Supplementary Materials: STAT3β Enhances Sensitivity to Concurrent Chemoradiother-apy by Inducing Cellular Necroptosis in Esophageal Squamous Cell Carcinoma

Zhen-Yuan Zheng, Ping-Lian Yang, Wei Luo, Shuai-Xia Yu, Hong-Yao Xu, Ying Huang, Rong-Yao Li, Yang Chen, Xiu-E Xu, Lian-Di Liao, Shao-Hong Wang, He-Cheng Huang, En-Min Li and Li-Yan Xu

Figure S1. A. KYSE150 STAT3-KO cells transfected with Flag-STAT3 α , STAT3 β -HA and Flag-STAT3 α plus STAT3 β -HA, the protein expression were detected by western blotting. B. The location of STAT3 α and STAT3 β was detected by staining Flag and HA. Scale bar: 10 μ m. The uncropped Western Blot Figures in Figure S9.

Figure S2. The ability of colony formation of high expressed of empty vector and STAT3 β in KYSE510 under cisplatin/ ionizing radiation chemoradiotherapy treatment. Left, the representative diagrams of colony formation. Right, statistical histogram of colony formation number. Error bars represent means ± SEM of three independent experiments. ** P* < 0.05, *** P* < 0.01, **** P* < 0.001 compared with 0 Gy at the same concentration of DDP; *& P* < 0.05, *** P* < 0.01, *&&&# P* < 0.01 compared with 0 µM DDP at the same dose of IR; * *P* < 0.05, *** P* < 0.01, **** P* < 0.001 compared with the same Vector treatment.

Figure S3. KYSE30 and KYSE150 highly expressing Vector and STAT3β treated with or without cisplatin combined with ionizing radiation, cells were harvested and conducted with nuclear plasma separation. Cyto: cytoplasm. The uncropped Western Blot Figures in Figure S10.

Figure S4. Uncropped Western Blot Images for Figure 3A.

Figure S5. Uncropped Western Blot Images for Figure 3C.

Figure S6. Uncropped Western Blot Images for Figure 4A.

Figure S7. Uncropped Western Blot Images for Figure 4B.

Figure S8. Uncropped Western Blot Images for Figure 5G.

Figure S9. Uncropped Western Blot Images for Figure S1.

Figure S10. Uncropped Western Blot Images for Figure S3.

Table S1. The correlation between clinical parameters and nuclear STAT3 α in ESCC patients with concurrent chemoradiotherapy (n = 105).

Description	Detion t Number	Expression of STAT3a			
Parameters	Patient Number —	Highª	Low ^b	– K	P^*
	0	Gender			
Male	85	25 (29.4%)	60 (70.6%)	0.000	0.250
Female	20	8 (40.0%)	12 (60.0%)	0.090	0.359
		Age			
≤64.3 years	51	16 (31.4%)	35 (68.6%)	0.001	0.990
>64.3 years	54	17 (31.5%)	37 (68.5%)		
		Response			
CR	33	9 (27.3%)	24 (72.7%)	0.061	0.535
PR+SD+PD	72	24 (33.3%)	48 (66.7%)		
		Chemoradiotherapy Regime	en		
Platinum + IR	64	18 (28.1%)	46 (71.9%)	0.362	0.089
Others	41	15 (36.6%)	26 (63.4%)		
		cTNM Classification			
II	19	6 (31.6%)	13 (68.4%)		
III	34	9 (26.5%)	25 (73.5%)	0.044	0.729
IV	52	18 (34.6%)	34 (65.4%)		

^a high >77.3 scores; ^b Low ≤77.3 scores; CR: complete response; PR: partial response; SD: stable response; PD: progressive disease; IR: ionizing radiation.

Table S2. The correlation between clinical parameters and cytoplasmic STAT3 α in ESCC patients with concurrent chemoradiotherapy (n = 105).

