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Simple Summary: Cancer is the leading cause of death in Taiwan. Compared with other types of
cancer, the incidence of lung cancer is high. In this study, the National Health In-surance Research
Database (NHIRDB) was used to determine the diseases and symptoms associ-ated with lung cancer,
and a 10-year probability deep neural network prediction model for lung cancer was developed. The
proposed model could allow patients with a high risk of lung cancer to receive an earlier diagnosis
and support the physicians’ clinical decision-making. As a result, a total of 13 diseases were selected
as the predicting factors. The proposed model showed an accuracy of 85.4%, a sensitivity of 72.4%
and a specificity of 85%, as well as an 87.4% area under ROC (95%, 0.8604–0.8885) model precision.
Based on data analysis and deep learning, our prediction model discovered some features that had
not been previously identified by clinical knowledge. This study tracks a decade of clinical diagnostic
records to identify possible symptoms and comorbidities of lung cancer, allows early prediction of
the disease, and assists more patients with early diagnosis.

Abstract: Cancer is the leading cause of death in Taiwan. According to the Cancer Registration
Report of Taiwan’s Ministry of Health and Welfare, a total of 13,488 people suffered from lung cancer
in 2016, making it the second-most common cancer and the leading cancer in men. Compared with
other types of cancer, the incidence of lung cancer is high. In this study, the National Health Insurance
Research Database (NHIRDB) was used to determine the diseases and symptoms associated with
lung cancer, and a 10-year probability deep neural network prediction model for lung cancer was
developed. The proposed model could allow patients with a high risk of lung cancer to receive an
earlier diagnosis and support the physicians’ clinical decision-making. The study was designed
as a cohort study. The subjects were patients who were diagnosed with lung cancer between 2000 and
2009, and the patients’ disease histories were back-tracked for a period, extending to ten years before
the diagnosis of lung cancer. As a result, a total of 13 diseases were selected as the predicting factors. A
nine layers deep neural network model was created to predict the probability of lung cancer, depending
on the different pre-diagnosed diseases, and to benefit the earlier detection of lung cancer in potential
patients. The model is trained 1000 times, the batch size is set to 100, the SGD (Stochastic gradient descent)
optimizer is used, the learning rate is set to 0.1, and the momentum is set to 0.1. The proposed model
showed an accuracy of 85.4%, a sensitivity of 72.4% and a specificity of 85%, as well as an 87.4% area under
ROC (AUROC) (95%, 0.8604–0.8885) model precision. Based on data analysis and deep learning, our
prediction model discovered some features that had not been previously identified by clinical knowledge.
This study tracks a decade of clinical diagnostic records to identify possible symptoms and comorbidities
of lung cancer, allows early prediction of the disease, and assists more patients with early diagnosis.

Keywords: lung cancer; prediction model; early diagnosis; health prevention; machine learning;
deep neural network model
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1. Introduction

Cancer is the leading cause of death in Taiwan. According to the Cancer Registration
Report of Taiwan’s Ministry of Health and Welfare, a total of 13,488 people suffered from
lung cancer in 2016, making it the second-most common cancer and the most common
cancer in men.

Cancer is usually curable by surgery and adjunctive therapy when it is diagnosed
in the early stages [1]. An early diagnosis is important in the elderly, even if the patient
has other diseases. Surgery can improve a patient’s quality of life, even if the goal is
not to extend the life of the patient [2]. The radiation and medical treatment provided
after surgery can reduce the risk of the cancer spreading, but these adjuvant treatments
can cause temporary harm. For patients over 65 years of age, chemotherapy should be
avoided, and if radiation therapy is adopted smaller dosages than usual should be used [3].
Recent clinical research has shown that patients no longer have an upper age limit, but that
they are selected according to their general condition (excluding other diseases). Cancer
treatments, such as chemotherapy and radiation therapy, often cause more damage and
are more severe in older people than in younger people. However, if the patient has
no other diseases, a treatment plan can sometimes be prepared in the same way as for
a young patient. Regardless of their age, both drug therapy and radiation therapy may
have the same effect. Other diseases of the elderly, such as diabetes, vascular disease, and
impaired kidney function, may increase the risk of infection, anemia, nausea, depression,
and exhaustion [4]. Elderly patients tend to recover more slowly from treatment.

