoral (i.t.) injection of 8 mg IMO-2125, which will be followed by
percutaneous CT-guided (partial) IRE of the primary pancreatic tumor after one week.
A 240 mg dose of nivolumab is administered intravenously every 2 weeks for 2 doses,
which will begin two weeks after IRE, followed by the intravenous administration of
480 mg every 4 weeks until disease progression.
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Figure 2. PANFIRE III treatment schedule. All patients require pretreatment with a minimum of 8 cycles of FOLFIRINOX, with
at least stable disease, prior to PANFIRE III inclusion. The first 12 patients will be randomized to treatment arm A or B. Arm C
will open for the last 6 patients upon the validation of the interim safety analyses. These safety analyses will be performed
after the treatment of 6, 12, and 15 patients. Arm A: nivolumab monotherapy. Arm B: irreversible electroporation succeeded
by intravenous administration of nivolumab. Arm C: priming with intratumoral injection of CpG (IMO-2125), followed by
irreversible electroporation after 1 week. This is succeeded by intravenous administration of nivolumab two weeks later. In all
treatment arms, nivolumab will be administered until unequivocal disease progression.
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2.3. Eligibility Criteria

To be eligible, adult patients require radiologically and histologically proven mPDAC
(AJCC stage IV). A maximum of 5 unequivocal metastases of ≥1 cm at the time of inclusion
(i.e., after pretreatment with FOLFIRINOX) are allowed. Patients should have at least stable
disease (according to RECIST version 5.0) after a minimum of 8 courses of FOLFIRINOX and
must be in good clinical condition (WHO 0–2). A minimum of a 4-week interval between
the final cycle of chemotherapy and start of the study-related treatment is required. The
in- and exclusion criteria are summarized in Table 1. Prior to inclusion, all patients will be
discussed in a multidisciplinary hepatopancreaticobilliary (HPB) tumor board consisting of a
hepatogastroenterologist, hepatobiliary surgeon, medical oncologist, radiation oncologist, and
abdominal and interventional radiologist. Decision on PANFIRE-III trial participation will be
at their discretion. All participants will provide written informed consent.

Table 1. In- and exclusion criteria PANFIRE-III.

Inclusion Exclusion

Radiologically and histopathologically
proven stage IV pancreatic cancer

(according to the AJCC staging system
for pancreatic cancer [52]).

Brain metastases.

Max. 5 unequivocal metastases ≥ 1 cm
at the time of inclusion (i.e., after

FOLFIRINOX).
Active epilepsy (last convulsion < 5 years).

Primary tumor is in situ.

History of cardiac disease:

– Congestive heart failure > NYHA Class 2.
– Active coronary artery disease (defined as myocardial infarction within

6 months prior to screening).
– Ventricular cardiac arrhythmias requiring anti-arrhythmic therapy or

pacemaker (beta-blockers for antihypertensive regimen are permitted;
atrial fibrillation is not contra-indicated).

A minimum of 8 cycles of FOLFIRINOX
chemotherapy is required before study
inclusion, with at least stable disease

according to RECIST.

Known hypersensitivity to any oligodeoxynucleotides.

Age ≥ 18 years.
Compromised liver function defined as warning signs of portal hypertension,

INR > 1,5 without use of anticoagulants, bilirubin > × 1.5 Upper limit of
normal range (ULN) ASAT > 3.0 × ULN, ALAT > 3.0 × ULN.

World Health Organization (WHO) scale
performance status 0–2.

Compromised kidney function defined as eGFR < 30 mL/min (using the
Cockcroft Gault formula).

Adequate bile drainage in case of biliary
obstruction.

Active autoimmune disease requiring disease-modifying therapy at the time
of screening, i.e., >10 mg prednisolone per day or equivalent to this regimen.

Uncontrolled hypertension. Blood pressure must be ≤160/95 mmHg at the
time of screening on a stable antihypertensive regimen.

