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Simple Summary: Cancer remains a worldwide concern with significant burdens on the population 
and healthcare systems. Studies have shown that early detection is paramount in positive patient 
outcomes, although the standard of care screening is limited to a few cancers. When a tumor cell 
dies, it releases DNA into the bloodstream. This cell-free DNA can be extracted, and specific muta-
tions identified. Technologies based on this principle are gaining popularity amongst physicians for 
cancer patients to inform personalized treatment. Additionally, if platforms are sensitive enough, 
blood-based multi-cancer screening can be performed. DEEPGENTM is a next-generation sequenc-
ing platform that has been optimized for early cancer detection. This study is a preliminary analysis 
of cancer detection rates across seven cancers using the DEEPGENTM platform. 

Abstract: This is an early clinical analysis of the DEEPGENTM platform for cancer detection. Newly 
diagnosed cancer patients and individuals with no known malignancy were included in a prospec-
tive open-label case-controlled study (NCT03517332). Plasma cfDNA that was extracted from pe-
ripheral blood was sequenced and data were processed using machine-learning algorithms to de-
rive cancer prediction scores. A total of 260 cancer patients and 415 controls were included in the 
study. Overall, sensitivity for all cancers was 57% (95% CI: 52, 64) at 95% specificity, and 43% (95% 
CI: 37, 49) at 99% specificity. With 51% sensitivity and 95% specificity for all stage 1 cancers, the 
stage-specific sensitivities trended to improve with higher stages. Early results from this prelimi-
nary clinical, prospective evaluation of the DEEPGENTM liquid biopsy platform suggests the plat-
form offers a clinically relevant ability to differentiate individuals with and without known cancer, 
even at early stages of cancer. 
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1. Introduction 
Cancer is a major cause of mortality worldwide and a significant burden on patients 

as well as the healthcare system [1]. Major challenges include the absence of early diagno-
sis at a large scale, especially for average risk individuals because the standard of care 
screening only exists for a limited number of cancers for this population [2]. Thus, the 
current diagnostic pipeline is mostly empirical and primarily driven by an examination 
of the patient’s symptoms [2,3]. Due to delays in detection, most of the patients diagnosed 
with cancer miss the therapeutic window of opportunity to reset the disease’s trajectory 
[4,5]. Therefore, early detection using rapid, cost-effective, high-precision, and minimally 
invasive tools holds the promise to materially decrease morbidity and mortality in cancer 
[6,7].  

Advances in sequencing technologies and associated genomic research have proven 
crucial to better understand the mutational patterns that accompany cancer [8,9]. Exten-
sive molecular profiling of tumors has successfully led to the identification of key somatic 
mutations that drive transformation, evolution, and the continually adaptive behavior of 
cancer. Considering that dying cancer cells shed cell-free DNA (cfDNA) into the blood-
stream, the ability to accurately detect these mutations broadly in the blood, especially at 
ultra-low variant allele frequencies (“VAF”, i.e., far below <1%), may provide an attractive 
alternative to standard tissue biopsy [10–13]. Indeed, blood-based biopsies—if designed 
appropriately for high sensitivity—can detect low prevalence mutations with a reduced 
signal-to-noise ratio (<0.1%), making them a potential high impact diagnostic tool for im-
proving the precision of accompanying cancer treatments [10,11,13]. 

Nevertheless, blood-based biopsy, as with the current gold standard tissue biopsy, 
faces several challenges that must be overcome. One of the major drawbacks of blood-
based biopsy is the low allele frequency of clinically significant variants, which often re-
side in the range of technical background noise [13,14]. This is especially true in early-
stage cancer patients where the concentration of tumor DNA is low [13–16]. Moreover, 
the narrow base pair range of the fragments (140–200 bp), short life of DNA in the blood 
(1.5–2 h), tumor type, proliferation rate, and therapy create challenges for the ultimate 
utility of liquid biopsies for cancer screening [17–19]. Hence, extensive optimization of 
pre-analytical (e.g., extraction and storage) and analytical (e.g., bioinformatics and AI) 
processes is required to optimize precision. Until now, most commercially available plat-
forms and those under pre-clinical validation have sub-optimal clinical performance 
[11,20–22]. Thus, there is a need for novel platforms that considerably improve detection 
accuracy and variant calling precision at ultra-low VAF to facilitate the detection of can-
cer, particularly in asymptomatic individuals.  