Demonsterne	Detion t Normhan	Expression of STAT3 α in	р	D#		
Parameters	Patient Number –	Highª	Low ^b	- K	P**	
		Gender				
Male	85	14 (16.5%)	71 (83.5%)	0.027	0.706	
Female	20	4 (25%)	16 (75%)	0.037	0.708	
		Age				
≤64.3 years	51	8 (15.7%)	43 (84.3%)	0.028	0.700	
>64.3 years	54	10 (18.5%)	44 (81.5%)	0.038	0.700	
		Response				
CR	33	9 (27.3%)	24 (72.7%)	-0.182	0.062	
PR+SD+PD	72	9 (12.5%)	63 (87.5%)			
	Chemoradiotherapy Regimen					
Platinum + IR	64	11 (17.2%)	53 (82.8%)	-0.001	0.988	
Others	41	7 (17.1%)	34 (82.9%)			
cTNM Classification						
II	19	3 (15.8%)	16 (84.2%)			
III	34	6 (17.6%)	28 (82.4%)	0.011	0.984	
IV	52	9 (17.3%)	43 (82.7%)			

^a high >126 scores; ^b Low ≤126 scores; CR: complete response; PR: partial response; SD: stable response; PD: progressive disease; IR: ionizing radiation.

Cell lines	IC50 (95%CI) (μM)
KYSE150	44.60 (38.53~52.06)
KYSE450	20.90 (19.58~22.26)
KYSE30	19.25 (16.53~22.38)
KYSE510	12.11 (10.17~14.35)
TE3	5.49 (5.39~5.59)

Table S4. The biological process associated with DEGs affected by high-expressed STAT3 β under chemoradiotherapy condition.

Term	-Log(<i>p</i> -value)	Rich factor ^a	Gene symbols ^b
GO: 0051607 ¢	8.486	0.108	GBP1,GBP3,IFI16,IFIT2,IFIT1,IFIT3,IFNB1,IL1B,IL6,CXCL10,IR
			F1,ISG20,OAS2,TLR3,OASL,FADD,TRIM22,POLR3C,DDX58,I
			FIT5,DDX60,ZC3HAV1,FAM111A,GPATCH3,RTP4,RSAD2,M
			LKL,IFNL1,LCN2,IKBKE,IFI44,MR1,IL4R,KRT6A,SERPINE1,S
defense response to virus			100A9,SLPI,APOL1,NLRP1,GSDMC,NLRC4,RNASE7,PGLYR
-			P3,IL31RA,GSDMA,RESF1,EGR1,IFI35,PSMB8,TRIM21,CXCL
			8,ZNF502,PAEP,CARD16,CCL2,BNC1,INHBA,PTAFR,LY96,T
			MEM250,CTSL,ITGA5,SELPLG
GO:0071222 ¢ cellular response to lipopolysaccharide	7.950	0.115	ABCA1,CASP1,CXCL1,CXCL2,CXCL3,IL1A,IL1B,IL6,CXCL8,
			CXCL10,IRAK2,LCN2,LYN,NFKB1,SERPINE1,PTAFR,CCL2,C
			XCL11,VIM,IL24,LY96,IL36G,PDCD1LG2,CARD16,ADD2,CE
			ACAM1,CD44,CSF1,ITGA5,ITGAM,ITGAX,L1CAM,MMP1,M
			SN,NBL1,OLR1,PGF,S100A9,SAA1,SDC4,SELPLG,VEGFC,DY
			SF,FADD,VAV3,VPREB3,ANGPT4,CAMK1D,TMEM102,ABL2
			,CREB1,DAB2,ESR2,INHBA,NKX3-