Therefore, early diagnosis has been receiving increased attention, and more and more
research is focusing on disease prediction and detection. Through artificial intelligence
calculations and programming, disease prediction models that are based on big data can
be constructed.

2. Literature Review

Previous research has developed a prediction model for lung cancer. Cassidy et al. [5]
employed the LLP(Liverpool Lung Project) risk model to estimate the probability of lung
cancer development with a specific combination of risk factors within a five-year period.
These risk factors include the age and sex of the patient, previous malignant tumors,
smoking duration, the age of onset of lung cancer, asbestos exposure, cases of lung cancer,
and pneumonia history. The area under the Receiver Operating Characteristic curve (ROC)
of the model was 0.71. Bach et al. [6] built two models, namely, one for the one-year
risk of developing an incidence of lung cancer, and one for computing the risk of dying
from lung cancer without a positive diagnosis. The prediction factors of both models
include the age and sex of the patient, smoking duration, smoking intensity, the length of
time since quitting smoking, and asbestos exposure. The model was built using the Cox
proportional hazard regression, and the area under the ROC of the prediction model was
0.72. Many different target disease models have been established by different algorithms,
such as the Artificial Neural Network (ANN), Cox regression, logistic regression, and the
Support Vector Machine (SVM), for other diseases [7–11]. The results of past related studies,
including the number of factors, factors and model performance, and the comparison table
is shown in Table 1.

Table 1. Related work results.

Authors Algorithm Number of factors ROC

Bach et al. Cox Proportional Hazards
Regression

6
age, sex, prior history of asbestos

exposure, duration of smoking, average
amount smoked per day while

smoking, and duration of abstinence
from smoking for former smokers

0.72
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Table 1. Cont.

Authors Algorithm Number of factors ROC

A. Cassidy et al. Conditional Logistic
Regression

7
Gender, Age, Smoking duration (Years),

Family history of lung cancer,
Malignancy, Pneumonia,

Asbestos exposure

0.71

Spitz et al. Multivariable Models

6
smoking status, pack-years smoked,

age at smoking cessation (former
smokers), and number of years since
smoking cessation (former smokers)],
self-reported physician diagnoses of

chronic obstructive pulmonary disease
or hay fever, and exposures to asbestos

or wood dusts

0.59–0.67

Tammemagi et al. Cox Proportional Hazards
Regression

10
age, level of education, body-mass
index (BMI), family history of lung

cancer, chronic obstructive pulmonary
disease (COPD), chest radiography in
the previous 3 years, smoking status
(current smoker vs. former smoker),

history of cigarette smoking in
pack-years, duration of smoking, and

quit time (the number of years since the
person quit smoking)

0.803

Hoggart et al. Bayesian Perspective

10
Sex, Education level, Asthma, Family
history of cancer, Chr15q25, Chr5p15,

Silica, PAH, Metal, Asbestos

0.843

This Study Deep Neural Network (DNN) 13 0.874

This study developed a 10-year lung cancer risk prediction model based on the Taiwan
National Health Insurance Research Database (NHIRD). Potential diseases related to lung
cancer were used as the predictive risk factors and were identified by using big data
analysis methods, and the prediction model for lung cancer was established by using the
Deep Neural Network (DNN) method. From an objective perspective, the model could
be used in conjunction with the patients’ health management as a reference for early lung
cancer prediction. Patients could also use this model for early screening, based on the risk
factors that may be related to lung cancer and, if the results showed an increased possibility
of the risk of developing lung cancer, earlier attention could be applied. The model is
expected to reduce the risk of lung cancer for patients with advanced related diagnoses
through early screening, and furthermore, to reduce the burden on medical services.

3. Method
3.1. Data Resource and Processing

This study sourced the data from the NHIRD, which dataset covers more than
99% of the national health insurance data of the Taiwanese population [12], including
their medical records, diagnosis records, medication records, surgical records, treatment
records, and other detailed clinical information. The dataset that was used in this study
is published by the NHI in Taiwan and contains all the above-mentioned information on
2,000,000 randomly-sampled individuals from the NHIRD. There is no significant differ-
ence between the subset samples and the original NHIRD samples regarding the distribu-
tion of gender and age.
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Patients who developed lung cancer between 1 January 2000 and 31 December 2009
were eligible for inclusion in this study, and all outpatient records before diagnosis were
tracked in order to identify the potential impacts or comorbidities of the disease, and
to assist patients with early screening. The target population was lung cancer patients.
We identified patients with lung cancer as case groups between 2000–2009, tracked their past
diagnostic records, and excluded individuals with other cancer histories. The quadruple number
of subjects as control groups were identified by their gender and age distribution [13].