DEEPGENTM (Quantgene Inc., Santa Monica, CA, USA) is a newly developed full 
stack sequencing technology awarded with a Clinical Laboratory Improvement Amend-
ments (CLIA) certificate. The platform addresses the common challenges of previous gen-
eration liquid biopsy platforms by combining yield-optimized cfDNA storage and extrac-
tion protocols, a broad panel assay, advanced error reduction chemistry, and ultra-deep 
next-generation sequencing (NGS) with a customized bioinformatics pipeline, highly scal-
able cloud software and innovative AI techniques to identify low-frequency variants ac-
curately and consistently in the blood. Initial validation studies demonstrated that 
DEEPGENTM has high detection capabilities, capturing over 3000 mutations at VAFs down 
to >0.09%, and thus out-performs other publicly available platforms on a technical level 
[23]. Additionally, the mutations undergo a proprietary machine learning protocol that 
considers mutations and their VAFs to derive a prediction if cancer might be the underly-
ing cause of the observation. 
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The objective of this pilot study is to evaluate the early clinical capabilities of the 
DEEPGENTM assay to discriminate individuals with yet-untreated cancers from individu-
als without a known cancer diagnosis. 

2. Materials and Methods 
2.1. Study Design and Participants 

This is a preliminary analysis of prospective multi-center case–control, open-label pi-
lot study (NCT03517332). Adult patients over 18 years of age with newly diagnosed and 
to that point untreated cancer were included in the cancer group. Patients with no known 
or previous history of malignancy were included in the control group. Written consent 
was secured before study enrollment. A representative set of patients with cancers of 
breast, lung, pancreas, liver, colon–rectum, prostate, or bladder ranging from stage I to IV 
and a control cohort were retrospectively selected to undergo processing and analysis.  

2.2. Sample Collection 
A measure of 10–20 mL of venous blood was taken from the study participants using 

DNA stabilizing blood tubes (Streck, La Vista, NE, USA). Blood tubes were stored at room 
temperature and shipped to the location of DNA extraction. 

2.3. DNA Preparation 
Cell-free (cf) DNA was extracted and purified using Qiasymphony (Qiagen, Hilden, 

Germany) using a customized protocol that was designed to maximize extraction yield. 
Early samples were extracted manually. Extractions were transitioned to an automated 
process for most of the samples. DNA concentration was then determined using quanti-
tative RT-PCR. Samples were stored at −80 °C until assigned for sequencing. 

2.4. Sequencing 
NGS libraries were prepared from cfDNA according to the manufacturer’s instruc-

tions (protocol based on QIAseq Targeted DNA Panel Handbook, R2; May 2017, Qiagen, 
Hilden, Germany) except for the DNA fragmentation. End-repair and Poly(A) tailing were 
followed by Illumina NGS adapter (Illumina, San Diego, CA, USA) ligation to cfDNA 
containing a sample index and a unique molecular identifier sequence (UMI). After UMI 
assignment, target enrichment of ligated cfDNA was performed by PCR using target spe-
cific DEEPGENTM primers. Library concentrations were determined with KAPA Library 
Quantification Kits for Illumina platforms (Roche Holding AG, Basel, Switzerland). Li-
braries were prepared using NovaSeq Reagent Kits (Illumina, San Diego, CA, USA) and 
sequenced with a 300-cycle S4 kit on a NovaSeq 6000 (Illumina, San Diego, CA, USA) with 
a mean raw sequencing depth of ~200,000×. 3062 genomic variants were targeted. All steps 
were carried out according to the manufacturer’s instructions. 

2.5. Data Processing 
FASTQ files were processed with the DEEPGENTM bioinformatics pipeline. Sequenc-

ing data from both paired-end reads were deployed, whereas information from the 2nd 
read was used to complement the sequence of read one. Each read was screened for the 
specific primer sequence and consensus sequences of the fragments were identified by 
consolidating reads based on primer and UMI information. Each unique consensus se-
quence was aligned to its reference via an optimized Smith–Waterman algorithm. Based 
on a whitelist with defined targets, single nucleotide polymorphisms (SNPs), multi nucle-
otide polymorphisms (MNPs), and short insertions/deletions (INDELS) (<50 base pairs) 
were recorded. Identical genomic alterations were summarized and the count coverage 
and resulting frequency (count/coverage × 100) for each unique variant were logged into 
a mutation table alongside their location and mutation information. 
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2.6. Machine Learning 
The input data for the machine learning models consisted of mutation frequencies 

