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Simple Summary: Acute Myeloid Leukemia is an aggressive disease with poor outcomes. New
targeted therapies that can boost the effects of currently used chemotherapy medications without
added toxicity are needed. Targeting an overactive kinase, called the protein Kinase CK2 in AML,
helps leukemia cells undergo cell death and helps certain chemotherapy drugs work better. Here,
we present evidence that CX-4945, a CK2 inhibitor drug, effectively kills leukemia cells in mouse
models and shows the mechanism of action responsible for these effects. Leukemia cells are more
sensitive to a decrease in CK2 kinase levels than normal cells. Our results show that inhibiting CK2
kinase makes AML cells more susceptible to anthracycline-induced cell death. Anthracyclines like
daunorubicin and doxorubicin are widely used to treat leukemia in children and adults. A rational
combination of protein kinase CK2 inhibitors with the standard of care chemotherapy may help treat
AML more effectively.

Abstract: Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine
kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid
Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging
on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has
shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic
effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression
in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeu-
tic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates
IKAROS and disrupts IKAROS’ transcriptional activity by impairing DNA-binding and association
with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphory-
lation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS
negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma
like–2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and
sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug
daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish
the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of
CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and
mechanistic bases for the addition of CK2 inhibitors to AML therapy.

Cancers 2021, 13, 1127. https://doi.org/10.3390/cancers13051127 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8373-7838
https://orcid.org/0000-0001-9336-9402
https://orcid.org/0000-0002-4324-4721
https://orcid.org/0000-0003-4582-820X
https://doi.org/10.3390/cancers13051127
https://doi.org/10.3390/cancers13051127
https://doi.org/10.3390/cancers13051127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13051127
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/5/1127?type=check_update&version=1


Cancers 2021, 13, 1127 2 of 21

Keywords: protein kinase CK2; acute myeloid leukemia; ikaros; bcl-xl; anti-apoptotic gene; CX-4945;
transcriptional regulation; patient-derived xenograft; preclinical model; daunorubicin

1. Introduction

Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with
poor prognosis, despite aggressive therapy, in children and adults alike [1]. Cytotoxic
chemotherapy and hematopoietic stem cell transplant remain the mainstay of treatment for
AML [2]. Anthracyclines (daunorubicin and mitoxantrone) and cytarabine (Ara-C) form
the backbone of AML induction therapy. Although therapies targeting recurrent genetic
mutations are being developed, strategies to target non-mutation based vulnerabilities of
leukemia cells are mostly unexplored in AML [3]. The therapeutic benefits of selectively
targeting constitutively overactive kinases in leukemia, even in the absence of associated
genetic mutation, are well established [4].

Protein Kinase CK2, formerly known as Casein Kinase 2 (CK2), is a pleiotropic, con-
stitutively active, serine-threonine kinase essential for cell survival and development [5].
CK2 exists as a tetramer with two catalytic subunits (α or α’) and two regulatory subunits
(β). There are two isoforms, CK2α and CK2α’, which are encoded by different genes and
have a similar protein structure (except for C-terminus of α subunit) and catalytic activ-
ity [6]. CK2 hyperactivity is implicated in the pathogenesis of several cancers, including
hematological malignancies such as AML, Acute Lymphoblastic Leukemia (ALL), Chronic
Lymphocytic Leukemia (CLL), Chronic Myelogenous Leukemia (CML), and Myelopro-
liferative Neoplasm (MPN) [7–11]. CK2 represents a key anticancer target that enables
leukemia cell survival and proliferation and renders tumor cells highly dependent on
its activity [12,13]. CK2 is known to regulate PI3K/PTEN-AKT[14,15], NF-kB (Nuclear
Factor-Kappa B) [16], Wnt-B-catenin, and Hedgehog (Hh) [9,14] signaling pathways in
AML. The CK2-driven post-translational modification of transcription factors and tu-
mor suppressors such as PTEN (Phosphatase And Tensin Homolog), P53, IKAROS, and
PML (ProMyelocytic Leukemia protein) impair their transcriptional activity and promote
leukemogenesis [17–20]. Among the normal karyotype AML cases, those with high CK2 ex-
pression were associated with decreased disease-free and overall survival, suggesting that
the overexpression of CK2 is a negative prognostic marker in AML [14,16]. Inhibition of
CK2, either by siRNAs or the specific inhibitor CX-4945, shows a strong cytotoxic activity in
AML [14,15,21]. CX-4945 (Silmitasertib), known by the chemical name 5-(3-Chlorophenyl)
amino- benzo[c] naphthyridine-8-carboxylic acid, is a selective, ATP competitive small
molecule and an irreversible inhibitor of CK2 with activity against all isoforms [22–24].