The patients who were recorded in the Cancer Registration Form, and who had a
diagnosis code of ICD-O-3, including C340, C341, C342, C343, C348, C349, were identified
as the case group, and patients with any other cancer diagnosis were excluded, to make
sure that the participants were not undergoing cancer metastasis. The control group was
selected by their distribution of gender and age, based on the quadruple number of the
case group. Each patient record included the visit date, the patient’s de-identified pseudo
ID, gender, age, and diagnosis. All records with errors, such as miscoded diagnoses, typos,
or missing data, were excluded.

For clinical characteristics, we screened the patients’ disease history from the NHIRD.
The ICD-9-CM (International Classification of Disease-9-Clinical Modification) code was
used as the diagnosis code in the NHIRD, and it included the category number (three
codes) and the sub-category number (two codes). To avoid including too many disease
sub-categories, only the category numbers were used in this study.

For the data coding process, the data were transferred, depending on the time lapse
between the other diseases and the diagnosis of lung cancer. For example, for a subject who
was diagnosed with lung cancer in 2007, to code the history disease before the diagnosis,
the data were coded from 0–10, where 0 means that the person was without this disease and
1–10 denotes how many years the person has suffered from this disease before suffering
from cancer (the control group subject will be based on mapping the subject to the case
group). In this example, the data would be coded as 401 = 1, 250 = 4, and 486 = 0. An
example is shown in Figure 1.

Figure 1. Data processing example.

3.2. Research Process

Figure 2 shows the research process. Based on NHIRD, the outpatient records of both
the case group and the control group were reviewed retrospectively. After data processing
and integration, the research process followed the next three steps.
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Figure 2. Research process.

Step 1. The full dataset was separated into training (80%) and testing (20%) datasets.
Step 2. Select significant factors (predictors) by using the Least Absolute Shrink-

age and Selection Operator (LASSO) and Akaike Information Criterion (AIC) from the
whole dataset.

Step 3. The model was built using the training dataset by DNN.
Step 4. The model was evaluated by the testing dataset.
Step 5. The performance of the model is presented by accuracy, AUROC, sensitivity,

and specificity.

3.3. Factor Selection

For the selection of the influencing factors, all previous disease data were included,
and the case group was compared with the control group to find the significant correlation
factors. During the comparison process, the factors that had been confirmed by the
literature review were also included such as asthma, chronic obstructive pulmonary disease,
tuberculosis, emphysema, chronic bronchitis, silicosis, lung trauma, fibrosis, and pleural
thickening. The number of selection factors was reduced before finding the best factors for
the design of the prediction model.

The factors were reduced by adopting stepwise regression and by using the AIC and
the LASSO. LASSO is a regression analysis method that performs both feature selection
and regularization, in order to enhance a model’s predictive accuracy and interpretability.
It forces the sum of the absolute values of the regression coefficients to be less than a fixed
value (e.g., forcing some regression coefficients to become 0), which results in effectively
selecting a simpler model that unites the covariates that correspond to these regression
coefficients. This method is similar to ridge regression, in which the sum of the squares
of the regression coefficients is forced to be less than a certain value. The difference is
that ridge regression only changes the value of the coefficient, without setting any values
to zero.

