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Simple Summary: Angioimmunoblastic T cell lymphoma (AITL) is probably the most common
peripheral T-cell lymphoma. This pathology, although rare, is more common in Europe than in
other regions. This lymphoma has a poor prognosis. AITL is very commonly associated with the
Epstein-Barr virus (EBV) although the virus is not often found in neoplastic T cells but rather in
adjacent B cells. Our objective was to study the transcriptome of EBV in AITLs comparatively to other
EBV-associated lymphomas and to compare the results with those obtained for cell lines. We showed
in AITLs a strong expression of Bam-HI A rightward transcripts (BARTs) more expressed than in
the other lymphomas and especially than in cell lines. BARTs can participate in tumor development.
We also showed a latency IIc in AITLs with the expression of BNLF2a and BCRF1 genes which may
participate in the survival of infected cells. These results support the involvement of EBV in AITLs.

Abstract: The Epstein–Barr virus (EBV) is associated with angioimmunoblastic T cell lymphoma
(AITL) in more than 80% of cases. Few studies have focused on this association and it is not clear
now what role the virus plays in this pathology. We used next-generation sequencing (NGS) to
study EBV transcriptome in 14 AITLs compared to 21 other lymphoma samples and 11 cell lines
including 4 lymphoblastoid cell lines (LCLs). Viral transcripts were recovered using capture probes
and sequencing was performed on Illumina. Bam-HI A rightward transcripts (BARTs) were the most
latency transcripts expressed in AITLs, suggesting they may play a role in this pathology. Thus,
BARTs, already described as highly expressed in carcinoma cells, are also very present in AITLs and
other lymphomas. They were poorly expressed in cell lines other than LCLs. AITLs showed a latency
IIc, with BNLF2a gene expression. For most AITLs, BCRF1, which encodes a homologous protein
of human interleukin 10, vIL-10, was in addition expressed. This co-expression can contribute to
immune escape and survival of infected cells. Considering these results, it can be assumed that EBV
plays a pathogenic role in AITLs.

Keywords: transcriptome; transcripts; Epstein-Barr virus; EBV; angioimmunoblastic T cell lym-
phoma; AITL; lymphoma; next-generation sequencing; NGS
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1. Introduction

The Epstein–Barr virus (EBV) is a widespread human gamma-herpesvirus of which
two types can be distinguished, EBV type 1 (EBV-1) and EBV type 2 (EBV-2), according to
geographic distribution, virulence, and differences in the latent genes (principally Epstein–
Barr nuclear antigen-2 (EBNA-2), -3A, and -3C genes) [1]. EBV prevalence is very high and
almost all adults have been infected [2]. As with all herpesviruses, the primary infection
is followed by a lifelong latency defined by the absence of production of new infectious
virions. In the event of infected cell activation, episodes of viral reactivation may occur,
corresponding to a resumption of the lytic cycle with the production of infectious virus [3].

First resting B-cell EBV infection leads to expression of the Epstein–Barr nuclear
antigen-2 (EBNA-2) and EBNA-Leader Protein (EBNA-LP) proteins as well as latent BHRF1,
a bcl2 homolog protein, driven by the activated viral promoter Wp [4]. The upstream viral
promoter Cp is then activated by both expressed EBNAs and the cellular factor recombina-
tion signal binding protein for the immunoglobulin Kappa J region (RBP-Jκ), leading to the
production of the six EBNA proteins, EBNA-1, EBNA-2, EBNA-3A, -3B, -3C, and EBNA-
LP. The Wp promoter is gradually hypermethylated and transcription passes under Cp
control [5]. At the same time, the latent membrane proteins LMP-1, LMP-2A, and LMP-2B
are produced following the activation of their promoters. Bam-HI A rightward transcripts
(BARTs) and non-coding RNAs, Epstein–Barr virus-encoded small RNAs (EBERs), are also
transcribed, plus a set of miRNAs. This latency pattern, defined as latency III (Lat III),
drives B cell growth transformation resulting in the establishment of permanent in vitro
lymphoblastoid cell lines (LCLs). Lat III is found in immunocompromised lymphomas.