Uncontrolled infections (>grade 2 NCI-CTC version 3.0) requiring antibiotics.

Immunotherapy prior to the procedure for the treatment of cancer.

Previous surgical therapy for pancreatic cancer.

Second primary malignancy with median 5-year OS < 90%. This excludes
adequately treated cancers such as non-melanoma skin cancer, in situ

carcinoma of the cervix uteri, superficial bladder cancer, or other malignancies
that have been previously treated without signs of recurrence.

Allergy to contrast agent.

Allergy to PET tracers 18F-FDG and 18F-BMS-986192.

Any implanted stimulation device.

Portal vein or VMS stenosis > 70%, or any arterial stenosis (superior
mesenteric artery, celiac artery, common hepatic artery) > 70% unless

effectively stented.

Any condition that is unstable or that could jeopardize the safety of the subject
and their compliance in the study.

2.4. Interventions
2.4.1. Percutaneous CT-Guided IRE

A total of 12 patients (n = 6 in arm B and n = 6 in arm C) will receive IRE treatment
of the primary tumor under general anesthesia induced with propofol, sufentanil, and
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rocuronium and maintained with propofol and remifentanil. Antibiotic prophylaxis will be
administered within one hour prior to the procedure (Cefuroxim 1500 mg i.v. and Metron-
idazole 500 mg i.v.). A pre-procedural 4-F straight flush catheter (Cordis Corporation,
Bridgewater, NJ, USA) flush catheter will be introduced via the right common femoral
artery in the abdominal aorta up to a supraceliac level for per-procedural transcatheter CT
arteriography [41]. All ablations will be performed percutaneously using ceCT guidance
and will be employed using the NanoKnife system under ECG-gating (AccuSync model
72; AngioDynamics, Latham, New York, USA). A defibrillator will be present at all times.
A pre-procedural catheter guided ceCT scan (unenhanced, arterial (7 s), and early portal
venous phase (22 s)) will be performed for tumor staging confirmation, exact tumor size
measurement, and electrode planning. Depending on tumor size, 2–6 needle electrodes
will be placed in the bulky part of the tumor in a parallel fashion while aiming at an
inter-electrode distance of 20 mm (±2 mm) with at least a 5 mm margin from adjacent
critical structures [53]. The generator-based tumor free margin will be set at 5 mm, and
the working length of the electrodes will be set at 15 mm. Ablations may be intentionally
incomplete, aiming for antigen release rather than optimal cytoreduction and emphasizing
patient safety. The ablation protocol consists of 10 test pulses of 1500 V/cm and 90 µs
per electrode pair followed by a sequential pulsing scheme of 90 additional pulses per
electrode pair. The voltage per centimeter setting can be adjusted in 10% steps in case of a
pending under- or overcurrent (<20 A or >45 A, respectively). Immediately after IRE, a
control transcatheter arteriography abdominal CT scan will be made to evaluate possible
early complications. Additional periprocedural interventions to enhance safety are allowed
such as placement of biliary endoprosthesis, percutaneous transhepatic cholangiography
drainage, or arterial/portal venous stenting in case of an impending IRE-induced occlusion.

2.4.2. Anti-PD-1 Monoclonal Antibody (mAb) (Nivolumab)

All patients (N = 18) will initially receive 240 mg nivolumab (dissolved in 250 mL
NaCl 0.9%) administered intravenously every 2 weeks—3 doses in arm A and 2 doses in
arms B and C—followed by 480 mg nivolumab (dissolved in 500 mL NaCl 0.9%) admin-
istered intravenously every 4 weeks. Nivolumab will be administered until unequivocal
disease progression. The infusion time will be 30–60 min. Blood will be drawn prior to
every treatment cycle, verifying hematological and endocrinological values, tumor marker
CA19.9, electrolytes, albumin, and kidney and liver function. See Table 2.