LASSO is designed by the least squares method and assumes that a sample includes
N events, with each event consisting of p covariates and an output value of y. Let yi be the
output value of the ith case, and xi =

(
x1, x2, x3, . . . , xp

)T the covariate vector of the ith
case; the target equation to be calculated by LASSO is:

min
βo , β

{
1
N

N

∑
i=1

(yi − β0 − xT
i β)

2
}

subject to
p

∑
j=1

∣∣β j
∣∣ ≤ t

where t is a pre-specified free parameter that determines the amount of regularization.
Suppose t0 = ∑

∣∣∣B̂OLS
j

∣∣∣; when t > t0, B̂OLS
j means B̂j will be calculated by an ordinary

least squares’ statistical analysis, and the parameter coefficient estimator of the LASSO
regression will be equivalent to the least squares difference parameter coefficient estimator.
When t ≤ t0, part of the parameter coefficient of the LASSO regression will be reduced to
zero, thus completing the dimensionality reduction (feature extraction).
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3.4. Model Training

After the factor selection, the prediction model was designed by using an ANN.
An ANN simulates a biological neural network by using information systems and hard-
ware [14]. The neural network is composed of many artificial neurons, which can be
divided into the feedforward neural network and the recurrent neural network, with the
feedforward type being the most widely used.

The feedforward neural network includes input nodes, as well as neurons, in the
hidden layer, and it results in the output layer. In general, the multiple hidden layers, and
neurons in the same layer are not connected to each other, but are rather connected to
neurons in different layers, and signal transmissions occur in one direction only.

In brief, output Yi can be calculated as Yj =
n
∑

k=1

m
∑

i=1
HijkXi, where Σ is the summation

and Hijk is the neuron value to be learned. Back propagation is most representative in the
feedforward learning method, which first calculates the output error term and then feeds
the output error term from the output layer to the hidden layer through the neural link.
Backpropagation calculates the loss function relative to the network weight gradient for a
single input-output value. Through repeated iterations, the neural network is trained to
make the output value close to the actual value. In this study, a nine-layer deep ANN was
used for model training. Each layer included 2000 neurons, and the ReLu (Rectified Linear
Unit) activation function was used. To avoid model over fitting, the dropout layer, which
was a dropout of 50% neurons, was used randomly between Layers One and Two. The
model structure is shown in Figure 3.

Figure 3. Deep Neural Network (DNN) model structure.

3.5. Model Evaluation

The Area Under the Receiver Operating Characteristic curve (AUROC) was used to
evaluate the performance of the model in this study. When the area is large, it means that
the prediction of the model is more significant. In other words, when AUROC is close to 1,
the prediction precision of the diagnosis is higher, and when it is close to 0.5, the precision
rate of the model is lower [15].
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A classification model (classifier or diagnosis) is the mapping of instances between
certain groups. The classifier or diagnosis result can be a real value (classifier by a threshold)
or it can be a discrete class label, indicating one of the classes.

This study designed a two-class prediction problem (binary classification), in which
the results were labeled either as positive (p) or negative (n). There were four possible
results from the simple problem:

1. True Positive (TP), in which the results from a prediction are positive and the actual
value is also positive.

2. False Positive (FP), in which the results from a prediction are positive and the actual
value is negative.

3. True Negative (TN), in which the results from a prediction are negative and the
actual value is also negative.

4. False Negative (FN), in which the results from a prediction are negative and the
actual value is positive.

Based on the False Positive Rate (FPR) as the X axis and the True Positive Rate (TPR)
as the Y axis, the ROC curve can be drawn on the coordinate plane.

Given a binary classification model and its threshold, a (X = FPR, Y = TPR) coordi-
nate point can be calculated from the (positive/negative) true and predicted values of
all samples.

The diagonal from (0, 0) to (1,1) divides the ROC space into the upper left/lower right
areas. The points above this line represent a good classification result (better than random
classification), while the points below this line represent a poor classification result (inferior
to random classification).

The perfect prediction point is a point in the upper left corner. At the ROC space
coordinate (0,1) point, X = 0 means no false positive and Y = 1 means no false negative (all
positives are true positive); that is, regardless of whether the classifier output is positive
or negative, it is 100% correct. A random prediction will result in a point on the diagonal
from (0, 0) to (1, 1) (also called the no-recognition rate line).

When judging the quality of the model, in addition to the AUROC graph, the discrimi-
nating power of the ROC can also be determined. The AUC curve ranges from 0 to 1, and a
larger value is preferred. The following are the general discriminant rules for AUC values:

AUC = 0.5 (no discrimination or without discrimination)
0.7 5 AUC 5 0.8 (acceptable discrimination)
0.8 5 AUC 5 0.9 (excellent discrimination)
0.9 5 AUC 5 1.0 (outstanding discrimination)

3.6. Tool

The data statistic and model structure were completed by the R program. The LASSO
statistics were completed by applying the Glmnet package, and the ANN model was con-
structed by using the MXNet package. Finally, the ROC curve analysis was accomplished
by using the Plotly package (Plotly, CA, USA).