Although previous studies suggested several pathways through which CK2 inhibitors
might operate, the in vivo therapeutic action mechanism for CK2 inhibition in AML is
not well understood [11,14,21]. In B-cell acute lymphoblastic leukemia (B-ALL), CX-4945
exerts a therapeutic effect via restoration of the tumor suppressor activity of the IKAROS
protein [25]. IKAROS is a DNA-binding protein that regulates its target genes’ transcription
via chromatin remodeling [26]. Recent studies demonstrated that the IKAROS tumor
suppressor function involves regulating the global epigenomic landscape and chromatin
accessibility in acute lymphoblastic leukemia (ALL) [26,27]. Hyperphosphorylation of
IKAROS by CK2 impairs IKAROS’ DNA-binding ability and pericentromeric localization,
all of which disrupts IKAROS’ functions in transcriptional regulation, cell cycle progression,
and T-cell differentiation, and even promotes IKAROS degradation [28,29]. The CK2
inhibition restores IKAROS’ DNA-binding ability and its function as a transcriptional
regulator of its target genes [25,30]. IKZF1 recurrent mutations are seen in AML [31].
The impaired IKAROS function is associated with the development of AML, though its
potential role in AML tumor suppression is largely unknown [32–35].

Here, we report that IKAROS is hyperphosphorylated in AML cells with CK2 overex-
pression. The molecular or pharmacological inhibition of CK2 decreases IKAROS phospho-
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rylation and increases IKAROS binding to target gene promoter regions. Genome-wide
DNA-binding and gene expression analyses in CX-4945-treated AML cells revealed a strong
IKAROS binding to the BCL-2 family genes. We performed loss of function and gain of
function experiments showing that IKAROS represses the transcription of B cell Lymphoma
Like–extra-large (BCL-XL) encoded by B cell Lymphoma Like 2–like 1 (BCL2L1). Further-
more, we demonstrate that the CK2 overexpression impairs IKAROS’ ability to repress
BCL-XL. CX-4945 restores the IKAROS-mediated repression of BCL-XL and sensitizes AML
cells to apoptosis. Finally, CX-4945 showed anti-tumor activity and prolonged survival
in an AML patient-derived xenograft model. We show that in AML, the central mecha-
nism of BCL-XL repression following the CK2 inhibition is due to the restored IKAROS
transcription factor activity. These results provide a mechanistic basis to justify the clinical
development of CK2 inhibitors combined with cytotoxic therapy to treat AML.

2. Methods and Materials
2.1. Cells and Cell Culture

HEK 293T, U937, K562 and THP-1 cells were obtained from the American Type
Culture Collection (ATCC) and the German Collection of Microorganisms and Cell Cul-
tures (DSMZ). De-identified patient samples were provided by Loma Linda University
(Loma Linda, CA, USA) and collaborators at the Penn State Cancer Institute in compli-
ance with institutional review board regulations. Cells were cultured with RPMI 1640
plus (Mediatech, Manassas, VA, USA) with a 10% heat-inactivated Fetal bovine serum
(FBS) (HyClone, Rockford, IL, USA) and 1% penicillin-streptomycin. HEK-293T cells were
cultured in DMEM (CellGro) supplemented with 10% FBS. Human AML primary cells
(AML-1), previously expanded in mice, were cultured in StemSpan SFEM (Stem Cell Tech-
nologies, Cambridge, MA, USA), supplemented with a recombinant human stem cell factor
(SCF, 100 ng/mL), IL3 (20 ng/mL), FMS-like tyrosine kinase ligand (FLT3L, 100 ng/mL),
G-CSF (20 ng/mL), and GM-CSF (20 ng/mL; Shenandoah Biotechnology, Warwick, PA), as
well as 1% penicillin-streptomycin.

2.2. Drugs and Reagents

The CK2 inhibitor CX-4945 sodium salt was a gift from Senhwa Biosciences. CX-4945 and
daunorubicin hydrochloride were purchased from MedChem Express (Monmouth Junction,
NJ, USA).

2.3. Human Leukemia Mouse Xenograft Models

U937-GFP-luc cells were transplanted into NRG-S (NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl
Tg (CMV-IL3, CSF2, KITLG)1Eav/J) mice via tail vein injection at a dose of 25,000 cells
per mouse. The treatment was initiated when a bioluminescence intensity (BLI) signal
of 100,000 photons/sec was detected. Mice were randomized based on the average BLI
signal and treated with CX-4945 100 mg/kg or a vehicle, given via an oral gavage twice
daily for 7 days. Bioluminescence imaging (IVIS 100; analysis with the Living Image
software (PerkinElmer)) was used to track the leukemia progression. AML patient sam-
ples were selected based on their increased CK2 protein expression (mRNA and protein).
Irradiated NRG-S mice were injected with 2 million cells per mouse via the tail vein. En-
graftment was defined as 2–5% AML cells (human CD 45+, CD13+, and CD33+, BioLegend,
San Diego, CA, USA) in peripheral blood (PB). We started the CX-4945 treatment of
100 mg/kg twice daily after confirming the engraftment, and continued for a total of
21 days. After the treatment period, mice were sacrificed, and mononuclear cells were
isolated from the bone marrow, spleen, and peripheral blood. The cell count and flow
cytometry analysis were performed (Fortessa; BD, San Jose, CA, USA) using AML anti-
bodies against human CD45+, CD13+, and CD33+ cells. One cohort was monitored for
moribund signs, and the survival time was noted.
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2.4. Apoptosis Assay

Apoptosis assays were performed following the manufacturer’s instructions using
the Annexin V-7AAD apoptosis detection kit (Luminex, MCH100105) and analyzed on
the Muse Cell Analyzer (Luminex, Chicago, IL, USA). Briefly, 100 µL of cells were added to
100 µL of reagent, incubated for 20 min at room temperature, and analyzed.