			1,P2RY6,SERPINF1,POU4F1,SPP1,ZNF35,NRIP1,TP63,CYP26B 1,GRAMD1B,HPGD,SLPI,BMP2,C3,MR1,KRT6A,OAS2,TLR3,I FI44,NLRP1,GSDMC,NLRC4,RNASE7,PGLYRP3,GBP5,LRG1, GSDMA,CCRL2,A2M,C4A,CFH,HPX,IFNB1,PSMB10,C1RL,N RG1,LAMA3,LAMC2,PLAU,PLXNA2,FEZ1,FLRT2,ROBO3,L HX4
GO: 0060337 ° type I interferon signaling pathway	6.182	0.147	EGR1,IFI35,IFIT2,IFIT1,IFIT3,IFNB1,IRF1,ISG20,OAS2,PSMB8, OASL,FADD,IKBKE,RSAD2
GO:0071396 ^c cellular response to lipid	6.071	0.068	CTSH,CTSL,IFI16,SERPINE1,SERPINE2,PLAU,SERPINF2,FA DD,CUZD1,C1RL,NLRC4
GO:0031638 ° zymogen activation	6.026	0.186	CTSH,CTSL,IFI16,SERPINE1,SERPINE2,PLAU,SERPINF2,FA DD,CUZD1,C1RL,NLRC4
GO:1904018 ^c positive regulation of vasculature development	5.215	0.089	CEACAM1,C3,CTSH,EGR1,ENG,FOXC2,IL1A,IL1B,CXCL8,IT GA5,ITGAX,SERPINE1,PDPK1,PGF,SOD2,STAT3,TLR3,VEGF C,ADAM12,ANGPT4,LRG1,AAMP,EDNRA,HPGD,IL6,CXCL 10,NKX3- 1,PDE2A,SERPINF1,SERPINF2,CCL2,SLC1A1,WARS1,WT1,X DH,DYSF,FZD8,SOCS3,SH2D2A,CALCRL,VAV3,HOXB13,SU LF1,ANTXR1,BMP2,CSF1,DAB2,LAMC2,LYN,MMP9,P2RY6,P
GO:0032612 ^c interleukin-1			LAU,PTAFR,FADD,FEZ1,ZNF268,CAMK1D,CEMIP,FERMT3, TMEM102,RNF207,SMIM22,ZNF502 ABCA1,CEACAM1,CASP1,EGR1,MR1,IFI16,IL1B,IL6,SAA1,S
GO:0043068 ^c positive regulation of programmed cell death	4.875	0.115	TAT3,NLRP1,NLRC4,CARD16,GBP5 BMP2,CASP1,CASP10,CDKN1A,CREB1,CTSH,DUSP6,HPGD, IFIT2,IFNB1,IL6,INHBA,ITGAM,LYN,MCF2,MMP9,NKX3- 1,POU4F1,RAPSN,S100A9,CCL2,SOD2,TLR3,XDH,SRPX,TP63 ,RIPK1,TNFSF10,FADD,SQSTM1,VAV3,ZNF268,NLRP1,CAM K1D,NLRC4,PLEKHF1,RNF122,AIFM2,EGLN3,HCAR2
GO:0045766 ^c positive regulation of angiogenesis	4.374	0.087	C3,CTSH,ENG,FOXC2,IL1A,IL1B,CXCL8,ITGA5,ITGAX,SERP INE1,PDPK1,PGF,STAT3,TLR3,VEGFC,ADAM12,ANGPT4,L RG1
GO:0097527 ° necroptotic signaling pathway	4.340	0.500	TLR3,RIPK1,FADD,MLKL,IL1B,IL6,SERPINE1,STAT3,DDX58, IL1A,PTAFR,LY96,IKBKE,CSF1,INHBA,MMP9,IL31RA,CEAC AM1,CREB1,LYN,POU4F1,MAFB,RFTN1,LCN2,SRPX,IL4R,IL 7R,RAG1,NFKBIZ,IFI16
GO:0032611 ^c interleukin-1 beta production	4.166	0.112	ABCA1,CASP1,EGR1,MR1,IFI16,IL1B,IL6,STAT3,NLRP1,NLR C4,CARD16,GBP5
GO:0051092 ^c positive regulation of NF-kappaB transcription factor activity	4.136	0.094	IL1B,IL1RAP,IL6,IRAK2,NFKB1,S100A9,TRIM21,STAT3,TLR3, TRAF1,RIPK1,TRIM22,SLCO3A1,NLRC4,CARD16,CASP1,CA SP10,PDPK1,SECTM1,TNFSF10,FADD,SQSTM1,IKBKE,LY96,I FIT5,TNFRSF19,APOL3,ESR2,NKX3-1,DDX58,CAMK1D
GO: 0010720 ^d positive regulation of cell development	10.281	0.082	ABL1,ADRA2C,APBB1,APOE,ASCL1,BCL6,BMP5,BMP7,CRA BP2,EDN1,EPHA3,FOXG1,FN1,GATA2,GL12,FOXA1,HES1,ID 2,MDK,MYB,NEDD9,NGFR,NKX6- 1,ROR2,RGS2,SCN1B,TP73,CXCR4,FZD1,SEMA7A,KALRN,N EURL1,SLIT2,NTN1,TOX,CUL7,DKK1,PLXND1,COBL,TIAM2 ,ANKRD1,CDON,PREX1,RNF157,GPC2,SRGAP2C,FOXO6
GO: 0006935 ^d chemotaxis	10.184	0.078	APBB1,APOE,BMP5,BMP7,CRABP2,EPHA3,FN1,MDK,NGFR, ROR2,PALM,RGS2,SCN1B,CXCR4,FZD1,SEMA7A,KALRN,N EURL1,SLIT2,NTN1,TOX,CUL7,PLXND1,COBL,DNM3,TIAM 2,ANKRD1,ZMYND10,ANLN,ESPN,RNF157,CARMIL2,GPC2 ,FOXO6
GO: 0040008 ^d regulation of growth	7.628	0.0682	APBB1,BCL6,CDKN2C,EPHA7,FGF13,HYAL1,ING1,MAP2,E NPP1,PTPRJ,RGS2,SLIT3,TGFB2,SEMA7A,SLIT2,NTN1,RTN4 R,JADE1,PSRC1,DACT3,SEMA3D
GO: 0001558 ^d regulation of cell growth	6.349	0.076	ABL1,APBB1,APOE,BCL6,CDKN2C,CRABP2,EDN1,EPHA7,F GF13,FN1,HYAL1,IGFBP3,IGFBP5,ING1,MAP2,NKX6-