4. Results
4.1. Demography

This study identified 3448 subjects who received a lung cancer diagnosis from
1 December 2000 to 30 December 2009. A total of 132 patients were excluded due to
typos or missing data. Finally, a total of 3316 subjects were included in the case group for
this study. A total of 13,264 subjects were selected by their gender and age distribution as
the control group, of which 1775 subjects were excluded, due to typos or missing data.

The demographic and clinical characteristics of the 3316 subjects in the case group and
the 11,489 subjects in the control groups are summarized in Table 2. In order to prevent
the model from being affected by age and gender factors, the control group data screening
was completed, based on the gender and age distribution. The gender and age distribution
of the two groups were similar. The average age of case group subjects (patients with
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cancer) was 68.36 ± 12.3 years, while the average age of the control group (no cancer) was
68.08 ± 12.3 years. Males made up 67% of the subjects in both groups.

Table 2. Subject demographics.

Items
Case Group (with Cancer) Control Group (No Cancer) Total

N = 3316 N = 11,489

Gender
Male 2220 66.90% 7695 67.00% 9915

Female 1096 33.10% 3794 33.00% 4890

Age—Group

20–29 5 0.20% 23 0.20% 28
30–39 59 1.80% 201 1.70% 260
40–49 222 6.70% 833 7.30% 1055
50–59 492 14.80% 1672 14.60% 2164
60–69 753 22.70% 2721 23.70% 3474
70–79 1198 36.10% 4063 35.40% 5261
80–89 545 16.40% 1847 16.10% 2392
90–99 42 1.30% 128 1.10% 170

100–109 0 0.00% 1 0.00% 1

Total 3316 22.40% 11,489 77.60% 14,805

Pneumonia, organism unspecified
ICD-9 = 486

0 2928 88% 10,906 95% 13,834
1 388 12% 583 5% 971

Respiratory abnormality, unspecified
ICD-9 = 786

0 1946 59% 7909 69% 9855
1 1370 41% 3580 31% 4950

NEC Chronic airway obstruction, not
elsewhere classified

ICD-9 = 496

0 2742 83% 10,241 89% 12,983

1 574 17% 1248 11% 1822

Simple chronic bronchitis
ICD-9 = 491

0 2413 73% 9104 79% 11,517
1 903 27% 2385 21% 3288

Acute bronchitis
ICD-9 = 466

0 1504 45% 5669 49% 7173
1 1812 55% 5820 51% 7632

Pulmonary collapse
ICD-9 = 518

0 3247 98% 11,393 99% 14,640
1 69 2% 96 1% 165

Pure hypercholesterolemia
ICD-9 = 272

0 2998 90% 9835 86% 12,833
1 318 10% 1654 14% 1972

Diabetes mellitus without mention of
complication, Type II

ICD-9 = 250

0 2725 82% 8713 76% 11,438

1 591 18% 2776 24% 3367

Malignant hypertensive heart disease
without congestive heart failure

ICD-9 = 402

0 2657 80% 8540 74% 11,197

1 659 20% 2949 26% 3608

Abscess of lung and mediastinum
ICD-9 = 513

0 3306 99% 11,485 99% 14,791
1 10 1% 4 1% 14

Other unspecified noninfectious
gastroenteritis and colitis

ICD-9 = 558

0 2395 72% 7570 66% 9965

1 921 28% 3919 34% 4840

Post inflammatory pulmonary fibrosis 0 3307 99% 11,482 99% 14,789
ICD-9 = 515 1 9 1% 7 1% 16

Acute pulmonary heart disease 0 3306 99% 11,473 99% 14,779
ICD-9 = 415 1 10 1% 16 1% 26

As can be seen from the basic data, 66% of the subjects were male and 34% of the
subjects were female. Regarding the age distribution, 75% of the patients were elderly
(60–109 years old).
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The distribution of clinical characteristics of the case group are as follows: 12% of
the subjects had pneumonia, organism unspecified; 41% of the subjects had respiratory
abnormalities, unspecified; 17% of the subjects had NEC (Necrotizing enterocolitis) chronic
airway obstruction, not elsewhere classified; 27% of the subjects had simple chronic bron-
chitis; 55% of the subjects had acute bronchitis; 10% of the subjects had pure hypercholes-
terolemia; 18% of the subjects had diabetes mellitus without mention of complication,
Type II; 20% of the subjects had malignant hypertensive heart disease without congestive
heart failure; and 28% of the subjects had other unspecified non-infectious gastroenteritis
and colitis.