2.4.3. CpG Oligodeoxynucleotide (IMO-2125)

All patients in arm C (n = 6) will receive a single intratumoral injection with 8 mg of
IMO-2125 dissolved in 1 mL NaCl 0.9%. Injection will be administered in a daycare setting
under local anesthesia and will be performed percutaneously using CT and/or ultrasound
guidance. IMO-2125 solution will be injected with a 21-gauge stainless steel disposable
needle with side holes indicated for the infusion and aspiration of fluids (ProFusion™,
Cook, Bloomington, IN, USA).

2.5. Outcome Measures

The primary objective (safety) will be assessed by recording adverse events (AEs) and
serious adverse events (SAEs) directly associated with each treatment arm occurring up to
90 days after any of the interventions according to the Common Terminology Criteria of
Adverse Events (CTCAE) v5.0 [54].

The secondary objective ([biological] efficacy) will be assessed using biochemical
responses (tumor marker CA19.9), immunological responses (flow cytometry, histopathol-
ogy/immunohistochemistry (IHC), proteomics), radiological responses (contrast-enhanced
computed tomography (ceCT)), nuclear radiological responses (18F-fluorodeoxyglucose
(FDG), and 18F-BMS-986192 (Programmed Death- Ligand 1 (PD-L1)) positron emission-
computed tomography (PET) CT imaging) [55]. Furthermore, quality of life and pain
questionnaires, overall survival (OS), and progression-free survival (PFS) will be recorded.
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Inherent to the phase I trial design and small study sample, OS and PFS are specifically
evaluated subordinate to and in relation to the previously noted outcome measures.

Table 2. Required blood tests prior to Nivolumab administration PANFIRE-III.

Lab Test Prior to First Cycle of
Nivolumab

Prior to Consecutive Cycles
of Nivolumab

Full blood: hemoglobin/leukocytes and
differentiation/thrombocytes

hemoglobin/leukocytes and
differentiation/thrombocytes

Electrolytes: natrium/potassium/calcium/
magnesium/phosphate natrium/potassium

Liver function:

albumin/glucose/lipase/bilir
ubin/Alkaline

phosphatase/γ-glutamine
transferase/aspartate-

aminotransferase/alanine-
aminotransferase/lactate-

dehydrogenase

albumin/glucose/lipase/
bilirubin/Alkaline

phosphatase/γ-glutamine
transferase/aspartate-

aminotransferase/alanine-
aminotransferase/lactate-

dehydrogenase

Kidney function: creatinine/urea creatinine

Thyroid function: thyroid stimulating
hormone/thyroxin

thyroid stimulating
hormone/thyroxin

Acute phase proteins: c-reactive protein c-reactive protein

Hormones:

cortisol/luteinizing
hormone/follicle stimulating
hormone/adrenocorticotropic

hormone

Tumor markers: CA19.9

2.6. Data Collection and Analysis
2.6.1. Interim Safety Analysis

To ensure safety and to monitor toxicity of the electroimmunotherapeutic treatment
combinations a 3 + 3 step up design will be implemented. The study will be split into
4 phases, separated by interim safety analyses: phase 1 (inclusion 1–6), phase 2 (inclusion
7–12), phase 3 (inclusion 13–15), and phase 4 (inclusion 16–18). Randomized inclusion
will start in arms A and B (phases 1 and 2) at the same time to minimize selection bias
and to secure optimal qualitative immunological analyses of the added value of IRE to
nivolumab in mPDAC. Inclusion in arm C (phases 3 and 4) will start after the finalization
of the confirmed safety of arms A and B after the second interim analysis. Interim safety
analyses will be assessed by the following stopping rules based on recommendations of
the clinical trial design task force of the National Institutes of Health Investigational Drug
Steering Committee [56]: if >50% of patients within one study arm per study phase develop
a grade 5 drug- or IRE-related SAE (i.e., death) within 30 days after treatment and/or if
>50% of all included patients overall develop a grade 4 drug- or IRE-related SAE within
30 days after treatment, the study will be terminated.