2.5. Proliferation and Cytotoxicity Assays

The colorimetric WST-1 cell proliferation assay (Roche Diagnostics GmbH, Manheim,
Germany) was performed in 96-well white clear-bottom plates (Costar, 3610) in quadru-
plicate experiments, according to the manufacturer’s instructions. Absorbance at 440 nm
(reflects the number of viable cells) was measured using a BioTek Synergy Mx plate reader.

2.6. Western Blot

Cells were treated with 5 and 10 µM of CX-4945 or the vehicle control for 48 h and the
whole-cell lysate was collected. Briefly, samples were prepared on ice using lysis buffer
containing 10 mM Tris-HCl (pH 7.4), 5 mM MgCl2, 1% Triton X-100, 100 mM NaCl, 10 mM
NaF, 1 mM Na3VO4, and a protease inhibitor cocktail. The protein was quantified using
the Bradford assay and used for Western blot analysis and immunoblotting. The antibodies
used for the Western blot assay are listed in Table S1.

2.7. In Vitro Phospho-IKAROS Labeling

Cells were treated with different doses (5 or 10 µM) of CX-4945 for 48 h. Cells were
washed twice with phosphate-free RPMI 1640 and incubated with 0.5 mCi/ml [32P] or-
thophosphate (PerkinElmer, Waltham, MA, USA) in a phosphate-free RPMI 1640 medium
for 6 h. Cells were collected and washed twice with cold PBS and the nuclear protein
was extracted using the NE-PER Nuclear and Cytoplasmic extraction reagent kit (Thermo
Fisher Scientific, Waltham, MA, USA). The lysis buffer was supplemented with a pro-
tease and phosphatase inhibitor cocktail (Thermo Fisher Scientific). Then, IKAROS was
immuno-precipitated using the Dynabead Protein G Immunoprecipitation Kit (Thermo
Fisher Scientific) according to the manufacturer’s protocol. Briefly, lysates were incubated
with the Dynabeads Protein G and IKAROS antibody (Proteintech, Rosemont, IL, USA)
complex for 2 h on a rotator-mixer. IKAROS was eluted, separated by SDS-PAGE, trans-
ferred to a PVDF membrane, and imaged by radiography.

2.8. Colony Formation Assay

Cells were pretreated with CX-4945 alone or combined with daunorubicin, or the vehi-
cle control for 48 h. Cells were washed with PBS and plated in triplicate in a
6-well plate containing the 1.1 ml MethoCult H4100 medium (STEMCELL Technologies,
Vancouver, Canada) supplemented with RPMI-1640 and 10% FBS for U937 cells, as well
as a MethoCult H4034 Optimum (STEMCELL Technologies) medium for AML-1 cells.
Colonies were propagated for 7–14 days in an incubator at 37 ◦C and 5% CO2. Colonies
were counted under an inverted light microscope. Colonies that contained around 50 cells
or more were counted for analysis.

2.9. Gene Expression Analysis by qRT-PCR

Total RNA (ribonucleic acid) was isolated from cells using the QIAshredder and
RNeasy Mini Kit (QIAGEN, Germantown, MD, USA). Complementary DNA (cDNA) was
generated from 1 µg of total RNA using the Superscript First-Strand Synthesis System
(Invitrogen). The qRT-PCR was performed using a StepOne Plus real-time PCR machine
(Applied Biosystems) with PerfeCTa SYBR Green FastMix (Quanta Biosciences). Values
were normalized to 18 s RNA and the relative expression values were determined by the
2-∆∆Ct method.

Primers used for target gene studies include:
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BCL2L1-5′-TTGGATGGCCACTTACCTGAAT-3′; BCL2L1-Rev 5′-CCGCCGTTCTCCT
GGAT-3′; CK2α-5′-AGCGATGGGAACGCTTTG-3′; CK2α-Rev 5′-AAGGCCTCAGGGCTG
ACAA-3’; 18s-For 5’-GTAACCCGTTGAACCCCATT-3′ 18s-Rev5′-CCATCCAATCGGTAG
TAGCG-3′.

2.10. Luciferase Assay

The luciferase assay was performed using the LightSwitch Luciferase Assay System
(SwitchGear Genomics). Human embryonic kidney (HEK)-293T cells were seeded into
24-well plates. HEK-293T cells do not have endogenous IKAROS. After 24 h, cells were
transiently transfected with 0.15 µg of indicated promoter-reporter constructs or pROM
vector and 0.15 µg of pcDNA3.1-IKAROS or pcDNA3.1 vector in triplicate experiments
for each group using lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to
manufacturer’s instructions. According to the manufacturer’s instructions, 24 h after
transfection, cells were lysed in 100 µL of a LightSwitch Assay Solution (SwitchGear
Genomics, Carlsbad, CA, USA) and rocked at RT for 30 min. Lysates were measured by a
luminometer (Promega GloMax 20/20 Luminometer). Luciferase activities were calculated
as a fold change relative to the vector-only cells and normalized to pcDNA3.1 vector
readings. All transfection and reporter assays were performed in triplicate experiments.