			1 ENPP1 PTPRI RCS2 SI IT3 TCEB2 CXCR4 SEMA7A SI IT2 N
			TN1,RASGRP2,RTN4R,JADE1,PSRC1,RNF157,DACT3,SEMA3
			D
CO: 0016049 d coll growth	6.232	0.071	EFNB3,EPHA7,FBLN1,FGF13,MAP2,NFATC4,NGFR,SEMA7
GO: 0016049 ° Cell growth			A,SLIT2,NTN1,NGEF,DNM3,RTN4R,SEMA3D
GO: 0050770 ^d regulation of axonogenesis			ABL1,APOE,CRABP2,EPHA7,ESR1,FGF13,FN1,LAMB2,MAP2
	5.875	0.102	,NKX6-
			1,SLIT3,CXCR4,SEMA7A,SLIT2,NTN1,SPRY1,COBL,CYFIP2,R
			TN4R,RNF157,SEMA3D
GO: 0060560 ^d developmental growth involved in morphogenesis			ABL1,APOE,CRABP2,EDN1,EPHA7,FGF13,FN1,LAMB2,MAP
	5.452	0.089	2,NKX6-
			1,RGS2,SLIT3,CXCR4,SEMA7A,SLIT2,NTN1,COBL,CYFIP2,R
			TN4R,RNF157,SEMA3D
GO: 0048588 d	F 400	0.089	EFNB3,EPHA7,FGF13,MAP2,NGFR,SEMA7A,SLIT2,NTN1,RT
developmental cell growth	3.423		N4R,SEMA3D

^a Rich factor, number of differentially expressed genes enriched in GO term/number of total genes in this GO term. The larger rich factor is, the greater the degree of enrichment is. ^b Gene symbols, the threshold of DEGs was \geq 1.5-fold change and FDR < 0.05. ^c The genes of biological process enrichment were up-regulated. ^d The genes of biological process enrichment were down-regulated.

Table S5. The KEGG pathway associated with DEGs compared by high-expressed STAT3 β under chemoradiotherapy condition.