Other latency patterns have also been described in which the latency gene expression
is more restricted [6–8]. Latency 0 (Lat 0), characterized by the presence of EBER, BART,
miRNAs, and possibly LMP-2A transcripts, in the absence of any other EBV protein, is
found in resting recirculating memory B cells of healthy subjects. Latency I (Lat I), identified
in Burkitt’s lymphoma (BL) biopsies and in lines derived from BL, is characterized by the
expression of a single viral protein, EBNA-1, and the production of non-coding RNAs.
In this form of latency, the Wp and Cp promoters are inactive and the production of the
EBNA-1 protein is solely dependent on the alternative viral promoter Qp. Lat I is also
observed during cell division in memory B cells. In latency II (Lat II), activation of the Qp
promoter also results in the production of EBNA-1, but at the same time, LMP-1, LMP-2A,
and LMP-2B are also expressed as the EBERs, BARTs, and miRNAs. Lat II is described in
NK/T lymphoma (NK/TL), Hodgkin’s lymphoma (HL), and nasopharyngeal carcinoma
(NPC) tumors [9]. Only a small number of viral genes are therefore involved in any latency.
These different forms of latency have thus been well characterized in B lymphocytes, but a
continuum likely exists in vivo between these different models, and it was suggested that
expression of latency proteins varies with cell differentiation [10]. Recent studies have
reported a brief period after infection and before cell division during which there is a
transient explosion of lytic gene expression, without viral replication, and concomitantly
with the expression of the first latent genes from the Wp promoter [10–13]. This latency
phase, characterized by the presence of EBNA-2 in the absence of LMP-1, was named the
pre-latent phase or “latency IIb”. It differs from latency IIa which follows latency III and is
defined by the presence of LMP-1 in the absence of EBNA-2. Furthermore, it is known that
EBV can also establish a latent infection of epithelial cells or NK/T lymphocytes, but the
conditions are less well known.

In contrast to the latent state, entering the lytic cycle corresponds to the activation of
more than 80 genes [14]. Gene expression is coordinated over time and the activation of
the very early transactivators BZLF1 and BRLF1 induces the expression of the immediate
early (IE) genes, leading to the expression of early (E) genes, including those necessary for
genome replication followed by late (L) genes which encoding structural proteins [15,16].

EBV is involved in various B cell malignancies, such as endemic BL where it is found
in about 80% of cases [17], HL with 30% of cases associated with the virus, especially mixed
cellularity classical HL (MC-cHL), and more rarely immunoblastic lymphomas occurring
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in immunocompromised patients. The oncogenic role of EBV, and in particular the role
of the different latency proteins, is now well established [18]. EBV is also implicated in
carcinomas such as NPCs where it is always present, or gastric carcinomas (GCs) where it is
detected in approximately 10% of cases [18]. Peripheral T-cell lymphomas (PTCLs), which
are uncommon pathologies since they represent 15% of non-Hodgkin’s lymphomas (NHLs),
are occasionally associated with EBV. For example, in extranodal NK/T-cell lymphomas,
the virus, detected in 71% of cases, infects tumor cells where it is constantly detected.
Angioimmunoblastic T cell lymphoma (AITL), which is the focus of our work, is probably
the most common form of PTCL [19] although less common in North America or Asia than
in Europe, accounting respectively for 16–34.4%, 17.9–22.4%, and 28–34% of PTCLs [20,21].
AITL, which mostly affects elderly people [22], is clinically characterized by generalized
lymphadenopathy often accompanied by hepatosplenomegaly, skin rash, and B-cell modi-
fications associated with immunologic abnormalities. This is an aggressive lymphoma with
a poor prognosis. Pathologic findings reveal abolished lymph node architecture with an
extensive polymorphous inflammatory infiltrate including EBV-positive B-cells adjacent to
neoplastic cells of T follicular helper origin (Tfh). Increased numbers of follicular dendritic
cells are observed near abundant arborescent endothelial venules. EBV is detected in
85–95% of AITL, being most often present in large B blasts, but sometimes described in
neoplastic T cells [23–27]. It has been proposed that AITL generates an immunodeficiency
at the origin of EBV reactivation promoting the expansion of Tfh and B cells, thus playing a
role in the development of the tumor microenvironment. Or EBV itself could induce AITL
development by activating Tfh cells [28] unless the interaction between B lymphocytes
and neoplastic cells provides support for tumor development [29]. Depending on the
hypotheses considered, the mechanisms are different.

For these reasons, in this study, we examined the EBV transcriptome in 14 AITL biop-
sies compared to other EBV positive lymphomas and cell lines by RNA-seq, We demon-
strated for AITLs a significant expression of BARTs superior to that observed for other
lymphomas. In addition, we reported that AITLs exhibited latency IIc with a strong ex-
pression of BNLF2a. A group of six late genes was also expressed (BCRF1, BSRF1, BVRF1,
BNRF1, BFRF3, and BOLF).

2. Results
2.1. Analysis of EBV Gene Expression by New Generation Sequencing (NGS)

We performed massive parallel sequencing by NGS after mRNA enrichment then EBV
transcripts capture, to evaluate the EBV transcriptome in 11 EBV positive human lines,
which included 4 LCLs, and 35 EBV positive lymphomas from patients, including 14 AITLs,
selected based on EBER positivity by in situ hybridization (ISH). Unfortunately, we did
not have enough material to study which cells carried the virus. NGS results are shown in
Table 1; mean read number per sample was 2,477,173 (from 600,000 to 10,066,666) with a
depth comprised between 42 and 2,010 (mean depth 378). Data were submitted to SRA and
are available under BioProject ID PRJNA686869. As could be expected, all patient samples
were EBV type 1. EBV type 1 is more prevalent and also more virulent than type 2 EBV,
which is mainly confined to the African continent.

