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Simple Summary: FAPI represents a novel class of radiotracers demonstrating promising results
in terms of a high uptake in concordance with low background noise in several malignancies.
Thereby, FAPI-PET/CT achieves sharp contrasts facilitating staging as well as tumor delineation
and detection. However, FAP is also overexpressed for several non-oncological reasons allowing
for benign indications as well. This review summarizes the current state of oncological and non-
oncological FAPI-PET/CT in accordance with FAP in order to highlight future perspectives and
identify areas where research is urgently warranted.

Abstract: A fibroblast activation protein (FAP) is an atypical type II transmembrane serine protease
with both endopeptidase and post-proline dipeptidyl peptidase activity. FAP is overexpressed
in cancer-associated fibroblasts (CAFs), which are found in most epithelial tumors. CAFs have
been implicated in promoting tumor cell invasion, angiogenesis and growth and their presence
correlates with a poor prognosis. However, FAP can generally be found during the remodeling
of the extracellular matrix and therefore can be detected in wound healing and benign diseases.
For instance, chronic inflammation, arthritis, fibrosis and ischemic heart tissue after a myocardial
infarction are FAP-positive diseases. Therefore, quinoline-based FAP inhibitors (FAPIs) bind with
a high affinity not only to tumors but also to a variety of benign pathologic processes. When these
inhibitors are radiolabeled with positron emitting radioisotopes, they provide new diagnostic and
prognostic tools as well as insights into the role of the microenvironment in a disease. In this respect,
they deliver additional information beyond what is afforded by conventional FDG PET scans that
typically report on glucose uptake. Thus, FAP ligands are considered to be highly promising novel
tracers that offer a new diagnostic and theranostic potential in a variety of diseases.
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1. Introduction

Fibroblast activation protein (FAP), a membrane-anchored serine protease with dipep-
tidyl peptidase and endopeptidase activity, is overexpressed by cancer-associated fibrob-
lasts (CAFs) [1]. CAFs alter the tumor microenvironment and enhance protumorigenic
effects [2]. FAPI-PET/CT has emerged as a highly promising imaging tool, particularly
in conditions where FDG, the standard oncologic PET tracer, is of limited use such as in
pancreatic cancer. Moreover, FAPI may have more general advantages over FDG because
of its higher target to background ratio, caused by the very low expression of FAP in
normal tissue and a rapid elimination from the circulation, which increases the sensitivity.
The PET agent, 68Ga-FAPI, has already been tested on a variety of tumor entities in humans.
68Ga-FAPI has been less extensively studied in inflammation, wound healing and other
benign diseases [3–5]. In this review, we summarize the current status of FAPI-PET/CT in
malignant and non-malignant diseases and highlight particularly interesting opportunities
for this new imaging method.

2. Tumor Biology
2.1. Stroma

Malignant tumors contain various substituents including neoplastic cells as well as
non-malignant cells in the tumor microenvironment, termed the tumor stroma. The tumor
stroma may represent up to 90% of cells in several cancers and therefore may constitute
the predominant component of many tumors such as colon, breast and pancreatic can-
cer [6]. By the time a tumor reaches a size of 2 mm, the tumor stroma is essential for
growth as it supplies the neoplastic cells with nutrients to ensure survival and growth [7,8].
Cancer-associated fibroblasts are joined by endothelial cells, the basement membrane,
the extracellular matrix and immune cells in the tumor microenvironment (TME) and act
as a supporting cast for tumor growth.

2.2. Fibroblasts

Healthy fibroblasts are ubiquitous and are generally biologically quiescent. However,
these resting fibroblasts harbor the ability to be activated under various circumstances.
This process was first described in connection with wound healing [9] and subsequently at
sites of inflammation and tissue fibrosis [10–12]. Moreover, activated fibroblasts secrete
more extracellular matrices and support a higher cell proliferation [13] compared with
fibroblasts in healthy tissues.