Term	-Log(<i>p</i> -value)	Rich factor ^a	Gene symbols ^b
		0.1739	CASP10, CREB1, CSF1, CXCL1, CXCL2, CXCL3, IFNB1, IL1B, IL6, CXCL10, IRF1, MMP9, NFKB1, CCL2, TRAF1, VEGFC,
has 04((9) TNE sime aligned			RIPK1, FADD, SOCS3, MLKL, CASP1, GBP1, GBP3, IFI16,
nsa04668° INF Signaling	9.872		CXCL8, OAS2, IKBKE, NLRP1, NLRC4, ANTXR1, CARD16,
paulway			GBP5, ANTXR2, LCN2, MMP1, S100A9, C3, ITGAM, C4A, IL1A,
			ITGA5, LY96, EGR1, SERPINE1, STAT3, PLCD4, CTSL,
			ATP6V0D1, BDKRB2, LAMA3, LAMC2
koM621 SNOD-like receptor		0.135	CASP1, GBP1, GBP3, CXCL1, CXCL2, CXCL3, IFI16, IFNB1,
signaling nathway	8.990		IL1B, IL6, CXCL8, NFKB1, OAS2, CCL2, RIPK1, FADD, IKBKE,
			NLRP1, NLRC4, ANTXR1, CARD16, GBP5, ANTXR2
hsa04657° IL-17 signaling	6 984	0 158	CXCL1, CXCL2, CXCL3, IL1B, IL6, CXCL8, CXCL10, LCN2,
pathway	0.004	0.150	MMP1, MMP9, NFKB1, S100A9, CCL2, FADD, IKBKE
			BMP2, CSF1, CXCL1, CXCL2, CXCL3, IFNB1, IL1A, IL1B,
ko04060 ^c Cytokine-cytokine	6.373	0.093	IL1RAP, IL4R, IL6, IL7R, CXCL8, TNFRSF9, INHBA, CXCL10,
receptor interaction	0.070	0.075	CCL2, CXCL11, VEGFC, TNFSF10, OSMR, IL24, IL20RB,
			TNFRSF19, IFNL1
hsa04610 ^c Complement and		0.135	A2M, BDKRB2, C3, C4A, CFH, CXCL10, ITGAM, ITGAX,
coagulation cascades	4.977		SERPINE1, SERPINB2, PLAU, SERPINF2
ko04620° Toll-like receptor	4.074	0.125	IFNB1, IL1B, IL6, CXCL8, CXCL10, NFKB1, CXCL11, SPP1, TLR3,
signaling pathway	4.974		RIPK1, FADD, IKBKE, LY96
hsa04623° Cytosolic DNA-	4.015	0.156	CASP1, IFNB1, IL1B, IL6, CXCL10, NFKB1, RIPK1, IKBKE,
sensing pathway	4.815		POLR3C, DDX58
hsa04622 ^c RIG-I-like receptor	2 (21	0.125	CASP10, IFNB1, CXCL8, CXCL10, NFKB1, RIPK1, FADD,
signaling pathway	5.621		IKBKE, DDX58
hsp04217 pagroptosis	3 368	0.083	CASP1, GLUD2, IFNB1, IL1A, IL1B, STAT3, STAT6, TLR3,
	3.300		PLA2G4C, RIPK1, TNFSF10, FADD, SQSTM1, MLKL
hsa04390 ^d Hippo signaling	4 508	0.104	BMP5, BMP7, BMP8B, CCN2, GLI2, ID2, LLGL2, PPP2R2B,
pathway	4.508		TEAD1, TGFB2, TP73, FZD1, TCF7L1, PARD6B, WTIP, AMOT
hsa0/110 ^d Cell cycle	4.417	0.113	ABL1, BUB1, CCNA2, CDC20, CDC25C, CDKN2C, GADD45B,
			PLK1, TGFB2, TTK, WEE1, CCNB2, PTTG1, DBF4
hsa04151 ^d PI3K-Akt signaling	2 515	0.061	CHAD, COL4A1, COL4A2, COL6A1, EFNA3, EGF, EPHA2,
pathway 2.315		0.001	FGF13, FN1, GNG11, NR4A1, LAMB2, MYB, NGFR, PPP2R2B,

AKT3, ITGA11, PHLPP2, PKN3, PDGFC, PDGFD, PRKCG, MAP2K6, RAP1GAP, RASGRP2, RASSF5, PARD6B

^a Rich factor, number of differentially expressed genes enriched in GO term/number of total genes in this GO term. The larger rich factor is, the greater the degree of enrichment is. ^b Gene symbols, the threshold of DEGs was \geq 1.5-fold change and FDR < 0.05. ^c The genes of biological process enrichment were up-regulated. ^d The genes of biological process enrichment were down-regulated.

RIPK1-F	AGATTGGTGGGACGAGTTCAT
RIPK1-R	TGATTGGGTCCAGGTGTTTAT
MLKL-F	CTTGCAGGATTTGAGTTGAG
MLKL-R	GATTTCCCAGAGGACGATTC
IFI16-F	GGAAACTCTGAAGATTGATA
IFI16-R	ATTGTCCTGTCCCCACTACA
IL6-F	GAGGAGACTTGCCTGGTGAA
IL6-R	GGCATTTGTGGTTGGGTCAG
CASP1-F	TTGAAGGACAAACCGAAGGT
CASP1-R	GGAAGAGCAGAAAGCGATAA
IL1B-F	GAATCTCCGACCACCACTAC
IL1B-R	CATAAGCCTCGTTATCCCAT
IL1A-F	GTATGTGACTGCCCAAGATG
IL1A-R	TCCCAGAAGAAGAGGAGGTT
CXCL2-F	CAAACCGAAGTCATAGCCAC
CXCL2-R	GGAACAGCCACCAATAAGCT
MMP9-F	TGCCAGTTTCCATTCATCTTC
MMP9-R	CCCATCACCGTCGAGTCAG

Table S6. The primers sequences used for quantitative RT-PCR.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).