2.2. AITL Samples Are Not Homogeneous

Analysis of results for all patients showed that samples from the 14 AITL patients did
not form a cluster (Figure 1). The same was also found for the other pathologies, although
the number was low in each case. It was notable that a group of patients, comprising
various pathologies (3 AITL, 1 PTCL-NOS, 1 CTCL, 1 NLPHL, and 1 DLBCL), expressed a
much larger variety of different viral genes than the others. It can also be noticed that a
group of genes including latency genes (EBNA-1, LMPs, EBNA-2, and BARTs), and 17 other
genes were expressed for the majority of patients while the other genes were only slightly
or not expressed at all.
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Table 1. Results obtained for Epstein–Barr virus (EBV) gene expression by new generation sequencing
(NGS) for the 11 cell lines and 35 patient samples studied.

Sample Name Read Number Mean Depth EBV Type

B95-8 10,053,705 2010 EBV-1
CoAN 1,942,331 1251 EBV-1
DPL 3,490,546 1326 EBV-1
Jijoye 5,538,086 1586 EBV-1

KREB2 2,194,143 117 EBV-1
MECO4 894,293 61 EBV-2
MLEB2 2,351,251 537 EBV-1

Namalwa 2,697,676 778 EBV-2
P3HR1 3,622,454 698 EBV-1

Raji 1,993,483 65 EBV-1
SNK6 3,175,449 971 EBV-2
PTBL5 1,033,508 63 EBV-1

DLBCL3 1,071,114 42 EBV-1
AIL7 1,248,228 71 EBV-1
ARL2 3,254,648 873 EBV-1
AIL15 2,356,168 626 EBV-1
ALCL1 1,782,932 78 EBV-1
AIL25 3,143,910 751 EBV-1
AIL24 1,204,758 56 EBV-1
AIL27 889,930 45 EBV-1
AIL2 2,024,732 92 EBV-1
AIL11 910,244 47 EBV-1

DLBCL4 1,764,060 301 EBV-1
PTBL4 1,494,164 385 EBV-1
AIL3 1,066,140 46 EBV-1

CTCL1 4,930,412 792 EBV-1
PTBL6 1,009,426 180 EBV-1
AIL14 1,948,266 553 EBV-1
AIL16 1,214,934 63 EBV-1

NLPHL2 2,009,568 45 EBV-1
NS.CHL1 566,500 51 EBV-1
NS.CHL3 3,573,262 861 EBV-1
MC.CHL1 1,907,892 133 EBV-1

AIL22 1,168,146 46 EBV-1
NS.CHL2 3,669,640 48 EBV-1

AIL23 2,096,084 47 EBV-1
AIL26 1,360,172 42 EBV-1

PTCL.NOS4 1,752,840 45 EBV-1
AIL21 2,526,360 102 EBV-1
ALCL2 4,104,334 43 EBV-1
CTCL2 1,376,010 159 EBV-1
CTCL3 1,495,068 124 EBV-1

PTCL.NOS5 2,894,860 47 EBV-1
PTCL.NOS3 1,361,598 42 EBV-1

NLPHL1 2,610,342 74 EBV-1
DLBCL5 8,303,756 1027 EBV-1
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Figure 1. Heatmap of EBV gene expression for the 14 angioimmunoblastic T cell lymphoma (AITL)
and 21 other EBV-associated lymphomas.

2.3. BARTs Are the Most Abundant Latency Transcripts in Lymphoma Samples

We analyzed the viral transcripts present in samples and, because we performed a
poly(A)+ capture before sequencing, we did not detect any non-polyadenylated transcripts,
for example, the EBERs.

For AITLs, the results obtained show that the most expressed latency transcripts are
BARTs (Figure 2B), which was much less frequent for other patients (Figures 2A and 3).
The BARTs constitute a complex set of differentially spliced polyadenylated RNAs that
share the same 3′ end and originate from several putative open reading frames, namely
BARF0, RPMS1, and A73 [30]. Our results showed increased expression of A73 and BARF0
respective to RPMS1 in AITLs.
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samples tested. (B) Heatmap of latency transcripts for AITLs.
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Figure 3. Distribution of BARTs (BARF0, A73, RPMS1) genes expression for AITL lymphomas
comparatively to other lymphomas. For each group, a boxplot is represented showing the lower
and upper quartile (the 25th and 75th percentiles, respectively). Line inside boxplot shows the
median whereas vertical lines outside the box represent the minimum and maximum (0th and 100th
percentile) excluding outliers.