Fibroblast activation is enabled in a context-dependent manner including acute wound
healing from mechanical trauma, radiation or toxins [12,14–16]. Wound healing leads to
inflammation and the recruitment of immune cells and fibroblasts [12,17,18] as part of the
repair mechanism. After repair, the number of activated fibroblasts rapidly diminishes due
to apoptosis and resting fibroblasts return as the predominant type of cell. Reversibility is
the determinative element with respect to wound healing, with activated fibroblasts giving
way to mature fibroblasts. Fibroblasts may be activated in a number of ways including
fibrosis itself, a process referred to as chronic wound healing [19–22]. Ultimately, fibroblast
activation can also be caused by genetically damaged cells that mimic inflamed cells re-
sulting in tumors or “wounds that do not heal” [17] with a positive feedback mechanism
whereby more tumor growth results in more activated fibroblasts. Thus, the growth of can-
cer cells presents recurring tissue damage ensuring a permanent wound healing response
leading to stromal or cancer fibrosis [17]. The full mechanism by which fibroblasts are
activated and promote tumor growth is not yet known and requires further research [23].
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2.3. Cancer-Associated Fibroblasts (CAFs)

CAFs represent the most abundant TME cells in many cancers. However, CAFs
are, in reality, a heterogenous population of cells as both tumor-promoting and tumor-
suppressive effects can be observed in CAF-rich tumors [24]. Activated CAFs are character-
ized by an enhanced proliferation and migration and an increased recruitment. (Figure 1)
CAFs can be derived from normal resident tissue fibroblasts [25], fibrocytes originating in
the bone marrow [26], mesenchymal cells [27,28], epithelial and endothelial cells under-
going a mesenchymal transition [29,30] and—less commonly—adipocytes, pericytes and
smooth muscle cells going through transdifferentiation [20,31] accounting for their variable
phenotypes (Figure 2) [32].

Figure 1. CAFs are in possesion of various influental functions in neoplastic tissue including promo-
tion of tumor growth, cell invasion and metastasis, angiogenesis, regulation of immune response and
protection against tumor growth. Thereby, CAFs are representing one of the key players in terms of
tumor progression and therapeutic response. Adapted with permission from ref. [33].

Figure 2. Origins of CAFs. CAFs represent a very heterogenous population deriving from several different cell origins such
as normal resident tissue fibroblasts, fibrocytes, mesenchymal cells, epithelial and endothelial cells as well as adipocytes,
pericytes and smooth muscle cells. The transformation to CAFs occurs in concordance with distinct mechanisms including
activation, transdifferentiation, mesenchymal transition and recruitment. Adapted with permission from ref. [33].
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Quiescent and activated fibroblasts can be differentiated based on several specific char-
acteristics. Morphological differences can be observed as resting fibroblasts are typically
spindle shaped cells [34] whereas activated fibroblasts are cruciform or stellate shaped.
Although a definitive cell defined marker of activated CAFs is yet to be agreed upon,
Kalluri suggested that fibroblast-specific protein 1 may be the most reliable marker [23,35].
Quiescent fibroblasts, which are metabolically inactive, possess the ability to be activated
by a variety of stimuli. For instance, local hypoxia and oxidative stress enhances CAF
activation mediated by TGFß [36], PDGF [37] and IL-6 [38]. By an autocrine signaling loop,
they provide the activation of more quiescent fibroblasts ensuring growth and the invasion
of the tumor. Thus, CAFs co-evolve alongside neoplastic cells and provide continuous
support to cancer growth.

2.4. Fibroblast Activation Protein

Fibroblast activation protein (FAP) is a serine protease containing both dipeptidyl
peptidase (DPP) and endopeptidase activities [39], which differentiates it from other DPP
IV family members. FAP dimerizes and glycosylates when activated [40] and is rare
in normal adult tissue but can be found in embryogenesis [41]. Thus, activated FAP is
almost exclusively found in wound healing and in pathological conditions such as scar
formations [42], liver cirrhosis [43], inflammation [44,45] and cancer.