The distribution of the clinical characteristics of the control group are as follows: 5%
of the subjects had pneumonia, organism unspecified; 31% of the subjects had respiratory
abnormalities, unspecified; 11% of the subjects had NEC chronic airway obstruction, not
elsewhere classified; 21% of the subjects had simple chronic bronchitis; 51% of the subjects
had acute bronchitis; 14% of the subjects had pure hypercholesterolemia; 24% of the subjects
had diabetes mellitus, without mention of complications, Type II; 26% of the subjects had
malignant hypertensive heart disease, without congestive heart failure; and 34% of the
subjects had other unspecified non-infectious gastroenteritis and colitis.

The distribution of clinical characteristics indicated that the proportion of lung disease
in the case group was higher than that in the control group; however, chronic diseases,
such as diabetes and hypertension, were lower in the case group than in the control group.

4.2. Factor Selection

In the case group, a total of 919 disease cases were diagnosed before the diagno-
sis of lung cancer. The chi-square test was performed on the 919 disease cases, and
132 independent factors were identified as being significantly associated with lung cancer.

The dataset was randomly divided into 80% for the training dataset and 20% for the
external validation dataset, based on the same stratified sample size of 4:1 (Control Group:
Case Group).

Finally, 13 factors were selected by executing the LASSO and the Akaike Information
Criterion (AIC) from the training dataset. The coefficient and p value of each factor
calculated by LASSO and AIC are shown in Table 3. The Akaike information standard
was developed by Japanese statistician Hirotugu Akaike [16]. It now forms the basis
of the basic statistical paradigm and is also widely used for statistical inference. The
Akaike Information Criterion (AIC) is an estimate of the out-of-sample prediction error,
and therefore the relative quality of the statistical model for a given data set. Given the
set of models used for the data, AIC estimates the quality of each model relative to every
other model. Therefore, AIC provides a method of model selection. which can estimate
the relative amount of information lost by a given model: the less information the model
loses, the higher the quality of the model. When estimating the amount of information lost
by the model, AIC will weigh the model’s goodness of fit and model simplicity. In other
words, AIC deals with the risk of overfitting and the risk of underfitting.

In this study, AIC was employed to select the critical factor for establishing the model.
Using AIC’s repeated loss of information and the characteristics of the training model,
the factors identified by this process were selected as the main factors for final prediction
model analysis.
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Table 3. The coefficient and p value of each factor.

Items
p Value Coefficients p Value

(Chi Square) Least Absolute Shrinkage and
Selection Operator (LASSO)

Akaike Information
Criterion (AIC)

Pneumonia, organism unspecified
1.41 × 10−34 0.084021743 0.002287 **ICD-9 = 486

Respiratory abnormality,
unspecified 4.07 × 10−28 *** 0.031545271 0.097719
ICD-9 = 786

NEC chronic airway obstruction,
not elsewhere classified 3.43 × 10−25 *** 0.082399648 2.92 × 10−5 ***

ICD-9 = 496

Simple chronic bronchitis
5.28 × 10−18 *** 0.040447358 0.006002 **ICD-9 = 491

Acute bronchitis
7.3 × 10−11 *** 0.033521658 0.110577ICD-9 = 466

Pulmonary collapse
4.03 × 10−7 *** 0.106741357 0.014834 *ICD-9 = 518

Pure hypercholesterolemia
1.56 × 10−6 *** −0.022578026 0.073781ICD-9 = 272

Diabetes mellitus without mention
of complication, Type II 2.31 × 10−6 *** −0.029885991 9.29 × 10−5 ***