2.4. All AITL Samples Tested Are in Latency II but Show Strong Expression BNLF2a

AITL biopsies and more largely all patient samples tested carried latency II EBV as
evidenced by the lack of EBNA-3 expression (Figure 2A). Nevertheless, all but 3 AITL con-
tained EBNA-2 and EBNA-LP transcripts. Moreover, expression of the viral transcription
factor BZLF1 was present with weak expression of BRLF1 and lack of expression of all
proteins of the lytic cycle (Figure 4). However, it is very remarkable that some lytic genes
were expressed especially the early gene BNLF2a. Among the lytic genes, it seems that
six of them, the late genes BCRF1, BSRF1, BVRF1, BNRF1, BFRF3, and BOLF1, present a
clustered expression in the majority of AITLs. Interestingly, BCRF1 encodes for a protein
that shows great homology with human interleukin-10 (IL-10) and is referred to as v-IL-10.

2.5. Cell Line Sequencing

We studied the EBV transcriptome in B95-8 line, initially obtained from a primary
infection, in four BL lines (Jijoye, Namalwa, P3HR1, and Raji), in two NK/TL lines (SNK6
and MEC04), characteristics of which are mentioned in Table 2 and in four LCL that we
established (CoAN, DPL, KREB2, and MLEB2).

It may be noted that the cell lines expressed little or no EBNA-3 and that only LCL
and Raji expressed EBNA-2 (Figure 5). BARTs were much more present in LCLs than in
other cell lines, except MEC04. It is noteworthy that, apart from DPL, cell lines clustered
and behaved homogeneously regardless of their origin. Among the genes most expressed
in the lines is BHRF1 which codes for a bcl2 homolog and miRNAs. EBNA-LP was also
highly expressed in all cell lines except MEC04. It can be noticed that MEC04 has a very
different profile from other lines.
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Figure 4. Heatmap of all EBV gene expression for AITLs.

Table 2. Characteristics of the cell lines used in this work.

Cell Line Origin Latency Type Particularity

B95.8 Primary infection [31] Lat III [32]

Deletion 139,724 bp to
151,554 bp:

OriLyt—large part of
miRNA BART—LF-1, -2,

-3 [31,33,34]

Jijoye Endemic Burkitt’s
lymphoma [35] Lat III [36] No deletion

Namalwa Endemic Burkitt’s
lymphoma [37]

Lat I [38]
Lat III [36]

2 copies of EBV genome
integrated into the

human chromosome [39]

P3HR1 Burkitt’s lymphoma [40]
Lat I [36]
Lat II [41]

Atypical latency [42]

Derived from
Jijoye—Deletion (33,355

bp to 40,163 bp):
EBNA-2, part of

EBNA-LP, part of
BHLF-1 [34,38,43]

Raji Burkitt’s lymphoma [44]
Lat III [36]

Lat I/Lat III (in vitro)
[38]

Two deletions (99,126 bp
to 102,118 bp and

163,978 bp to 166,635
bp): EBNA-3C, BZLF2,
BARF1, BALF1, BALF2

[45,46]

MEC04 NK/T lymphoma [47] Lat II [47]

SNK6 NK/T lymphoma [48] Lat II [48] EBNA-2 not expressed
[49,50]
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The deletions described for some lines resulted, when they affect the entire gene, in a
lack of expression particularly clearly visible in the case of LF1, LF2, and LF3 for B95-8 or
EBNA-2 for P3HR1 (Figure 6).
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3. Discussion

In this study, we wanted to assess the expression level of viral transcripts in AITL in
comparison to some lymphadenopathies from other lymphomas. Cell lines were also used
as a comparative element as the type of latency they carry has already been established.

Overall, there was no obvious difference between AITLs and other lymphomas and
there was no clustering of AITLs. Gene expression varies according to lymphoma and
even between tumors of the same pathology. Interestingly, there was no complete lytic
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cycle among AITLs, therefore no viral reactivation which makes it possible to produce new
infectious particles.

RNAseq analysis assessed the respective quantity of transcripts and revealed that
among the latency transcripts, the BARTs were very largely predominant. BARTs were
expressed in very high amounts in all AITLs and more broadly they were also found in
abundance in other patients. BARTs were initially demonstrated in NPC xenografts [51] as
well as in NPC biopsies [52] and also in BL biopsies [53]. Verhoeven et al. [54] described
high BART expression in NPC and discussed their role in this pathology. BARTs have also
been highlighted in GCs [55] where their strong expression could contribute to growth reg-
ulation and would therefore constitute a mechanism of viral oncogenesis [56]. Thus, it has
been gradually accepted that BARTs are very strongly expressed in infected NPC and
GC epithelial cells, probably participating in these pathologies. Our findings show that
BARTs were not only expressed in EBV epithelial malignancies but also at high levels in
lymphomas and especially in AITLs. Most probably they are present in any form of cancer
as suggested by Chakravorty et al. [17]. BARTs have been described as expressed in all
latency phases, although predominantly during latencies I or II [57], and also during the
lytic cycle. Although the putative proteins encoded by BARTs show potentially signifi-
cant properties with regards to cell transformation [51], they never have been detected
in vivo [30,58]. Since a nuclear localization of these persistent RNAs has been reported, it
has been suggested that they function as long non-coding RNAs (lncRNAs) that selectively
regulate viral and/or cellular gene expression [54]. BARTs also encode mature intronic
micro RNAs (miRNAs) many of which are expressed at a high rate in the same tumors
which carry BARTS. These miRNAs mainly contribute to tumor development or growth by
ensuring the maintenance of latency by blocking lytic transcripts, and also by blocking the
immune defenses [59,60]. The fact that BART transcripts were found in abundance in our
AITL patients suggests that they play an important role in this pathology, whether they act
in the form of lncRNAs and/or miRNAs.