3. FAP Expression and FAPI-PET/CT in Non-Oncological Conditions
3.1. Liver Fibrosis and Cirrhosis

FAP is associated with scar formations. Thus, upregulation has been observed in
fibrotic conditions such as liver fibrosis induced by chronic damage due to alcoholism or
viral hepatitis. In this setting, hepatic stellate cells are activated and generate an extracel-
lular matrix conducive to the formation of scars within the liver that express FAP [43,46].
The elevation of FAP levels can correlate with the progression and grade of liver fibrosis
in a few cases [43]. Remarkably, a normal FAP expression has been observed after a liver
transplant [47]. A case report by Zhao et al. describes a cirrhotic patient presenting multiple
liver nodules of an uncertain origin. 68Ga-FAPI-PET/CT demonstrated an increased liver
uptake due to cirrhosis. Moreover, the nodules showed an even higher uptake but were
proven to be benign. Therefore, FAPI-PET/CT may have difficulties in differentiating
between malignant and benign nodules in patients with cirrhotic disease [48] A further
study presented a significantly elevated hepatic uptake in patients with cirrhosis compared
with patients without cirrhosis. On the other hand, FDG-PET/CT showed no significant
differences in the background liver activity [49]. Therefore, FAP overexpression in a benign
fibrosis may challenge the diagnostic performance of FAPI-PET/CT in further clinical
applications. However, a benign accumulation of FAP ligands demonstrate a lower uptake
compared with malignant diseases and the distinction of benign and malignant processes
is thus feasible.

3.2. Crohn’s Disease

Crohn’s disease (CD), an autoimmune condition, results in chronic bowel inflamma-
tion and is characterized by intestinal fibrosis and strictures. Chronic inflammation and
dysregulated wound healing leads to an intestinal stricture formation. FAP is significantly
upregulated in the myofibroblasts within the muscle layer of the strictures but not in my-
ofibroblasts from patients with ulcerative colitis [50]. Furthermore, immunohistochemistry
staining proved FAP expression in samples from fibrostenotic areas in patients diagnosed
with CD [51]. This research was validated by a report, showing an intense uptake in
a patient with CD whereas no elevated accumulation could be observed in ulcerative
colitis [52].
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3.3. Arthritis

Arthritis is defined as any condition resulting in joint dysfunction. The two most
frequently occurring types are osteoarthritis, correlating with the proteolytic destruction
of joint cartilage, and rheumatoid arthritis, an autoimmune chronic inflammatory condi-
tion [53,54]. Rheumatoid arthritis is accompanied by FAP upregulation and thus might
present a potential therapeutic target [44]. In osteoarthritis, higher levels of chondrocyte
FAP expression were detected by Milner et al. and subsequently validated by comparing
the mRNA of collagen from patients with and without osteoarthritis. Moreover, immuno-
histochemistry revealed FAP expression on the surface of the cartilage and on chondrocyte
membranes [55]. These findings are supported by a report of a patient with an intense
uptake within the joints who was undergoing a FAPI-PET/CT scan based on a history of
shoulder osteoarthritis [56]. Accordingly, inflammatory polyarthritis was accompanied by
an intense FAPI uptake in another patient whereas only a slight FDG uptake was seen in
the same patient [57].

3.4. Cardiovascular Disease

Cardiovascular disease includes such conditions as atherosclerosis and myocardial in-
farction (MI). FAP is expressed by human aortic smooth muscle cells induced by TNFalpha
and is therefore associated with thin-cap human fibroatheromas [45]. In further studies of
atherosclerosis-related conditions, reduced levels of FAP in acute coronary syndromes and
coronary heart diseases were observed. Patients with an acute coronary syndrome and a
decreased FAP expression may exhibit a poorer prognosis [58,59]. However, one study that
aimed to investigate FAP expression after MI in rats and human hearts demonstrated FAP
upregulation peaking within 7 days after an induced MI; in particular, in the peri-infarct
zone. Consistently, in the ischemic tissue of human hearts an increased FAP expression was
observed whereas none was observed within normal heart tissues [60]. These results were
confirmed by Varasteh et al. who used 68Ga-FAPI uptake in rats after a coronary litigation
to demonstrate a peak uptake at day 6 post-MI. This study also revealed that most of the
uptake was in the border-ischemic area [61]. FAPI accumulated beyond the extent of the
infarcted zone, thereby revealing a tendency to overestimate the infarct size [62]. However,
this may be caused by a remodeling in the peri-infarct zone as a result of perfusion deficits
also in this area. A case report of uptake in the left ventricular myocardium on FAP imag-
ing was attributed to a potential drug-induced cardiotoxicity in an asymptomatic patient.
This suggests a role for 68Ga-FAPI as an imaging tool for detecting chemotherapy-induced
myocardial injuries [63]. In a study of 229 (modeling cohort n = 185; confirmatory cohort
n = 44) patients with a metastatic disease, an association was observed between the cardio-
vascular risk factors as well as metabolic diseases and increased ventricular FAPI uptake
suggesting it may be an early biomarker of a cardiac disease [64]. Another analysis found a
correlation between coronary artery diseases, age and the left ventricular ejection fraction
with FAPI accumulation [65]. Regarding myocarditis, particularly due to checkpoint in-
hibitors, FAPI showed an increased accumulation [66]. In summary, FAPI-PET/CT may be
a useful imaging tool in cardiovascular diseases and more studies are warranted to assess
and validate its use in this setting.