2.11. Quantitative Chromatin Immunoprecipitation

IKAROS qChIP assays were performed as described previously[30]. Primers used for
the qChIP experiments are listed in the Table S2.

2.12. Statistical Analysis

Graphed data are represented as mean values with bars representing the standard
deviation (mean ± SD) of three technical replicates and at least two independent experi-
ments. Statistical analysis was performed using GraphPad Prism 9.0.0. P-value summaries
are as follows: p > 0.05 (ns); p ≤ 0.05 (*); p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****). Sta-
tistical significance in Figure 3B,E was performed using the one-way analysis of variance
(ANOVA). Statistical analysis for all other column graphs used multiple two-tailed t-tests
by the Holm-Sidak method, with alpha = 0.05. Each row (representing a cell line or drug
concentration) was analyzed individually, without assuming a consistent Standard Devia-
tion (SD). The number of t-tests per analysis was dependent on the number of conditions.
The qChIP values where the signal was more than 2-fold greater than the background
anti-Immunoglobulin G (anti-IgG) level were analyzed. The Kaplan-Meier method and the
log-rank test was used to perform the survival analysis and compare survival differences
(Figures 2G and 3C).

3. Results
3.1. High Baseline Expression of CK2, Bcl-xl, and p-IKAROS in Myeloid Leukemia Cells
Compared to Normal Hematopoietic Stem Cells

In line with the previously published data [15,16,36], we observed that CK2 is over-
expressed in myeloid leukemia cells and primary cells with various cytogenetic features
compared to normal hematopoietic cells (CD34+ HSC). A table with descriptions of each
cell type is included in supplemental file (Table S3). We examined protein and mRNA
levels of CK2α, CK2α’, CK2β, and BCL-XL in a panel of myeloid leukemia cells, using
Western blot (Figure 1A) and qRT-PCR, respectively (Figure 1B). The CK2α and BCL-XL
expression were higher in AML cells as compared to CD34+ HSC (Figure 1A and Figure S1).
The expression of CK2, BCL-XL, and IKAROS were variable across different AML cells.
AML cells showing high BCL-XL expression in the absence of high CK2 expression (as
in AML-5 and AML-6 in Figure S1) suggest other possible mechanisms influencing the
expression of BCL-XL in AML cells such as cytogenetic alterations, relapse disease, and
chemotherapy exposure. CD34+ HSCs were obtained from different sourses such as the
umbilical cord blood (UCB) and granulocyte colony stimulating factor (GCSF) treated
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peripheral blood collection (PB). The CK2 and BCL-XL expression were noted to be sig-
nificantly and uniformly lower in CD34+ from PB and UCB compared to the leukemia
cells. We chose U937, THP1, and AML-1 (primary AML cell) for our experiments due to
the high expression of CK2α. Phosphorylated-IKAROS was also measured in the studied
cells using a radio-immunoblot. IKAROS was observed to be highly phosphorylated in
AML cells compared to HSC (Figure 1C).

3.2. CK2 Inhibition Decreases IKAROS Phosphorylation and CK2 Cellualr Activity

In B-ALL, IKAROS is hyperphosphorylated by CK2 [37,38]. We tested the effect of
CK2 inhibition with CX-4945 on IKAROS phosphorylation in AML cells. Compared to the
untreated cells, the treatment with CX-4945 for 48 h resulted in a reduction in IKAROS
phosphorylation (Figure 1D).

We measured the CK2 activity indirectly by using an antibody against the phospho-
CK2 substrate (motif pS/pTDXE) to measure the amount of phosphorylated CK2 sub-
strates [39–43]. The CK2 substrates contain multiple acidic residues (Asp and Glu) located
downstream of the phosphorylated serine or threonine residues. The consensus sequence
for CK2 substrates is pS/pTD/EXD/E with the most crucial residue at the +3 position
followed by the residue at the +1 position. CX-4945 reduced the CK2 activity in a dose-
dependent manner 48 h post-treatment as determined by immune-blotting with an antibody
that recognizes phosphorylated CK2 sites in multiple proteins (Figure 1E, left panel). AML
cell lines showed a reduction in multiple phospho-CK2 substrates with molecular masses
of approximately 175, 120, 80, 70, and 56 kDa as indicated by arrows in Figure 1E, left
panel. We also performed the Western blot analysis to evaluate the phosphorylation extent
of a specific CK2 substrate, AKT1 at Ser129 [44,45]. Results showed a decrease in the
p-AKT(S129) level following the CX-4945 treatment (Figure 1E, right panel).