In this study, it is remarkable that the BNLF2a/BNLF2b genes, described as early lytic
genes, are strongly expressed in patient samples and especially for AITLs; they are even
the most expressed genes (Figure 4). In the AITL biopsies we tested, the virus could be
considered to be in latency II due to the absence of EBNA-3 expression. However, the
expression of EBNA-2, and to a lesser extent EBNA-LP, in at least 11 out the 14 tissues
tested, does not support a latency IIa state. This was also found in 57.1% of other patients.
Moreover, the simultaneous LMP-1 expression excludes the hypothesis of latency IIb.
We wondered if the virus was starting to reactivate. Resumption of a lytic cycle begins with
the induction of viral transcription factors, particularly BZLF1 and BRLF1, and activation
of viral promoters. Subsequently, the initiation complex, composed of the six viral factors,
BMRF1, BSLF1, BBLF4, BBLF2/3, BALF5, and BALF2, is formed [61,62]. For our patients,
apart from AIL26, BZLF1 was highly expressed while BRLF1 was little or not expressed.
More, among the six mentioned genes, only BMRF1 was expressed. Therefore, it seems
to us that the virus is certainly in a latent state. This is why it is surprising to find such
high levels of BNLF2a expression. BNLF2a expression has already been reported during
latency, but mainly in carcinomas, especially GC [55] and non-small-cell lung carcinoma
(NSCLC) [63], but not in lymphoma to our knowledge. It has even been proposed to call
this latency, which includes the expression of EBNA-1, LMP-2, and BNLF2a, latency IIc [64].
This type of latency was carried by 11/14 of the AITLs we tested.

BNLF2a has been described to inhibit binding of peptides and ATP to the transporter
activated peptide (TAP), resulting in down-regulation of the HLA class I proteins, thus
blocking antigen presentation to cytotoxic T lymphocytes [65,66]. BNLF2a is expressed
early in the productive lytic cycle to prevent infected cells from the recognition by CD8+ T
cells sensitized to IE or E viral antigens [67], or in the pre-latent phase in B cells immediately
following infection. A very high level of BNLF2a expression certainly makes it possible to
protect the infected (tumor) cell from immune defenses. In addition, most AITL patients
co-express BCRF1, a late gene encoding for the vIL-10 protein that has 80% homology with
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hIL-10. vIL-10 protects infected B cells from NK cell-mediated elimination, can inhibit
CD4+ cell responses and the production of inflammatory cytokines [68], and promotes
subsequent B cell proliferation and differentiation [69]. Jochum et al. [65] demonstrated
that coexpression of BNLF2a and BCRF1 contributes to the immune evasion of EBV during
the very early phase of lytic infection. It can be assumed that, likewise, the simultaneous
expression of these two proteins promotes the survival of infected cells and tumors.

In addition to BCRF1, five other late genes were expressed in almost all AITL samples.
This strongly expressed gene cluster is made up of BSRF1, BVRF1, BNRF1, BFRF3, and
BOLF1. Apart from BCRF1 and BNRF1, which would play a role in cell immortalization,
the others, as far as is known today, encode integument or capsid proteins. Clusters of
lytic genes activated during latency have been described by others in NPC, GC, or BL [70],
but the genes differ from those found here.

To better understand the behavior of EBV in lymphoma tissues, we decided to compare
the results we obtained for our patients with those obtained for cell lines. We, therefore,
studied the EBV transcriptome in the following lines: B95-8, four BL lines, two NK/TL
lines, and four LCLs. Surprisingly, we did not find viral behavior specific to a pathology,
just as LCLs do not all behave in the same way. Latency gene expression was particularly
interesting, and EBNA-LP was highly expressed in all lines except MEC04. BARTs were
somewhat more expressed in LCLs than in other lines, although the expression was low.
As expected, our LCLs were found to be in latency III although, depending on the lines,
the latency genes were expressed to varying degrees. The BL lines, that are derived from
tumors exhibiting latency I, were mostly in latency I, while expressing EBNA-LP (Jijoye,
Namalwa, P3HR1), or latency III for Raji, with a weak EBNA-3 expression. This latency
change for Raji has already been reported and is due to growing conditions [38,71].