3.5. IgG4-Related Disease

IgG4 is a disease affecting multiple organs with fibrosis. A study containing 26 patients
with IgG4-related disease demonstrated more multiple affected sites than were evident
on the basis of the symptoms. In addition, FAPI revealed a superiority over FDG in
detecting such lesions with a higher positivity rate [67]. Moreover, a study including
27 patients with inflammatory, fibrotic and IgG4-related diseases assessed FAPI-PET/CT,
FDG-PET/CT, MRI and histopathological evaluations. They determined that FAPI-PET/CT
allows for differentiation of inflammatory- or fibrotic-based IgG4-related diseases [68].
This knowledge may affect and lead to changes in the therapeutic approaches as IgG4-
related diseases, foremost comprising fibrosis, possibly require distinct treatments. IgG4-
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related disease can affect the pancreas as well. An analysis of 103 patients undergoing
68Ga-FAPI-04 PET/MR showed a focally increased non-malignant uptake in the pancreas in
seven cases from causes such as pancreatic pseudocysts, prior pancreatitis and IgG4-related
diseases [69].

In a translational exploratory study, Röhrich et al. investigated 15 patients with fibrotic
interstitial lung diseases and suspected lung cancer undergoing FAPI-PET/CT scans as
well as selective FAP immunohistochemistry. This evaluation revealed promising results
encouraging further studies [70].

3.6. Benign Tumors

Benign tumors with a FAPI uptake have so far been mostly described as incidental
findings in case reports. Exemplary is a recurrent angiomyolipoma demonstrating an increased
FAPI accumulation possibly due to fibrotic activity in this condition [71] (Figure 3). Another
case described an elevated uptake of FAP ligands in a patient with a benign pulmonary
solitary fibrous tumor [72]. Zheng et al. characterized benign lesions in 182 patients
with various suspected malignancies based on conventional imaging, clinical information
and/or a histological confirmation. Out of these 182 patients 146 presented benign lesions
(n = 360) such as inflammation-based processes, exostoses, hemorrhoids, fractures and
hepatic fibroses. However, the SUV metrics demonstrated a lower FAPI uptake in the
benign lesions compared with the malignant accumulation [73]. However, it is still too
early to describe a role for FAPI imaging in benign tumors and more experience will be
gathered as more patients undergo this scan.

Figure 3. A 57-year-old patient underwent FAPI-PET/CT due to hypopharyngeal cancer and pre-
sented an incidental finding of an angiomyolipoma in the upper pol of the right kidney with a
SUVmax of 15.9 as well as an accumulation located left paratracheal suspicious for neoplastic tissue
(SUVmax 11.5).

3.7. Hormone-Responsive Organs

Hormone-responsive organs seem to be associated with an increased uptake on FAPI-
PET/CT. In an analysis regarding FAPI uptake in the breast, ovary and uterus, statistically
significant differences were seen in the breast and ovaries with a stronger uptake in pre-
menopausal patients [74]. Additionally, the uptake might correlate with the menstrual
cycle. In a post-partum woman and two women receiving hormonal stimulation, ele-
vated FAP levels and therefore an increased FAPI uptake was observed in the breasts and
uterus [75–77]. Thus, information regarding the hormonal status of a patient may be
relevant to the observed findings.
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4. Malignant Conditions

The overexpression of FAP in many malignancies is now well-known. Therefore,
FAPI-PET/CT is a highly promising imaging method in a variety of malignancies [78–80]
(Figure 4). The exact role of FAP in a tumorigenesis is unknown; however, its expression
is related to the tumor proliferation, migration and invasion [46]. To date, the literature
suggests that FAP influences angiogenesis, presumably based on its enzymatic activity [46].
Furthermore, FAP seems to be involved in the epithelial-to-mesenchymal transition (EMT),
which is eventually required for the development of metastasis by enabling migration and
invasion. As FAP is only overexpressed by activated fibroblasts, it is likely that CAFs play
a major role in cancer growth.