3.3. Inhibition of CK2 Represses BCL-XL Expression

We studied the effect of CK2α downregulation and pharmacological inhibition of
CK2α on BCL-XL expression. We achieved a pharmacological inhibition of CK2 using
a specific inhibitor, CX-4945. The treatment of U937 and AML-1 with CX-4945 showed
dose-dependent decreases in BCL-XL mRNA (Figure 2A) and protein levels (Figure 2B).
Downregulation of the CK2α was achieved by treating U937 cells with a CK2α specific
short hairpin (sh) RNA (Figure S3). CK2α silencing decreased the expression of BCL-
XL at mRNA (Figure 2C) and protein levels (Figure S4), as well as decreased IKAROS
phosphorylation (Figure S5). Next, we transduced U937 and THP-1 cells with a retrovirus
expressing CK2α or the empty vector (as a negative control). Increased CK2α mRNA
(Figure 2D) and protein were confirmed (Figure S6). The overexpression of CK2α showed
increased BCL-XL mRNA levels in U937 and THP-1 (Figure 2D). We did not observe
a significant change in IKAROS phosphorylation or the BCL-XL protein level in CK2
overexpressing U937 cells (Figures S4 and S5). This may be due to the already high level
of IKAROS phosphorylation by high baseline CK2 in these cells. Phenotypically, CK2α
overexpressing U937 and THP-1 cells showed increased cell viability and proliferation
compared to the control cells (Figure 2E). We developed a cell line derived xenograft mouse
model by transplanting luciferase labeled U937 cells transduced with CK2α-gfp-luc or the
control vector (ctl-gfp-luc) into immunocompromised (NRG-S) mice via tail vein injection.
AML (U937-CK2α-gfp-luc) cells overexpressing CK2α showed a robust engraftment as
shown by the increased bioluminescence intensity (Figure 2F). Moreover, mice engrafted
with CK2α overexpressing AML cells showed decreased survival compared to the control
group (Figure 2G).

These results demonstrate that the CK2α downregulation and pharmacological inhi-
bition of CK2 results in decreased IKAROS phosphorylation and BCL-XL repression in
AML cells. The overexpression of CK2α promotes cell viability in vitro, and accelerates
leukemia progression in vivo likely by increasing the expression of anti-apoptotic BCL-XL.
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3.4. CX-4945 Treatment Shows Therapeutic Efficacy in AML Patient-Derived Xenografts

We developed a patient-derived xenograft (PDX) model by transplanting previously
expanded human primary AML cells (AML-1) into irradiated NRG-S mice via tail vein
injection at a dose of 2 million cells per mouse. These mice were treated with CX-4945
orally at 100 mg/kg twice daily for 21 days (Figure 3A). After the treatment period, one
cohort of mice was sacrificed to measure the human leukemia burden in the bone marrow
and spleen using antibodies against human AML immunophenotypic cell surface markers
(hCD45+, CD13+, CD33+). The CX-4945 treated mice showed significantly less leukemia
burden (Figure 3B) and prolonged survival (Figure 3C) than the untreated group.
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(E) Western blot showing decrease in amount of phosphorylated CK2 substrates with molecular masses of approximately
175, 120, 80, 70 and 56 kDa as indicated by arrows (left panel) and western blot showing phosphorylation extent of specific
CK2 substrate, AKT1 at Ser129 (right panel).
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Figure 2. CK2 inhibition suppresses BCL-XL expression in AML cells and xenograft model. (A) U937 and AML-1 were
treated with 5 and 10 µM concentration of CX-4945 for 48 h before RNA and protein extraction. mRNA level of BCL-XL
was measured by qRT-PCR. (B) U937 and K562 cells were treated with 5 and 10 µM of CX-4945 for 48 hours and protein
was extracted. BCL-XL protein level was measured by western blot. (C) Downregulation of CK2α in U937 was achieved
using shRNA. Validation of CK2α protein knockdown in U937-shCK2α cell line is shown in Figure S3. qRT-PCR shows
mRNA level of CK2α and BCL-XL in CK2α shRNA treated U937 cells. (D) Overexpression of CK2α was achieved by
retroviral transduction of U937 cells. Validation of CK2α protein overexpression is shown in Figure S6. qRT-PCR showed
increased BCL-XL mRNA level in CK2α overexpressed U937 (left panel) and THP-1 cells (right panel). (E) WST assay
showing increased cell viability in CK2α overexpressing U937 and THP-1 cells. U937 cells transduced with retroviral
vector CK2α-gfp-luc were transplanted into NRG-S mice. 25,000 cells were injected via the tail vein. Bioluminescence
imaging using IVIS 100 was obtained weekly following transplant. (F) Bioluminescence signal in xenograft mice engrafting
U937-gfp-luc cell or control (U937-ctl-gfp-luc) shown at week 2 and 3 post transplantation. (G) Kaplan Maier plot showing
survival probability in U937-CK2-gfp-luc cells vs control. P-value summaries are as follows: p > 0.05 (ns-not significant);
p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****).
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Figure 3. CX-4945 treatment shows therapeutic efficacy in AML Patient Derived Xenograft (PDX). (A) Schema showing
AML PDX generation and treatment. AML-1 PDX was developed by injecting NRG-S mice with one million cells per
mouse via the tail vein. Treatment was started when 2–5% human CD45+ cells were detected in peripheral blood (PB). Mice
received 100 mg/kg of CX-4945 via gavage twice daily for 21 days. (B) Percent AML (human CD45+, CD13+,CD33+) in
bone marrow (BM) and spleen of treated and untreated AML-1 PDX mice by flow cytometry. (C) Kaplan Maier plot showing
survival probability of treated and untreated AML-1 PDX mice. Cell line derived xenograft (CDX) mouse models was
developed using luciferase, and green fluro-protein (gfp) labeled U937 cells (U937-gfp-luc) or THP-1 cells (THP1-gfp-luc)
transplanted into immunocompromised NRG-S mice as described in methods. Mice were treated with vehicle or CX-4945
at a dose of 100 mg/kg twice daily via gavage for up to 7 days. (D) Engraftment was monitored using bioluminescence
imaging shown as the mean of the total flux in photons/second of mice in each group. (E) Following treatment, mice were
sacrificed, and bone marrow mononuclear cells were collected. Human CD45+ cells in bone marrow were measured using
flow cytometry. Flow cytometry using conjugated BCL-XL antibody was used to quantify intracellular BCL-XL protein level
in FACS enriched human CD45+cells in the bone marrow of treated and untreated mice. Figure S6 shows histogram of
BCL-XL and CK2α protein level in vehicle and CX-4945 treated U937 and THP-1 CDX. (F) Mean fluorescence intensity(MFI)
is graphed, showing decreased BCL-XL protein level. P-value summaries are as follows: p > 0.05 (ns-not significant);
p ≤ 0.05 (*); p < 0.01 (**); p < 0.001 (***).
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3.5. CX-4945 Treatment Decreases BCL-XL Expression In Vivo