Interestingly, our lines showed much lower BART expression than patient tumors
apart from the MEC04 line which had a very unique behavior. The MECO4 cell line was
initially established from a patient with a fatal nasal NK-cell lymphoma at a leukemic
stage [47]. MEC04 is the only line, among those studied here, strongly expressing BARTs
as well as LMP2, while EBNA-1, LMP1, and EBNA-LP were weakly expressed and the
other latency transcripts absent. Interestingly, Coppo et al. [47] reported that the STAT3
transcription factor is constitutively activated in the MEC04 cells line and suggested that
STAT3 plays a primary role in nasal-NK/TL physiopathology. Recently, it was demon-
strated that, in B lymphocytes, LMP2A, constitutively associated with Src family protein
tyrosine kinases (PTKs) such as Syk, activates the phosphoinositide 3-kinase (PI3K)/Akt
pathway [72]. Then, Bruton’s tyrosine kinase (BTK), regulated by PI3K, phosphorylates
STAT3 which in turn activates cellular IL-10 [73]. The constitutive activation of STAT3
described by Coppo, therefore, appears to reflect the constitutive production of LMP2A by
these cells. Results are very different from the other NK/TL line we studied, SNK6.

Among the most expressed genes in all lines was BHRF1 which otherwise was very
weakly expressed in patient samples. It encodes a protein whose role is poorly defined
but which is a bcl-2 homolog and therefore exhibits anti-apoptotic properties essential
for cell transformation [74,75]. EBV also encodes BHRF1 miRNAs which are consistently
present in the early stages of infection. They restrict BHRF1 protein production and are
also detectable in LCLs [76]. They contribute to B-cell transformation and proliferation [77].
Interestingly, EBV-miR-BHRF1-2 has been shown to downregulate LMP2A. In this study,
the MEC04 line is the only one that expressed, albeit very weakly, BHRF1 and LMP2A were,
in contrast, highly expressed.

4. Materials and Methods
4.1. Production of Spontaneous LCLs

Spontaneously growing EBV-positive B-cell lines (LCLs), CoAN, DPL, KREB2, and
MLEB2 cell lines, were established from the peripheral blood of four subjects whose
characteristics are reported in Table 3. Lines were spontaneously established through the
use of cyclosporin A [78] according to the protocol described by Sculley et al. [79].
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Table 3. Characteristics of lymphoblastoid cell line (LCL) origin patients.

Cell Line Patient Age Patient Sex Patient Pathology

CoAN 61 F
Renal cell carcinoma
and hepatocellular

carcinoma

DPL 46 M Cardiac AL λ

amyloidosis

KREB2 64 M Parsonage-Turner
syndrome

MLEB2 66 M Healthy subject

4.2. Cell Lines and Culture

In addition to the LCLs established in our laboratory, seven other lines were used,
the characteristics of which are mentioned in Table 3. B95-8 and the four BL lines (Jijoye,
Namalwa, P3HR1, and Raji) were purchased from the ATCC (Catalog numbers CRL
1612—ECACC 85011419, CCL-87, CRL-1432, HTB-62, and CCL-86 respectively, Manassas,
VA, USA). The extranodal NK/T cell lymphoma lines (MEC04 and SNK6) were kindly
provided by Marion Travert (Inserm U955, Hôpital Henri Mondor, Créteil, France). All lines
were grown in RPMI1640 medium with glutaMAX (ThermoFisher Scientific, Illkirch-
Graffenstaden, France; catalog number 61870-010) supplemented with 10% fetal bovine
serum (FBS; Eurobio Scientific, Les Ulis, France; catalog number CVFSVF00-0U) and 1%
penicillin-gentamicin at 37 ◦C in a humidified 5% CO2 atmosphere. MEC04 and SNK6
cell lines were cultured under the same conditions and supplemented with 100 U/mL of
human IL-2 (Sigma-Aldrich, Saint-Quentin Fallavier, France; catalog number I7908).

4.3. Patients

The population included in this study was composed of 14 patients with AITL and 21
other patients suffering from HL or B or T non-HL lymphoma (Table 4). All patients were
initially diagnosed at Limoges University Hospital (France) after independent examination
by two pathologists using WHO criteria [80]. Patients gave informed consent for the
subsequent use of the samples taken and the study was retrospectively carried out on the
lymphadenopathy used for the initial diagnosis. The study was approved by the Ethics
Committee of the Institutional Review Board as part of ongoing studies, some of which
being published soon. The patients were selected based on sample positivity for EBER,
providing evidence of EBV infection.