for the genomic targets computed by Quantgene’s bioinformatics pipeline. Samples with 
a mean sequencing coverage < 200 across select targets were removed from the machine 
learning analysis. Random forest classifiers were trained via leave-one-out cross-valida-
tion to predict whether a sample belonged to the control or cancer cohort. For every sam-
ple, a random forest output of a predictive score with a continuous value between 0 and 
1 indicated the likelihood of belonging to the cancer group in ascending order. A classifier 
was trained on all cancer and control samples as a full model. Cancer-specific classifiers 
only utilizing samples from a single organ of origin and all controls were trained for lung, 
pancreas, liver, colorectal, and bladder. The classifiers for prostate and breast cancer were 
limited to only male and female samples, respectively, for both control and cancer groups. 
Samples with manual and automated DNA extraction were analyzed separately. 

2.7. Classification of Cancer Versus Non-Cancer (Predictive Score) 
The cut-off values between a positive (cancer) from a negative (non-cancer) predic-

tive score were derived for both a 95% and 99% specificity. Sensitivities for both specificity 
values were calculated for the full cancer model and organ-specific models. Cancer stage-
specific sensitivities were calculated at 95% specificity. 

2.8. Data Analysis 
Machine learning models were trained and evaluated using the scikit-learn package 

(v0.24.0) in Python (v3.8.7, Python Software Foundation, Troisdorf, Germany) [24,25]. Re-
sults of the different cancer models adjusted for a 95% specificity were subjected to Krus-
kal–Wallis tests to screen for significant differences in sensitivity between cancer types 
and cancer stages, respectively. In case of a significant p-value (p < 0.05), a Wilcoxon rank 
sum test was performed as a post hoc procedure. Test were performed with R, version 
4.0.2 (https://www.r-project.org, accessed on 25 June). 

2.9. False Positive Controls 
If available, medical records of false-positive controls were assessed for relevant dis-

eases that were present at the time of the liquid biopsy as well as during the follow-up 
until the date of review. 

3. Results 
3.1. Demographics 

A total of 719 samples were sequenced, and of these, 44 were excluded from machine 
learning analysis due to a mean sequencing coverage < 200 across select targets. The re-
maining 675 samples consisted of 25 bladder, 29 prostate, 30 lung, 27 liver, 40 pancreatic, 
66 colorectal, 43 breast cancers, and 415 controls without known cancer diagnosis (con-
trols). A total of 70 individuals with stage I (27%), 55 with stage II (21%), 73 with stage III 
(29%) and 27 cases with stage IV (10%) were included. The cancer stage remained clini-
cally undetermined for 35 cases (13%). The mean age was 65.4 ± 10.9 years in cancers and 
54.9 ± 15.5 years in controls (p < 0.001). There were 136 men and 124 women in the cancer 
group, and 117 men and 298 women in the control group (p < 0.001). A family history of 
cancer was found in 38% of the cancer patients and 44% of the control patients. A complete 
description of patients’ demographics can be found in Table 1. 
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Table 1. Demographic parameters. 

Parameter  Control 
n = 415 

All Cancer 
n = 260 

Bladder 
n = 25 

Prostate 
n = 29 

Lung 
n = 30 

Liver 
n = 27 

Pancreatic 
n = 40 

Colorec-
tal 
n = 66 

Breast 
n = 43 

Age          
Mean (standard devia-

tion) 
54.9 (15.5) 65.4 (10.9) 68.7 (11.1) 64.9 (7.3) 64.2 (9.6) 67.5 (9.7) 66.9 (9.4) 65.2 (12.3) 61.9 (12.3) 

Sex, n (%)          
Male 117 (28) 136 (52) 18 (72) 29 (100) 10 (33) 20 (74) 21 (52) 38 (58) 0 (0) 

Female 298 (72) 124 (48) 7 (28) 0 (0) 20 (67) 7 (26) 19 (48) 28 (42) 43 (100) 
Comorbidities, n (%)          

Alzheimer’s 1 (0.2) 1 (0.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (2) 
Cardiovascular disease 27 (7) 28 (11) 8 (32) 1 (3) 3 (10) 4 (15) 4 (10) 6 (9) 2 (5) 

Diabetes 31 (7) 36 (14) 4 (16) 2 (7) 2 (7) 8 (30) 8 (20) 8 (12) 4 (9) 
Hypertension 75 (18) 108 (42) 18 (72) 8 (28) 12 (40) 15 (56) 18 (45) 23 (35) 14 (33) 