2.6.2. Survival

Overall survival (OS) is defined as the date of the first study-related treatment (T = 0)
until the date of death from any cause. Progression-free survival (PFS) is defined as the time
from the first study-related treatment until the date of unequivocal disease progression
according to iRECIST [57] and PERCIST [58] criteria.

2.6.3. Blood and Tissue

Systemic and local immune responses will be assessed by sampling venous blood
and primary and metastatic tumor tissue in the same session. Samples will be collected
at 3 different time points: baseline, 2 (arm A, B) or 3 (arm C) weeks, and 5 (arm A, B) or
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6 (arm C) weeks after the first study-related treatment. In arm C, extra blood samples will
be collected 1 week after study start to assess the systemic immune response after initial
intratumoral injection with CpG. Blood will be examined by flow cytometry for changes
in frequency and the activation/proliferation status of several suppressive and permis-
sive immune-cell subsets (memory/effector CD4+ and CD8+ T cells, Tregs, B cells, DCs,
NK cells and MDSCs). Tissue will be analyzed using flow cytometry (tumor-infiltrating
lymphocytes (memory/effector CD4+ and CD8+ T cells, Tregs) and NK cells), histopathol-
ogy/IHC (microsatellite instability, tumor-infiltrating lymphocytes, myeloid infiltration
(M2 macrophages, DCs) and tumor markers), and proteomic analysis. Biochemical re-
sponses will be assessed by the evaluation of tumor marker CA19.9 in venous blood drawn
at baseline and prior to every nivolumab treatment cycle. See Figure 3 for the timing of the
study assessments.
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Figure 3. PANFIRE III specified treatment schedule and study assessments per study arm. Arm A: nivolumab monotherapy;
intravenous administration of 240 mg nivolumab every 2 weeks for 3 doses followed by intravenous administration of
480 mg nivolumab every 4 weeks. Assessments: ceCT (baseline, 5 weeks, and after every 3 months), FDG and PD-L1-PET
(baseline and 5 weeks), blood and biopsy sampling (baseline, 2 weeks (prior to second nivolumab administration) and
5 weeks (prior to fourth nivolumab administration)), and QOL questionnaires (baseline and every 3 months). Arm B:
irreversible electroporation succeeded by intravenous administration of 240 mg nivolumab every 2 weeks for 2 doses
followed by intravenous administration of 480 mg nivolumab every 4 weeks. Assessments: ceCT (baseline, 5 weeks, and
after every 3 months), FDG and PD-L1-PET (baseline and 6 weeks), blood and biopsy sampling (baseline, 2 weeks (prior to
second nivolumab administration) and 5 weeks (prior to fourth nivolumab administration)), and QOL questionnaires
(baseline and every 3 months). Arm C: priming with intratumoral injection of IMO-2125 after 1 week followed by
irreversible electroporation. This is succeeded 2 weeks later by intravenous administration of 240 mg nivolumab every
2 weeks for 2 doses followed by intravenous administration of 480 mg nivolumab every 4 weeks. Assessments: ceCT
(baseline, 6 weeks, and after every 3 months), FDG and PD-L1-PET (baseline and 6 weeks), blood and biopsy sampling
(baseline, 1 week, 3 weeks (prior to first nivolumab administration), and 6 weeks (prior to third nivolumab administration)),
and QOL questionnaires (baseline and every 3 months). In all treatment arms, nivolumab will be administered until
unequivocal disease progression. W: week, M: month, IRE: irreversible electroporation, ceCT: contrast enhanced computed
tomography, PET: positron emission tomography, FDG: fluorodeoxyglucose, PD-L1 PET: programmed death—ligand
1. Double syringe nivolumab at 6 (arm A/B) and 7 (arm C) weeks illustrates change of nivolumab dosing from 240 mg
fortnightly to 480 mg monthly.