4.4. EBER In Situ Hybridization

Detection of EBER1 by ISH was used to determine the presence of EBV allowing
sample selection. Briefly, the formalin-fixed paraffin-embedded (FFPE) tissue sections were
deparaffinized, rehydrated in a graded solution of xylene and alcohol, then deproteinized
with proteinase K before incubation with the Ventana EBER 1 DNP Probe® (Roche Diag-
nostics, Meylan, France; catalog number 760-1209) on the Benchmark XT automatonTM

(Roche Diagnostics). This was followed by staining with Ventana ISH iVIEW blue plus
detection kit® (Roche Diagnostics; catalog number 760-097) on the same apparatus.
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Table 4. Characteristics of the 14 AITLs and 21 other EBV-associated lymphomas patients included in this study.

Patient Sex Age at Diagnosis Pathology According to WHO Criteria (2016)

AIL2 M 62 Angioimmunoblastic T-cell lymphoma
AIL3 M 80 Angioimmunoblastic T-cell lymphoma
AIL7 F 59 Angioimmunoblastic T-cell lymphoma

AIL11 M 59 Angioimmunoblastic T-cell lymphoma
AIL14 M 62 Angioimmunoblastic T-cell lymphoma
AIL15 M 67 Angioimmunoblastic T-cell lymphoma
AIL16 M 50 Angioimmunoblastic T-cell lymphoma
AIL21 M 79 Angioimmunoblastic T-cell lymphoma
AIL22 M 70 Angioimmunoblastic T-cell lymphoma
AIL23 M 67 Angioimmunoblastic T-cell lymphoma
AIL24 F 78 Angioimmunoblastic T-cell lymphoma
AIL25 M 59 Angioimmunoblastic T-cell lymphoma
AIL26 M 69 Angioimmunoblastic T-cell lymphoma
AIL27 F 69 Angioimmunoblastic T-cell lymphoma

PTCL-NOS3 M 81 Peripheral T-cell lymphoma, not otherwise specified
PTCL-NOS4 M 69 Peripheral T-cell lymphoma, not otherwise specified
PTCL-NOS5 F 80 Peripheral T-cell lymphoma, not otherwise specified

ALCL1 F 73 Anaplastic large T cell lymphoma
ALCL2 M 20 Anaplastic large T cell lymphoma
CTCL1 F 73 Cutaneous T cell lymphoma
CTCL2 M 63 Cutaneous T cell lymphoma
CTCL3 M 83 Cutaneous T cell lymphoma

NLPHL1 M 68 Nodular lymphocyte-predominant type Hodgkin’s
lymphoma

NLPHL2 M 33 Nodular lymphocyte-predominant type Hodgkin’s
lymphoma

NS-CHL1 M 20 Nodular sclerosis classical Hodgkin’s lymphoma
NS-CHL2 M 73 Nodular sclerosis classical Hodgkin’s lymphoma
NS-CHL3 F 67 Nodular sclerosis classical Hodgkin’s lymphoma
MC-CHL1 M 77 Mixed cellularity classical Hodgkin’s lymphoma
DLBCL3 F 59 Diffuse large B-cell lymphoma
DLBCL4 F 31 Diffuse large B-cell lymphoma
DLBCL5 F 59 Diffuse large B-cell lymphoma
PTBL4 F 52 Post-transplant B lymphoma
PTBL5 F 68 Post-transplant B lymphoma
PTBL6 M 57 Post-transplant B lymphoma
ARL2 F 76 Age-related lymphoma
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For EBV positive samples, further work was performed on frozen material collected
at the same time as the FFPE tissue.

4.5. EBV Typing

To determine the type of EBV present in each patient sample, we aligned sequences
obtained against the unique EBNA-2/EBNA-3 regions of the prototype genomes of EBV
type 1 (NC_007605) and type 2 (NC_009334) EBV. The prototype strain for which a greater
number of reads matched for a given sample corresponded to the type of that sample.

4.6. RNA Extraction

Total RNA was extracted from cell lines and frozen biopsies by using the RNeasy
mini kit® (Qiagen, Les Ulis, France; catalog no. 74104) according to the manufacturer’s
instructions and treated with DNase I by using RNase-free DNase set® (Qiagen, catalog no.
79254). The frozen biopsies were previously disrupted and homogenized by adding lysis
buffer and using the Precellys 24 tissue homogenizerTM (Bertin Instruments, Montigny Le
Bretonneux, France) while the lines were directly lysed by lysis buffer. Extracted RNA was
re-suspended in RNAse-free water. RNA was then quantified and quality was determined
using the Agilent RNA 6000 Nano Kit® (Agilent Technologies, Les Ulis, France; catalog no.
5067-1511) on the Agilent 2100 BioanalyzerTM to obtain the RNA integrity number (RIN).