Kidney disease 5 (1) 14 (5) 4 (16) 2 (7) 1 (3) 0 (0.0) 0 (0.0) 5 (8) 2 (5) 
Obesity 40 (10) 30 (12) 8 (32) 2 (7) 5 (17) 3 (11) 0 (0.0) 5 (8) 7 (16) 

Respiratory disease 18 (4) 35 (13) 7 (28) 3 (10) 9 (30) 4 (15) 4 (10) 2 (3) 6 (14) 
Other 141 (34) 113 (43) 18 (72) 17 (59) 16 (53) 18 (67) 12 (30) 14 (21) 18 (42) 
None 185 (45) 30 (12) 1 (4) 3 (10) 3 (10) 1 (4) 3 (8) 10 (15) 9 (21) 

Unknown 32 (8) 46 (18) 0 (0.0) 2 (7) 1 (3) 5 (19) 13 (32) 25 (38) 0 (0.0) 
Risk Factors, n (%)          
Family History * 182 (44) 100 (38) 4 (16) 8 (28) 14 (47) 9 (33) 14 (35) 25 (38) 26 (60) 
Smoking History 132 (32) 110 (42) 11 (44) 11 (38) 23 (77) 13 (48) 15 (38) 25 (38) 12 (28) 

Medical Condition 57 (14) 65 (25) 7 (28) 11 (38) 5 (17) 8 (30) 12 (30) 18 (27) 4 (9) 
Other 22 (5) 47 (18) 10 (40) 8 (28) 5 (17) 14 (52) 3 (8) 5 (8) 2 (5) 
None 104 (25) 45 (17) 8 (32) 3 (10) 2 (7) 2 (7) 3 (8) 16 (24) 11 (26) 

Unknown 51 (12) 23 (9) 4 (16) 4 (14) 0 (0) 5 (19) 6 (15) 3 (5) 1 (2) 
* Across 4 generations (grandparents to children). 

3.2. Cancer Identification 
The overall detection sensitivity in the machine learning model for all cancers was 

57% (CI: 52, 64) at 95% specificity, and 43% (CI: 37, 49) at 99% specificity. The area under 
the curve (AUC) for this model was 0.90. A receiver operating characteristics (ROC) curve 
for the “all cancers” model is shown in Figure 1. 

 
Figure 1. ROC curve for diagnosis of all cancers (full model). 
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At 95% specificity, the individual organ models ranged in sensitivity from 30% for 
breast cancer to 80% for bladder cancer, with sensitivities higher than 50% for prostate 
(72% (CI: 56, 88) sensitivity), lung (67% (CI: 50, 84) sensitivity), liver (63% (CI: 45, 81) sen-
sitivity), and pancreas (52% (CI: 37, 67) sensitivity). At 99% specificity, the individual or-
gan models ranged in sensitivity from 16% for breast cancer to 62% for prostate cancer (p 
= 0.001). The bladder differed from the breast model (p = 0.0018) and the colorectal model 
(p = 0.0102), the breast model from the lung (p = 0.0120) and prostate (p = 0.0052) models, 
and the prostate model from the colorectal model (p = 0.0268). Detection performance for 
the “all cancer” and individual organ models can be found in Table 2 and Figure 2. 

Table 2. Number of cancer samples and cancer finding/sensitivities at 95% and 99% specificity. 

Model Number of 
Cancer Samples 

Cancer Findings at 95% Specificity Cancer Findings at 99% Specificity 

 n 
Correctly 
Identified 
Cancers, n 

Sensitivity, % 

95% 
Confidence 

Interval, Lower 
Bound, Upper 

Bound 

Correctly 
Identified 
Cancers, n 

Sensitivity, 
% 

95% 
Confidence 

Interval, Lower 
Bound, Upper 

Bound 
All cancers 260 150 57 52, 64 111 43 37, 49 

Bladder 25 20 80 64, 96 8 32 14, 50 
Breast 43 13 30 16, 44 7 16 5, 27 

Colorectal 66 28 42 30, 54 18 27 16, 38 
Liver 27 17 63 45, 81 11 41 22, 60 
Lung 30 20 67 50, 84 16 53 35, 71 

Pancreas 40 21 52 37, 67 15 38 23, 53 
Prostate 29 21 72 56, 88 18 62 44, 80 

 
Figure 2. Sensitivity of DEEPGENTM platform by model at 99% and 95% specificity. 
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3.3. Impact of Cancer Stage 
At 95% specificity, the overall cancer sensitivity was 51% (CI: 40, 63) for stage I, 58% 

(CI: 45, 71) for stage II, 62% (CI: 50, 73) for stage III, and 67% (CI: 49, 84) for stage IV. Figure 
3 shows the stage-specific sensitivities at 95% specificity (p = 0.5375) and figure 4 shows 
the stage-specific areas under the curve. 