We developed a cell line derived xenograft mouse model by transplanting luciferase
labeled U937 and THP-1 cells (U937-GFP-luc and THP-1-GFP-luc) into NRG-S mice via
tail vein injection. Engraftment was confirmed by bioluminescence imaging. Mice were
treated with CX-4945 orally at 100 mg/kg twice daily for 7 days. The CX-4945 treated
mice showed decreased BLI (Figure 3D). After the treatment period, mice were sacrificed,
and human CD45+ cells were collected from the bone marrow. The CX-4945 treated mice
showed decreased total human CD45+ cells compared to the untreated mice (Figure 3E).
Intracellular protein quantification of BCL-XL and CK2α in leukemia cells from the bone
marrow of treated and untreated mice was done using flow cytometry. AML cells from
the mice treated with CX-4945 showed decreased BCL-XL protein levels compared to cells
from the untreated mice (Figure 3F and Figure S7) in both U937 and THP-1 xenograft
models. We also observed a mild decrease in the CK2α level following the CX-4945
treatement which may suggest that BCL-XL depletion by CX-4945 may be detrmined by
the CK2 protein amount (Figure S7). These findings of CK2α protein depletion were not
noted in the AML-PDX treated with CX-4945, as shown later. Interestingly, the complete
blood count obtained from these mice did not show thrombocytopenia (Table S4). These
results confirm that CK2 inhibition by CX-4945 decreases BCL-XL expression in vivo and
demonstrates the in vivo anti-leukemia effect of CX-4945 in an AML xenograft model.

3.6. CK2 Inhibitor Increases IKAROS DNA-Binding to BCL-XL

The IKAROS transcription factor binds to upstream regulatory elements of target genes
and activates or represses their expression via chromatin remodeling [26,27]. Regulatory
functions of the IKAROS transcription factor in AML are not known. In ALL, CK2 is the ma-
jor kinase that phosphorylates IKAROS [37,38]. In AML, where the IKZF1 loss of function
mutations is rare, hyperphosphorylation by CK2 can impair IKAROS’ DNA-binding ability
and subsequent regulatory functions. Using chromatin immunoprecipitation followed by
highly parellel DNA sequencing (ChIP-seq), we did a global analysis of changes in the
genome-wide DNA-binding of IKAROS in AML cells following the treatment with CX-
4945. U937 cells were treated with 10 µM of CX-4945 for 72 h to assess IKAROS mediated
epigenomic changes. A link to access the ChIP-seq data in the UCSC browser is provided
in the supplemental material. Here, we show that the binding of IKAROS to the promoter
region of the BCL2L1 (BCL-XL) gene increases after the CX-4945 treatment (Figure 4A). We
confirmed IKAROS binding at the BCL-XL promoter region using a quantitative chromatin
immunoprecipitation assay (qChIP). The CX-4945 treatment showed increased binding of
IKAROS to the BCL-XL promoter in U937 (Figure 4B) and primary AML cells following
72 h of treatment (Figure 4B, right panel).
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IKAROS binding to the BCL-XL promoter region was confirmed using the qChIP assay in WT and CX-4945 treated cells. 
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Figure 4. CK2 inhibitor increases IKAROS DNA-binding to BCL-XL. Chromatin immunoprecipitation (ChIP) followed
by next-generation sequencing (ChIP-seq) and analysis of genome-wide occupancy of IKAROS was performed on U937
following the CX-4945 treatment at 10 µM concentration for 72 h. A change in IKAROS binding to promoter regions of
the BCL-XL gene was analyzed following the CX-4945 treatment. (A) A chIP-seq signal map for IKAROS binding to the
BCL-XL/BCL-2L1 promoter region in U937-untreated labeled as WT (wild-type) (top panel) and CX-4945 treated U937
(bottom panel). Y-axis represents the log-2-fold change enrichment of IKAROS binding (** p < 0.01). (B) U937 and primary
AML cells (AML-1) cells were treated with 10 and 5 µM of CX-4945, respectively (based on the IC50 value) for 48 and 72
h. IKAROS binding to the BCL-XL promoter region was confirmed using the qChIP assay in WT and CX-4945 treated
cells. Binding at 72 h was not significantly increased compared to the 48 h treatment (not shown in the graph). Results
are the mean +/– SD of three independent experiments. P-value summaries are as follows: p > 0.05 (ns-non significant);
p < 0.001 (***); p < 0.0001 (****).