4.7. mRNA Enrichment

In brief, 700 ng high-quality total RNA, with a RIN ≥ 9, was used as input for each
sample. Poly(A) mRNAs were selected by using oligo(dT) beads in a KAPA mRNA capture
kit® (Roche Diagnostics; catalog number 07962231001) according to the manufacturer’s
protocol.

4.8. Probe Design for EBV Sequence Capture

The prototype genomes of EBV type 1 (NC_007605) and type 2 (NC_009334) EBV
were used as references for designing EBV probes (Roche NimbleGen, Madison, WI,
USA). Probes (100 to 120 bp) were designated to be overlapping and cover the entire viral
genomes a minimum of 5 times, without matching the human hg19 genome (GRch38.p13),
as determined by the SSAHA algorithm. Coverage for EBV-1 and EBV-2 genomes was
estimated at 99.7% and 99.9%, respectively (a probe was considered to match the genome if
there were fewer than five insertions, deletions, or substitutions of a single base between
it and the genome). The vast majority of designated probes were unique, although some
probes had a higher degree of multi-locus homology to increase coverage of all regions.

4.9. Sequencing by NGS

We used the high-throughput Illumina MiSeqTM system (Illumina, Evry-Courcouronnes,
France) to analyze the EBV transcriptome in the cell lines and selected patient samples
(Bronner). The technique consists of an EBV mRNA capture from the poly(A) mRNAs
by using NimbleGen SeqCap RNA Enrichment SystemTM (Roche Diagnostics) according
to the manufacturer’s protocol. Briefly, sample libraries were prepared using the KAPA
Stranded RNA Library Preparation kit® (Roche; catalog number 07962142001). Selected
poly(A) mRNAs were first fragmented by enzyme digestion. Then first and second cDNA
strands were synthetized and the obtained fragments were blunt-ended. A tailed and ligated
to specific adapters from SeqCap Adapter kits® A and B (Roche; catalog number 07141530001
and 07141548001, respectively). Subsequently, sample libraries were amplified for 11 cycles
by a ligated mediation PCR (LM-PCR). At this step, a qualitative control using the High
Sensitivity DNA kit® (Agilent Technologies, catalog number 5067-4626) on the Agilent 2100
Bioanalyzer and a quantitative one using Qubit dsDNA HS Assay Kit® (Invitrogen, catalog
number Q32854) were performed. The amplified sample libraries were then pooled in equal
molar quantities and hybridized to EBV biotinylated probes at 47 ◦C for 3 days consecutively
using SeqCap Hybridization and Wash Kit® (Roche; catalog number 05634261001). At that
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time, the hybridized fragments were recovered by magnetic streptavidin-beads (SeqCap
Pure Capture Bead kit®, Roche; catalog number 06977952001) and enriched by 14 cycles of
LM-PCR using SeqCap EZ Accessory kit v2® (Roche; catalog number 07145594001). Size
selection was performed during library preparation using a single Agencourt AMPure XP
treatment from SeqCap Pure Capture Bead kit®, to remove DNA fragments below 200 bp.
The final concentration was measured by the Agilent High Sensitivity DNA kit and libraries
were finally 2 × 300-base paired-end sequenced on an Illumina MiSeq instrumentTM (ICM,
Paris, France).

The sequencing of all cell lines was carried out in its entirety in triplicate.

4.10. Data Analysis

Data obtained were checked for quality using FastQC v 0.11.5 (Babraham bioin-
formatics, Cambridge, UK) and no trimming was done. Raw sequencing reads were
aligned against hg19 (GRch38.p13), EBV1 (NC_007605.1), and EBV2 (NC_009334.1) refer-
ence genomes using bwa mem 0.7.17-r1188. Data were then quantified using featureCounts
1.6.0 (Walter and Eliza Hall bioinformatics, Melbourne, Australia. Data normalization and
differential expression analysis were performed using a custom script to obtain transcripts
per million (TPM). Samples were then averaged and put in log. Statistically, differentially-
expressed genes were visualized with heatmaps (false discovery rate less than 0.05) using
pheatmap (Raivo Kolde, University of Tartu, Tartu, Estonia), tidyverse (Hadley Wickham,
University of Auckland, Auckland, New Zealand), hrbrthemes (Bob Rudis, Rapid7, Cam-
bridge, USA), and viridis (Simon Garnier, New Jersey Institute of Technology, Newark, NJ,
USA) R packages (built under R version 4.0.2).

5. Conclusions

In summary, our EBV transcriptome study on 14 AITL biopsies was compared to the
results obtained for the other lymphomas tested and showed that BARTs were much more
strongly and more frequently expressed for AITLs suggesting that they might play a role
in this lymphoma. We have shown that AITLs exhibited a latency corresponding to the
latency IIc described by Strong et al. [64] and that the simultaneous expression of BNLF2a
and BCRF1 may allow infected cells to survive. Taken together, these results suggest the
involvement of EBV in this pathology.
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