ICD-9 = 250

Malignant hypertensive heart
disease without congestive heart

failure 8.6 × 10−6 *** −0.043622275 2.35 × 10−6 ***

ICD-9 = 402

Abscess of lung and mediastinum
1.27 × 10−5 *** 0.740337834 0.002055 **ICD-9 = 513

Other unspecified noninfectious
gastroenteritis and colitis 131 × 10−4 *** −0.020047699 0.003216 **

ICD-9 = 558

Post inflammatory pulmonary
fibrosis 5.39 × 10−4 *** 0.202481673 0.046431 *

ICD-9 = 515

Acute pulmonary heart disease
0.016 * 0.272565141 0.006617 **ICD-9 = 415

Significant codes: <0.0001 ‘***’, <0.001 ‘**’, <0.01 ‘*’.

4.3. Model Establishment and Evaluation

The dataset was randomly divided into 80% for the training dataset and 20% for the
external validation dataset, based on the same stratified sample size of 4:1 (Control Group:
Case Group).

The training data is used to train the predictive model. The prediction model was
established by the nine layers of the DNN model. The input layer included 13 factors,
and each factor was given a rating of between 0–10 (in which 0 indicated no disease and
1–10 indicated how many years a person suffered from the disease before suffering from
cancer). Each control group subject can be mapped to the case group subject by their
gender and age, and the tracking date of control group subjects is the same as that of the
case group.

Usually, the DNN architecture consists of many hidden layers in the network, con-
nected to each other. Under normal circumstances, the structure of the best model can
only be determined by training with incremental testing. Different data needs to be used
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with different number of DNN layer structures to find a better performance model. In
this study a total of nine layers of DNN structure including one input layer, seven hidden
layers, and one output layer is established. The testing result of different DNN structures
is shown in Table 4, in which the prediction model established by the structure has the best
performance and is better than other previous studies.

Table 4. Performance of Different DNN Structures.

Items AUROC ACCURACY SENS SPEC

1 Layer 0.73 0.7469997 0.58 0.79
2 Layers 0.814 0.7917613 0.62 0.84
3 Layers 0.806 0.7937074 0.63 0.81
4 Layers 0.796 0.8008433 0.58 0.855
5 Layers 0.779 0.788842 0.61 0.854
6 Layers 0.778 0.7502433 0.56 0.88
7 Layers 0.765 0.7538112 0.57 0.89
8 Layers 0.747 0.7129419 0.57 0.88
9 Layers 0.874 0.8541564 0.72 0.86

The model is trained 1000 times, the batch size is set to 100, the SGD optimizer is used,
the learning rate is set to 0.1, and the momentum is set to 0.1. The parameters of the DNN
structure are shown in Table 5.

Table 5. Parameters of DNN structure.

Layers Parameter Value

1 (Input) Neuron 13

2–8 (Hidden)

Neuron 2000

Activation Relu

Dropout 50%

9 (Output) Neuron 2

Activation Softmax

Training Times = 1000.
Batch size = 100.

Optimizer = SGD.
Learning rate = 0.1.
Momentum = 0.1.

Train Type = Feed Forward

After the model is established, the external validation data is used for external veri-
fication of the model. The best threshold of the lung cancer prediction model was 0.749
(95% CI, 0.852 – 0.709), and the performance of the model could attain an accuracy of 85.4%
and an AUROC of 0.874 (95% CI, 0.8604–0.8885), with a sensitivity of 72.4% and a specificity
of 85%. The ROC plot of the DNN model is shown in Figure 4.



Cancers 2021, 13, 928 12 of 15

Figure 4. ROC plot of DNN model.

This study also uses traditional machine learning methods to compare baseline per-
formance. We use XGBoost for model development and comparison. When training
3000 times, XGBoost model showed an accuracy of 75%, a sensitivity of 18% and a speci-
ficity of 91.5%, as well as a 67.3% area under ROC (AUROC) model precision. The ROC
plot of XGBOOST model is shown in Figure 5. However, the sensitivity of the XGBoost
model is quite low. This study aims to establish an early preventive screening model to
assist in personal health management and lung cancer prediction. In this study, sensitivity
is the key point of model performance evaluation. Therefore, the performance of the DNN
model is better than that of traditional machine learning.