Figure 4. Depiction of Maximum Intensity Projections of several patients undergoing FAPI-PET/CT
including a variety of different tumor entities. Adapted with permission from ref. [79].

4.1. Brain, Head and Neck Cancer

As mentioned above, the application of glucose-based PET is limited in brain diseases
by a high physiologic uptake complicating the detection of the tumor uptake. By contrast,
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FAPI has a low physiologic background activity in the brain, enabling the detection of
small tumors in the brain. Non-malignant lesions and low-grade astrocytoma seem to lack
FAP expression. However, in glial tumors, FAP levels correlate with the grade and thus the
overexpression is associated with a poor prognosis [81–84]. Röhrich et al. investigated FAP
and FAPI-PET/CT in gliomas in vitro, in vivo and in a clinical study including 18 glioma
patients (five IDH-mutant gliomas and 13 IDH-wildtype glioblastomas). The study de-
termined elevated levels of tracer uptake in high-grade gliomas but not in low-grade
IDH-mutant gliomas, potentially enabling a non-invasive diagnostic distinction [85]. Fur-
thermore, Windisch et al. evaluated the above-mentioned IDH-wildtype glioblastomas
regarding their usefulness for radiotherapy or biopsy planning. Compared with MRI, FAPI-
PET/CT scans lead to increased gross tumor volumes (GTVs), thus changing radiation
treatment fields [86].

In head and neck cancer, a correlation between FAP and the aggressiveness of these
tumors suggests that FAP ligands may be a promising imaging tool. An initial study
of 14 patients diagnosed with head and neck cancers showed a high uptake within the
malignant lesions and simultaneously a low background activity in the healthy tissue
such as the salivary glands. This could lead to an improved target volume delineation
compared with FDG PET-CT [87]. Head and neck cancers are usually imaged with 18FDG-
PET/CT despite the low specificity of this method. Linz et al. evaluated 10 patients with
an oral squamous cell carcinoma undergoing both FAPI and FDG-PET/CT. FAPI and
FDG presented a similar uptake in the primary tumors as well as a similar sensitivity
and specificity in cervical lymph node metastases. The FAP expression of all investigated
lesions was histologically confirmed by immunohistochemistry [88]. Additionally, adenoid
cystic carcinomas—which are characterized by an epithelial origin, a location in the head
and neck area and finally by infiltrative growth—represent a highly interesting target for
FAP ligands. However, in a series of 12 patients with adenoid cystic carcinomas, a strong
FAPI uptake was established within all patients that correlated with FAP overexpression in
the tumor. FAPI-PET/CT thus facilitated staging and radiotherapy planning in comparison
with conventional structural imaging such as CT and MRI [89]. The head and neck regions,
as well as head and neck cancers in particular, warrant further research as the so-far
published results seem to be encouraging but are too provisional to determine the true
value of FAPI imaging.

4.2. Gastrointestinal Tract Cancer

FAP is highly expressed in gastric cancers [90,91] and FAP levels may be associated
with higher grades, peritoneal infiltration and a worse prognosis [92,93]. In an early study
of gastric cancer, a higher uptake and sensitivity was observed with 68Ga-FAPI-PET/CT
over 18F-FDG-PET/CT [94]. An analysis by Qin et al. showed a superior performance of
FAPI-PET/MR in comparison with FDG-PET/CT for both primary and secondary gastric
cancer lesions [95]. FAPI is also more sensitive for peritoneal carcinomatosis, which is
otherwise a challenging imaging diagnosis [96]. In a study of 46 patients with peritoneal
carcinomatosis due to various cancers, FAPI imaging demonstrated a high sensitivity [96].
These auspicious results warrant further research and suggest a role in the diagnosis of
peritoneal carcinomatosis.