 
Figure 3. Sensitivity of DEEPGENTM platform by cancer stage at 95% specificity. 

The area under the curve (AUC) for the cancer stages ranged from 0.88 for stage I to 
0.94 for stage 4. 

 
Figure 4. ROC curves for cancer stages. 

3.4. False Positive Controls 
The “all cancers” model resulted in 21 positives of the 415 controls at 95% specificity. 

Twenty-one medical records were available with a mean follow-up of 30.9 (± 5.2) months. 
Three study controls were morbidly obese and scheduled for bariatric surgery. Four pa-
tients were hospitalized for an acute inflammation and two of those required emergency 
cholecystectomies for acute cholecystitis and acute cholangitis, respectively. Two individ-
uals were diagnosed with a benign tumor at the time of the liquid biopsy and three were 
found with a benign lesion at 8-, 20-, 24- and 36-months and post-study inclusion (one 
patient developed two independent benign lesions). 
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4. Discussion 
These early results of a comprehensive prospective evaluation of the DEEPGENTM 

platform suggest a clinically viable capability to differentiate individuals with and with-
out cancer for seven different organs of origin. This finding was observed for a “full 
model”—including all assessed cancers as well as organ-specific models with varying 
ranges of performance for the different cancers. As such, it seems plausible to assume that 
the described liquid biopsy and data analytics innovations not only transpire to an excel-
lent technical performance [23], but also into a relevant clinical capability. This finding is 
in line with similar projects in the field of liquid biopsy using different technological ap-
proaches [7,21,22,26]. Important differences in performance have occurred across cancers 
and have been described previously. A variety of reasons might cause this observation, 
including differences in tumor biology (less production of cfDNA of certain cancers), 
panel variants that do not equally cover all cancers, study logistics, including the time 
from blood draw to DNA extraction, and others. Further research is required to under-
stand the details around this variability in outcomes per organ of origin. 

While this is still a preliminary analysis of the first few samples of a larger specimen 
collection, the obvious question is how this promising technology can be utilized for an 
impactful clinical application beyond research. As outlined above, current population-
based screening is insufficient and flawed, and leaves room to significantly improve can-
cer outcomes through earlier detection [2,6,27,28]. At the same time, any new screening 
tool must provide robust performance with a healthy balance of sensitivity and specificity 
to be applied for a population-wide clinical application. As such, and considering the 
above-described results, the DEEPGENTM platform surely holds promise for becoming an 
instrument for early cancer detection in a variety of applications. Of particular value is the 
demonstrated ability to adjust sensitivity and specificity for the full model and each or-
gan-specific model. To focus on clinical usability and to reduce the number of false-posi-
tive results, the specificities have been set at 95% and 99%. In both settings, the sensitivity 
of DEEPGENTM is lower than for most standard of care screening methods and also con-
sidering the low sample size; this tool should not be used as a replacement for any kind 
of recommended population-based screening at this point. 