2.6.4. Imaging

Radiological responses will be assessed by ceCT (SOMATOM Sensation or Drive,
Siemens AG, München, Germany), and nuclear radiological responses will be assessed
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by 18F-FDG PET-CT, and 18F-BMS-986192 (Bristol Meyer Squibb) PET-CT (Philips Gemini
TF PET-CT system, Philips Medical Systems, Cleveland, OH, USA) and performed at
3 different time points: baseline, 2 (arm A, B) or 3 (arm C) weeks, and 5 (arm A, B) or
6 (arm C) weeks after treatment start. A third ceCT and 18F-FDG PET-CT will be performed
3 months after the start of treatment in all study arms.

CeCT imaging (abdomen and thorax) is conducted according to EANM guidelines
to assess viable tumor lesions, enestic tumor response (primary lesion), and anenestic
tumor response (metastatic lesion) (see discussion) [59]. Treatment response to ceCT is
assessed using the immune response evaluation criteria in solid tumors (iRECIST) [57,60].
iRECIST utilizes an intermediary progressive state known as unconfirmed progressive
disease (iUPD), in which a radiological increase in the sum of the target lesions (>20%;
longest diameter; axial plane), unequivocal progression of existing non-target lesions, or
the appearance of one or more new lesions are identified. The unconfirmed progressive
disease is only confirmed (iCPD) if at the subsequent imaging timepoint, the target sum has
further increased (≥5 mm) or if there is additional unequivocal progression of non-target
lesions and/or the appearance of new lesions (sum ≥ 5 mm). However, if the subsequent
imaging after iUPD reveals stable disease (SD), partial response (PR), or complete response
(CR) (compared with baseline), the iUPD status is reset to the newly acquired status.

Changes in 18F-FDG and 18F-BMS-986192 uptake in tumor lesions and organs of inter-
est (as measured both visually and semi-quantitatively by means of different standardized
uptake values (SUVs)) from baseline to early and late treatment will be investigated and
correlated with radiological response and blood and tissue analyses. Whole body PET
(vertex to mid-thigh) will start 60 min after tracer injection followed by a ceCT for attenu-
ation correction and the anatomical correlation of 18F-FDG and 18F-BMS-986192 PET. To
prevent remaining 18F signal at the time the second scan, a minimum delay of 10 half-lives
(19 h) will be ensured. In order to validate the usage of the derived image, SUVs of the
18F -BMS-986192 tracer venous blood sampling will be performed at 5, 10, 20, 30, 40 and
55 (±5) minutes post injection.

2.6.5. Questionnaires

Pain and quality of life will be assessed using validated visual analog score (VAS)
questionnaires and Quality of Life Questionnaires (QLQ) at baseline and every three-
months as part of the PACAP-trial (NCT03513705) [61].

2.7. Follow-Up

Patient follow-up after the first 3 months will consist of blood sampling prior to every
consecutive nivolumab administration (see Table 2), ceCT imaging every 3 months, and
quality of life and pain questionnaires every 3 months. Study medication will be stopped
after 12 months or when unequivocal disease progression occurs. The trial will end twelve
months after the inclusion of the final patient.

2.8. Data Collection and Handling

Data will be collected by the study coordinators and will be treated confidentially and
anonymously. A subject identification code will be used to link the data to the subject. The
study coordinators safeguard the key to the identification code. The handling of personal
data complies with the Dutch Personal Data Protection Act. See Figure 4 for overview of
all analysis modalities.

2.9. Sample Size Calculation and Statistical Considerations

In this phase I trial, a sample size of 6 patients per treatment arm and the 3 + 3 step-up
design are based on establishing early safety data. No power analysis was performed as
efficacy is not the primary study objective.
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Figure 4. Data collection and analyses per patient in PANFIRE-III. Biopsies from primary (P) and metastatic (M) tissue will
be analyzed using flow cytometry, histopathology/immunohistochemistry (IHC), and proteomics. Blood samples will be
analyzed using flow cytometry. Imaging will be performed by ceCT, FDG (18F-FDG) PET-CT, and PD-L1 (18F-BMS-986192)
PET-CT. Pain scores and quality of life scores will be evaluated by validated questionnaires.