In esophageal cancer, Ristau et al. investigated the role of FAPI-PET/CT in 7 patients
with esophageal cancer. They demonstrated a strong uptake, high TBRs and, consequently,
a precise target volume delineation with FAPI PET/CT resulting in an improved radio-
therapeutic management [97]. These findings were subsequently confirmed by Zhao et al.
in 21 patients with newly diagnosed esophageal cancer who underwent both 18F-FDG
and 68Ga-FAPI-PET/CT scans. FAPI imaging showed favorable SUV metrics, TBRs and a
superior target volume delineation [98].

Colorectal cancer (CRC) is characterized by FAP overexpression within neoplastic cells and
the tumor stroma [99] and is a marker seen early in the development of CRC [100]. FAP levels
correlate with a poor prognosis and a higher grade, stage and invasion [99–101]. Radiotherapy
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can further increase FAP expression [101]. A first clinical analysis of 28 patients with
malignancies of the lower gastrointestinal tract demonstrated high uptakes and TBRs
in CRC (n = 22) and anal cancer (n = 6), which led to clinically relevant changes in the
TNM classification and an improved target volume delineation in almost all cases [102]
(Figure 5).

Figure 5. A 57-year-old female patient presenting with newly diagnosed rectal cancer for staging
prior to a resection. The FAPI-PET/CT demonstrated a rather strong FAPI accumulation in the rectum
with a SUVmax of 15.8. Additionally, the scan showed multiple lymphatic and hepatic metastases.

A further study investigated the potential of FAP imaging compared with FDG imag-
ing in 35 patients with gastric, duodenal and colorectal cancer. FAPI imaging demonstrated
higher uptakes and a higher sensitivity in primary and secondary colorectal cancer com-
pared with FDG [94]. These results suggest that FAPI-PET/CT may represent a highly
promising opportunity for improved staging and the radiotherapeutic management of GI
tumors in general. Larger, prospective studies will have to confirm these early results.

4.3. Pancreas and Liver Cancer

FAP expression is elevated in a pancreatic ductal adenocarcinoma (PDAC) with im-
munohistochemistry showing FAP expression in >90% of PDACs [103]. As with many
other malignancies, FAP expression correlates with the prognosis [103,104]. Thus, it is
reasonable to assume that FAPI-PET/CT may be helpful in diagnosing PDAC, which is
often difficult with conventional modalities. In a series of 19 patients with PDAC under-
going 68Ga-FAPI-PET/CT, all patients demonstrated a high uptake and 10 patients were
restaged by FAPI imaging [104]. FAPI-PET/CT may be a better method of facilitating the
radiotherapeutic management of PDACs based on its more accurate depiction of the tumor
extent. FAPI-PET/CT also showed an improved target volume definition and consistency
compared with contrast-enhanced CT [105].

Similarly, FAPI-PET/CT may be of benefit in the early detection of hepatocellular car-
cinomas. A pilot study assessed 25 patients with hepatic lesions suspicious for a neoplasm.
Favorable results for FAPI-PET/CT were achieved with a more accurate identification of
malignancy, particularly in earlier diseases [106]. Subsequently, the same group prospec-
tively evaluated the diagnostic performance of FAPI PET/CT in comparison with FDG
PET/CT in 20 patients with HCC, finding the former to be more sensitive [107]. These find-
ings were confirmed in a larger study with 34 patients indicating a similar sensitivity
of FAPI, ceCT and liver MRI but clear superiority over FDG [49]. Thus, FAPI imaging
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may enhance the staging, detect a local relapse and guide an accurate treatment in HCC;
findings that require additional study for confirmation.

4.4. Lymphoma

A prospective study comprising 73 patients with non-Hodgkin and Hodgkin lym-
phoma investigated the utility of FAPI-PET/CT. Impressive SUV values were documented
and a positive correlation was established between FAP expression by immunohistochem-
istry and the uptake on FAPI PET/CT. Thus, FAPI-PET/CT may find a use in analyzing
lymphomas [108].