However, there may be significant value in diagnostic tests that affect the Bayesian 
probability of cancer, regardless of underlying genetics. This may include the evaluation 
of unexplained weight loss in the elderly or other conditions in which the pre-test proba-
bility of malignancy is high such as low gradient ascites and exudative pleural effusions. 
Other high-risk populations may also benefit from these types of screening technologies 
including patients undergoing evaluation for solid organ transplants and those people 
who are exposed to high-risk carcinogens or excessive radiation. There may also be value 
in complementing current screening regimes that can potentially be filled by this technol-
ogy, such as patients with LungRads-3 screening CT scans for lung cancer, BIRADS-3 
mammograms, and following colonoscopy for the removal of polyps with dysplasia. As 
such, a low sensitivity and high specificity setting is most suitable for individuals at clin-
ical inflection points where there are indeterminate findings, but where additional radio-
graphic or pathologic explorations confer morbidity. The DEEPGENTM approach could 
reduce exposure to potential morbidity—physically and/or psychologically—caused by 
further diagnostics and anxiety. On the other hand, a high sensitivity and low specificity 
setting is most appropriate for any individual subject to standard of care screening. In that 
instance, the higher rate of false-positive results turns into a benefit in which a wider 
spread of currently recommended pathways is fostered. This spread of currently recom-
mended pathways will include all their proven medical and economic benefits since these 
diagnostics would be the next logical step in confirming cancer suspicion [29,30]. As such, 
even at this early stage, liquid biopsy platforms such as DEEPGENTM can help to identify 
cancers that would otherwise not be detected, and at the same time, can improve cancer 
diagnostics by enforcing existing screening programs. 
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Besides this potential concrete application for personalized cancer detection, this 
technology should also be viewed as a more global diagnostic platform. As a matter of 
fact, just in the space of conventional oncology, the ability to find signs of cancer at the 
earliest possible moment opens several opportunities to improve patient care. Beyond 
aiding in diagnosing cancer early, mutations and mutational profiles found in the pa-
tients’ blood have demonstrated value in determining treatment success by assessing the 
presence of minimal residual disease (MRD), recurrence detection, and tumor typing to 
support treatment decisions for advanced disease [31,32]. Additionally, research might 
demonstrate the role of cfDNA for a range of diseases beyond cancer, including neuro-
degenerative and cardiovascular diseases; as such, it is plausible to assume that such plat-
forms might transform into global tools of the modern physician’s armory. 

All of these technologies, including DEEPGENTM, are still at the beginning of their 
development and some important limitations exist to date. Besides the current overall 
performance, particularly the overlap of mutations across cancers, there is the problem of 
tissue-of-origin determination [33–35], and a liquid biopsy result that cannot firmly indi-
cate the origin of cancer. As such, intelligent diagnostic algorithms must be developed 
and clinically studied before a widespread application in the screening sector can be im-
agined. In consideration of these potential challenges, the overall value of this technology 
needs to be studied in long-term clinical trials that analyze critical parameters, which in-
clude survival, quality of life, and costs. However, considering the promise of such tech-
nologies, significant investments should be made globally in the area of research and de-
velopment. In the short- and mid-term, we foresee tremendous progress in all areas of this 
technology stack, ranging from DNA yielding, wet-lab technologies, and data analytics. 
In particular, the machine learning approach to cancer identification and tissue of origin 
capabilities will improve with growing datasets. 

Despite a lot of promise in this data, several important shortcomings of this study 
need to be mentioned. First and foremost, this is a preliminary analysis of a larger collec-
tion; as such, the sample sizes are low. Additionally, the demographics are narrow and 
with limited demographic variety. Moreover, all the patients in the cancer cohort were 
already diagnosed with cancer; as such, this dataset can only demonstrate the general ca-
pability of the DEEPGENTM platform to identify cancer. On the other hand, this study 
addresses some shortcomings that have been discussed in previous projects [12,13,17,36]. 
Particularly worth mentioning is the diverse control cohort with individuals ranging from 
young and very healthy study participants to hospitalized patients. Nine of the positive 
controls were identified with possible explanations for the finding. Two individuals had 
a benign tumor at the time of the liquid biopsy, which can result in a signal similar to that 
of cancer. It is questionable if the three positives that were diagnosed with a benign lesion 
later were found because of an already existing pathology at time of the liquid biopsy. 
Previous literature has demonstrated that acute inflammations lead to an increase in so-
matic mutations that are otherwise associated with cancer [37,38]. All hospitalized pa-
tients with inflammation would not have been candidates for standard of care screening. 
Another interesting finding is the morbidly obese individuals before bariatric surgery 
having positive findings because this complex disease comes with chronic inflammation 
and an increased cancer risk. The poor health and chronic inflammatory conditions exhib-
ited in these “controls”, identified as “cancers” by DEEPGENTM, reinforces the ultra-high 
sensitivity of the proprietary technology stack and opens up future research possibilities 
in areas of chronic inflammatory conditions that are increasingly considered to be precur-
sors to cancer and other major diseases [39,40]. However, to find specific answers to these 
important questions, more global research in the field of liquid biopsy is needed. 

5. Conclusions 
Despite being at an early stage of development and there being room for improve-

ments in areas such as blood-drawing to machine learning, the DEEPGENTM platform 
shows a clinically viable capability to differentiate patients with and without cancer. More 
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systematic research is needed to define the exact clinical applications as well as its large-
scale performance. 
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