Figure 5. ROC plot of XGBoost model.
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5. Discussion and Conclusions

The amount of healthcare data is increasing constantly. Through machine learning
technology, large amounts of medical data can be analyzed quickly [17]. Therefore, it is
possible to implement machine learning and deep learning models for personalized care
relating to clinical decision support and health management. By using an appropriate
deep learning ANN prediction model, doctors can make clinical decisions by extracting the
minimum amount of necessary data [18]. The model proposed in this study could assist in
the early diagnosis of lung cancer, thereby helping to improve the efficiency and quality of
clinical diagnoses. The early diagnosis of any disease is essential, as the time of diagnosis
is one of the strongest factors in the success rate of any treatment plan. Therefore, the time
of diagnosis for each disease was used in our model. Stepwise regression of LASSO and
AIC was used cautiously as a feature selection strategy. Data from the NHIRD were used
to represent the Taiwanese population, and the predictive model could be integrated easily
into the Electronic Medical Record to identify the risk of lung cancer.

This research demonstrated that a neural network model could be used to design a
model that recognizes patients who are at risk of lung cancer, especially for those with spe-
cific diseases. The model could help physicians to achieve an effective early diagnosis and
to minimize potential harm to patients. A number of studies have suggested that several
comorbidities are prevalent in patients with lung cancer, including smoking, age [19,20],
heavy drinking [20], pneumothorax, COPD, tuberculosis, and hypertension [21–24]. Al-
though those studies have shown encouraging results, they have some limitations, as most
of them need questionnaire answers to calculate the risk, which may not be available in all
clinical and health management environments.

In this study, 13 diseases (factors) were selected, not only by using statistical algo-
rithms, but also by confirming the clinical evidence [21–24]. The 13 diseases included
lung-, diabetes-, hypertension-, and heart-related diseases, which are closely-related to
lung cancer. These 13 diseases were used to calculate the risk of lung cancer. In contrast
to previous studies, questionnaires on smoking and tuberculosis were not necessary in
the proposed model, thus making it beneficial for rapid clinical screening, as the patients’
personal health records or electronic health records could be used for rapid screening
without the need for questionnaires. The developed models could be used for personal
health management.

Previous research models for lung cancer prediction have produced various AUROC
results. The Bach model, proposed by Bach et al., has a 0.72 AUROC [6], the Liverpool
lung project model, proposed by Cassidy et al., has a 0.71 AUROC [5], the Spitz model,
proposed by Spitz et al., has a 0.57–0.63 AUROC [8], the African-American model, pro-
posed by Etzel et al., has a 0.75 AUROC [10], the PLCOM2012 model, proposed by Tam-
memagi et al., has a 0.803 AUROC [7], and the Hoggart model, proposed by Hoggart et al.,
has a 0.843 AUROC. The results indicated that the proposed model had a higher AUROC.
Although the model had a high performance, differences in data resources, datasets, and
features could cause differences in the predictive performance.

Based on the data and deep learning analyses, this study identified some features that
could be explained by clinical knowledge. For example, there was no evidence that other
unspecified non-infectious gastroenteritis and colitis were directly related to lung cancer;
however, it had a high weighting factor in our model. Eliminating this factor from the
DNN model training would cause the performance of the model to be greatly reduced.

Future work could attempt to extract evidence of special factors through data mining,
and to use other data sets to adjust and re-train the model.

Overall, the results of this study demonstrated that lung cancer can be predicted by
a person’s disease history. This study tracked a decade of clinical diagnostic records to
identify the possible symptoms and comorbidities of lung cancer, to allow for the early
prediction of the disease, and to assist more patients by providing an early diagnosis.

Based on the disease diagnostic data that are currently available for this study, the
accuracy of the prediction model was close to 86%. In our future study, clinical diagnostic
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data, blood test data, and physiological data will be integrated and analyzed, which could
improve the accuracy of the predictions.

6. Limitations

This study used data from Taiwan’s NHIRD and, therefore, the prediction model, may
only be applicable in Taiwan. The use of clinical diagnostic data has limitations for clinical
decision-making applications; however, it can effectively help early diagnosis and rapid
screening. Because the general questionnaire data is not included in the NHIRD, the factors
that have been proposed in previous research cannot be used in this model; otherwise, they
may have further improved the effectiveness of the model.
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