4.5. Sarcoma

FAP is expressed in both the stroma and on neoplastic cells in sarcomas and thus
appears important to sarcoma development [42,109,110]. Thus, FAPI-PET/CT might repre-
sent a viable imaging and possible therapeutic tool for sarcomas [111,112]. The prospective
observational trial by Kessler et al. even established a correlation between a cancerous
FAPI accumulation and a histopathological FAP expression as well as a rather high positive
predictive value and sensitivity of FAPI-PET/CT [111]. Additional research is required to
realize the full potential of FAP expression and FAPI-PET/CT in sarcomas.

4.6. Gynecological Malignancies

FAP overexpression has been identified in breast cancer, in particular in the stroma
(4) but also in the cancer cells themselves [113]. However, its influence on the prognosis
and progression is disputable and inconsistent throughout the literature as several studies
suggest a correlation between elevated FAP levels and a poor outcome [114,115] whereas
others suggest an association with an improved prognosis [116]. According to first in-
vestigations, 68Ga-FAPI-PET/CT seems to be highly promising regarding breast cancer.
In a prospective pilot study, Kömek et al. analyzed 20 patients with primary or recurrent
breast cancer and their metastases and subsequently compared the 68Ga-FAPI-PET/CT
sensitivity and specificity with those of 18F-FDG. FAPI imaging had significantly higher
SUV metrics and higher TBRs compared with FDG with the exception of liver lesions,
which demonstrated no significant differences [117]. FAPI seems to be of a high interest
in several gynecological malignancies as well. An investigation of various malignancies
including breast cancer (n = 14), ovarian cancer (n = 9), cervical cancer (n = 4), endometrial
cancer (n = 2), leiomyosarcoma of the uterus (n = 1) and tubal cancer (n = 1) described
impressive SUV metrics and TBRs and was equal or superior to FDG. Furthermore, im-
munohistochemistry staining demonstrated a strong FAP expression in ovarian cancer,
breast cancer and leiomyosarcoma of the uterus, which is in concordance with previous
studies [74]. With respect to ovarian cancer, FAPI-PET/CT might be of particular interest
as preceding studies determined its presence in 97% of all ovarian cancers and showed
a correlation between FAP and a poor clinical prognosis, chemotherapy resistance and
shorter time until recurrence [4,118–122]. In terms of ovarian cancer, the uptake of FAPI-
PET/CT was intense [74]. In addition, due to the limited therapeutic options for ovarian
cancer, FAPI offers a potential therapeutic target as FAP expression is absent in healthy
ovaries [120]. Research on this topic is urgently needed in order to potentially establish a
novel diagnostic and therapeutic approach for patients with ovarian cancer. In summary,
several gynecological malignancies express FAP and therefore FAPI PET/CT may provide
useful diagnostic and eventually theranostic applications. The potential of FAPI-PET/CT
in gynecological tumors demands further studies.

4.7. FAPI vs. FDG
18F-FDG-PET/CT is the centerpiece of oncological imaging in nuclear medicine. FDG

is a glucose-based tracer with enrichment correlating with metabolic activity. However,
FDG has several well-known limitations. Fundamentally, it is not tumor-specific. Moreover,
FDG has a considerable uptake in several normal tissues such as the brain, liver and
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bowel. FDG-PET/CT is also of limited use in several low metabolism tumors such as
prostate cancer. FAPI-PET/CT could therefore emerge as a supplement or replacement for
FDG-PET/CT in a few instances. In large studies of multiple tumor types, FAPI-PET/CT
demonstrated a superior diagnostic efficacy [123,124], a more accurate detection [125] and
lower background activity [126]. Hence, FAPI may one day “overthrow” FDG from its
oncological throne [127] (Figure 6).

Figure 6. Visualization of Maximum Intensity Projections of intra-indivudal comparisons of FAPI-PET/CT and FDG-
PET/CT. Adapted with permission from ref. [128].

5. Conclusions

Since the first introduction of quinoline-based FAP ligands in 2018 [5,129–131], promis-
ing strides have been achieved to enable the improved knowledge of FAP in the field of
PET imaging. To date, the precise mechanisms and overexpression of FAP in several
malignant and benign diseases remain obscure. FAPI-PET/CT indisputably represents
a unique opportunity for diagnostic and therapeutic approaches to tumors and several
benign conditions. Further research will be important for establishing the true value of
FAPI-PET/CT for patients suffering from cancer and other diseases.
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