3.7. IKAROS Represses BCL-XL Expression

We used a luciferase reporter assay to determine if IKAROS binding to the BCL-XL
promoter region alters BCL-XL gene expression. The transient co-transfection of the BCL-XL
promoter region fused with the reporter gene and IKZF1 in HEK 293T cells. HEK293T cells
do not have endogenous IKAROS making it an ideal system to study the effect of IKZF1
on our promoters of interest. The human embryonic kidney 293T in human cell line cells
stably express the SV40 large T antigen, increasing transfection, and transduction efficiency.
The results show that IKAROS represses the BCL-XL promoter activity (Figure 5A). Next,
we performed the IKAROS loss of function and gain of function experiments to confirm
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the effect of IKAROS on BCL-XL expression in AML cells. The overexpression of IKAROS
in U937 cells was achieved by transduction of the retrovirus expressing wild type IKZF1
and empty vector as a negative control (Figure 5B, left panel). Increased IKAROS mRNA
(Figure 5B) and protein (Figure S8) were confirmed. The overexpression of IKAROS in
U937 cells resulted in decreased BCL-XL mRNA levels (Figure 5B, right panel) but not the
protein level (Figure S8). This could be due to the high level of CK2 present in U937 cells
that phosphorylate the overexpressed IKAROS protein. IKAROS silencing was achieved
by treating U937 cells with IKZF1 shRNA (Figure 5C, left panel). The U937 treated with
scramble shRNA (sh CTL) was used as a control. IKAROS knockdown resulted in increased
mRNA levels of BCL-XL (Figure 5C, right panel). These results establish the role of IKAROS
as a transcriptional repressor of BCL-XL in AML.

3.8. CX-4945-Induced BCL-XL Repression Is Mediated via IKAROS

The functional alteration of IKAROS due to phosphorylation by CK2 impairs its
regulatory functions as a tumor suppressor in leukemia [38]. CK2 inhibition results in the
redistribution of genome-wide DNA-binding of IKAROS to promoter regions of its target
genes, restores IKAROS’ regulatory activity, and revives the tumor suppressor function [25].
Since CK2 has multiple substrates, IKAROS being one, we wanted to test whether silencing
IKAROS would affect a CX-4945-induced decrease in the BCL-XL expression. We treated
U937 cells with IKZF1 shRNA and CX-4945, and measured BCL-XL mRNA levels. IKAROS
silencing blocked the CK2 inhibitor’s ability to induce BCL-XL repression (Figure 5D).
This result confirms that the CK2-IKAROS axis is one of the major, if not the only, BCL-XL
repression mechanisms by CX-4945.

3.9. IKAROS Represses BCL-XL via the Formation of Repressive Chromatin

Here, we investigated the mechanism by which IKAROS represses its target gene,
BCL-XL, in AML. IKAROS regulates the transcription of its target genes via chromatin
remodeling. Chromatin remodeling often involves chemical modifications of histone
protein present in chromatin (i.e., methylation and acetylation). The modification of
“histone mark” influences gene expression by changing how accessible the chromatin is to
the transcription. The histone mark is a specific modification (acetylation or methylation)
of a specific histone protein. Acetylation of lysine 9(K9) of the H3 histone protein is
noted as H3K9Ac. Methylation of lysine 27 (K27) of H3 histone is noted as H3K27me3.
Enrichment of H3K9 acetylation (H3K9Ac) is an indicator of open and active chromatin.
Enrichment of H3K27 tri-methylation (H3K27me3) is a marker of closed and repressive
chromatin. Repressive chromatin signature is noted as an enrichment of Histone (H) 3
lysine (K) 27 tri-methylation (H3K27me3) and loss of H3K9 acetylation (H3K9ac) and H3K4
tri-methylation (H3K4me3) [26]. We performed serial qChIP assays on CX-4945 treated
U937 cells to evaluate the presence of histone markers indicating a change in the chromatin
signature at the BCL-XL promoter region.

Results show that following the treatment with CX-4945, there is an enrichment of
the H3K27me3, loss of H3K9ac, and H3K4me3 histone marker (Figure 5F). A similar
enrichment pattern was noted at the BCL-XL promoter in U937 cells with forced IKAROS
overexpression (Figure 5E). IKAROS represses the BCL-XL gene’s transcription by inducing
the formation of repressive chromatin at the BCL-XL promoter.