3. Discussion
3.1. Preclinical Evidence of Synergy

While the exact mechanism of action underlying systemic effects of IRE is not fully
understood, it most likely involves the release of antigens and the activity of DCs, as
they regulate tolerance versus immunity, depending on their maturation state [62,63].
Exposure to sufficient quantities of antigens and maturation signals, i.e., damage associated
molecular patterns (DAMPs), leaves DCs capable of upregulating their T cell stimulatory
function. Ablation results in massive tumor cell death [37] and can provoke an immune
cascade of tumor antigen and DAMP release, DC activation, and tumor antigen uptake
followed by migration to the lymph nodes, where effector T cell cross-priming can take
place [64–66]. Activated T cells may subsequently home to loco-regional and distant
sites to eliminate (micro-)metastases producing an anenestic effect [67]. Research in an
immunocompetent PDAC murine model that leveraged this ablation-induced immune
response by combining IRE with anti-PD-1 mAbs provided encouraging outcomes in terms
of immune activation, tumor regression, and improved survival [43]. Furthermore, it was
observed that priming the tumor micro-environment with the injection of CpG, 7 days
prior to ablation, could further enhance effective synergistic tumor control in an epithelial
cancer mouse model [68].

3.2. Clinical Evidence of Synergy

The first clinical trials combining IRE with immunotherapy, such as adoptive allo-
genic natural killer cell therapy and PD-1 checkpoint inhibition, were actively pursued
in end stage pancreatic cancer patients and the combinations were proven to be safe with
promising preliminary efficacy results [69,70].

3.3. Timing of Study Interventions

The specific timing and sequence of IMO-2125, IRE, and Nivolumab administration
in PANFIRE-III are based on observations of immune cell kinetics in previous studies.
Simultaneous Treg downregulation and tumor specific CD4 and CD8 T cell expansion with
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increased PD-1 expression peak 14 days after ablation in IRE treated PDAC patients [40].
Hence, the onset of Nivolumab administration 14 days after IRE ablation in arm B and C to
potentially release the brakes on this effector T cell response. Earlier discussed preclinical
findings on DC priming are in accordance with clinical findings of optimally increased DC
frequency and maturation status, in both the circulation and sentinel lymph nodes, 7 days
after CpG administration [71,72]. Consequently, IMO-2125 is intratumorally administered
7 days prior to IRE ablation aiming to secure optimal DC priming at the time of ablative
antigen release.

The addition of immunotherapeutic agents to FOLFIRINOX is also proposed to
strengthen and synergistically increase anti-tumor effects [73]. Systemic chemotherapy
itself can promote the release of tumor antigens and may activate anti-cancer immunity to
enhance tumor growth suppression [74,75]. In this regard, pre-treatment with FOLFIRI-
NOX in this trial might add to the improved tumor sensitivity to nivolumab in all treatment
arms. PANFIRE-III aims to gain new insights into the potentially synergistic pathways
of both ablation and chemotherapy in combination with immunotherapeutic agents in
mPDAC.

3.4. Immune Response

This study’s flow cytometric, histopathologic/IHC, and proteomic analyses of primary
and metastatic biopsy samples will provide unique insights into the different mechanisms
that drive the local and systemic immune response to achieve the desired enestic and
anenestic effects in mPDAC. The flow cytometric analyses of blood samples will allow
comparison of the development of systemic innate and adaptive immune responses after
each treatment and over time. Assessments of the post treatment immune responses are
specifically timed for optimal comparison between the treatment arms. Blood and tissue are
sampled 2 (arm A and B) or 3 weeks (arm C) and 5 (arm A and B) or 6 weeks (arm C) after
start of the treatment for the assessment of the innate immune response to each individual
treatment (arm A: nivolumab, arm B: IRE, arm C: CpG + IRE) and the adaptive immune
response to each individual treatment in combination with Nivolumab, respectively. To
optimally compare the immune effects induced by IRE to the addition of CpG and/or
Nivolumab, identical timing between IRE ablation, blood and tissue sampling, and imaging
in arm B and C were given precedence over the uniform timing of data collection. Hence,
sampling in arm C is deferred by 1 week. See Figure 3 for the timing of blood and tissue
sampling.

If electroimmunotherapy proves safe, potential radiological, immunological, or bio-
chemical responses generated in this study will provide new information that will be
valuable for the optimization of combination treatment strategies for mPDAC.

3.5. Imaging

The PANFIRE-III trial primarily focuses on the typical ceCT and 18F-FDG PET-CT
imaging characteristics of tumor tissue over time and during follow-up. Although the
performance of 18F-FDG PET in the follow-up of PDAC after treatment with immunother-
apeutic drugs is unexplored, a meta-analysis of the use of 18F-FDG PET in combination
with ceCT for detection of recurrent disease reported a reasonable diagnostic accuracy with
pooled estimates for sensitivity and specificity of 95% and 81%, respectively [76]. Addi-
tionally, preclinical evidence supports the potential of 18F-FDG PET to monitor checkpoint
inhibitors associated metabolic changes in lymphoid organs [77].

However, there is a need to improve PDAC detection, prognosis prediction, and
treatment response evaluation. Conventional imaging techniques such as ceCT, MRI or
EUS do not always offer a reliable differentiation between PDAC and benign conditions or
between viable tumor and necrotic tissue after neo-adjuvant chemotherapy, nor do they
provide insight into the immune status of the tumor microenvironment and the lymphoid
organs. Additionally, the emerging prescription of immunotherapies warrants new and
accurate diagnostic techniques for response evaluation. PET imaging with novel tracers
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such as the PD-L1 targeting 18F-BMS-986192 tracer [78] could offer an innovative approach
for these hurdles. Imaging with 18F-BMS-986192 was previously studied in non-small
cell lung cancer patients prior to treatment with anti-PD-1 mAbs and was proven to be
feasible and safe [55]. It was found that patients responding to treatment with anti-PD-
1 mAbs experienced higher 18F-BMS-986192 uptake than non-responders. No clinical
PET studies with PD-L1 tracers have been performed in pancreatic cancer patients yet.
Hence, the incorporated explorative 18F-BMS-986192 tracer study is primarily used for
tracer validation in metastatic pancreatic cancer patients, as it will generate qualitative
and quantitative information about the tracer’s uptake in the tumor and lymphoid organs.
Additionally, it might provide new insights in innate and adaptive immune dynamics
following each treatment combination. Indeed, type-1 IFN release by pDC upon CpG
binding may induce PD-L1 expression in both tumor and immune cells; additionally, T cells
that are recruited to and are activated in the tumor microenvironment may induce PD-L1
expression through IFNγ release. It should be noted that the amount of delivered 18F-BMS-
986192 is in the nanomolar quantity and is far below the dose required for pharmacological
effects.

4. Conclusions

Electroimmunotherapy through a combination of IRE with local and systemic im-
munotherapeutic agents may provide efficient in vivo immunization against pancreatic
cancer. PANFIRE-III aims to assess the safety and (biological) efficacy of combination
therapy with IRE, nivolumab, and IMO-2125 in patients with mPDAC that have been
effectively pre-treated with FOLFIRINOX.

The study treatment might allow the immune system to initiate systemic tumor degra-
dation and protection against further tumor growth and spread. When proven safe and
clinically reproducible, future research should be pursued to optimize the dosage and tim-
ing of drug administration, IRE pulse delivery settings, and choice of immunotherapeutic
agents. If electroimmunotherapy can truly be used to trigger a systemic anti-tumor effect
and can incite a durable response in patients with mPDAC, IRE may provide the missing
link between local and systemic treatment in pancreatic cancer.
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