Cancers 2021, 13, 1127 13 of 21
Cancers 2021, 13, x 15 of 25 

 

0.0

0.5

1.0

1.5

A. IKAROS supresses BCL-XL

promoter activity
R

e
la

ti
v
e
 l
u

c
if

e
ra

s
e

a
c
ti

v
it

y
 (

x
1
0

6
)

✱✱✱

pc-DNA vector

pc-DNA-IKZF1

293T
IKAROS

0

10

20

30

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

✱✱✱

0.0

0.5

1.0

1.5

BCL-XL

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

MIG-CTL

MIG-IK

✱✱✱

IKAROS BCL-XL

0.0

0.5

1.0

1.5

2.0

2.5

C. IKAROS silencing increses

BCL-XL expression in U937

R
e
la

ti
v
e
 m

R
N

A
 l
e
v
e
l

Sh-CTL

Sh-IK

✱✱

✱✱

B. IKAROS overexpression in U937 deceases BCL-XL mRNA

IKAROS BCL-XL

0.0

0.5

1.0

1.5

2.0

2.5

D. IKAROS silencing blocks CX-4945 induced
BCL-XL repression

R
e
la

ti
v
e
 m

R
N

A
 e

x
p

re
s
s
io

n

Sh-CTL CX-4945

Sh-IK + CX-4945

✱✱

ns

✱✱

Sh-Ikaros

✱✱

✱✱

ns

H3K27me3 H3K9ac H3K4me3

0

2

4

6

8

10

F. CX-4945 treatment forms repressive

chromatin at BCL-XL promoter

F
o

ld
 e

n
ri

c
h

m
e
n

t 
v
s
 I
g

G

CTL-IgG

CTL-Histone marker

CX-4945-IgG

CX-4945 -Histone marker

✱✱✱

✱✱✱✱

H3K27me3 H3K9ac H3K4me3

0

2

4

6

8

10

E. IKAROS overexpression forms repressive

chromatin at BCL-XL promoter

F
o

ld
 e

n
ri

c
h

m
e
n

t 
v
s
 I
g

G

CTL-IgG

CTL- Histone marker

Ikaros -IgG

Ikaros-Histone marker

✱✱✱✱

✱✱✱

✱✱✱

 

Figure 5. IKAROS represses BCL-XL gene transcription in AML. The luciferase reporter assay was performed on HEK-

293T cells transfected with IKZF1 plasmid (pcDNA-IK) or the control vector. Result in (A) shows repression of the BCL-

XL luciferase promoter construct by the IKAROS-expressing vector pcDNA3.1-IK in comparison to the pcDNA3.1 empty 

vector control in HEK-293T cells. The luciferase activity was normalized to pcDNA3.1 and pROM empty vector controls. 

(B) U937 cells were transduced to express IKZF1 (MIG-IK) or with an empty vector (MIG-CTL). The relative mRNA ex-

pression of IKAROS and (left panel) BCL-XL (right panel) were assessed using qRT-PCR. (C) U937 cells were treated with 

IKZF1 shRNA (shIK) or scramble shRNA control (shCTL). The relative expression of IKZF1 (left panel) and BCL-XL (right 

Figure 5. IKAROS represses BCL-XL gene transcription in AML. The luciferase reporter assay was performed on HEK-293T
cells transfected with IKZF1 plasmid (pcDNA-IK) or the control vector. Result in (A) shows repression of the BCL-XL
luciferase promoter construct by the IKAROS-expressing vector pcDNA3.1-IK in comparison to the pcDNA3.1 empty
vector control in HEK-293T cells. The luciferase activity was normalized to pcDNA3.1 and pROM empty vector controls.
(B) U937 cells were transduced to express IKZF1 (MIG-IK) or with an empty vector (MIG-CTL). The relative mRNA
expression of IKAROS and (left panel) BCL-XL (right panel) were assessed using qRT-PCR. (C) U937 cells were treated with
IKZF1 shRNA (shIK) or scramble shRNA control (shCTL). The relative expression of IKZF1 (left panel) and BCL-XL (right
panel) assessed by qRT-PCR. (D) U937 cells were treated with IKZF1 shRNA (shIK) or scramble shRNA control (shCTL).
IKAROS knockdown U937 cells were then treated with 10 µM of CX-4945 for 48 h. Changes in BCL-XL gene expression
were measured using qPCR. Figure 5E,F shows the qChIP assay showing an enrichment of histone markers at the BCL-XL
promoter. The qChIP assay was performed using (E) IKAROS overexpressing (MIG-IKZF1) U937 cells and (F) CX-4945
treated U937 cells (10 µM for 48 h) to determine the fold enrichment of histone markers, H3K27me3, H3K9ac, and H3K4me3
at the BCL-XL promoter and compared to the control cells. P-value summaries are as follows: p > 0.05 (ns- not significant);
p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****). Results are the mean +/– SD of three independent experiments.
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Figure 6. CK2 and IKAROS regulate sensitivity towards daunorubicin. CK2 overexpressing U937 (A,B) and THP-1 (C,D) 

were treated with 10 nM or 50 nM of daunorubicin for 48 hand stained with 7-AAD and Annexin V for flow cytometry to 

determine apoptosis. Flow plots (A,C) and percent apoptotic cells (early + late apoptosis) are shown in (B,D). Flow plots 

showing representative results from three replicates. The percentage of cells in the right upper and lower quadrant of each 

flow chart represents the percentage of late and early apoptotic cells, respectively. Q1-dead, Q2-late apoptosis, Q3-early 

Figure 6. CK2 and IKAROS regulate sensitivity towards daunorubicin. CK2 overexpressing U937 (A,B) and THP-1 (C,D)
were treated with 10 nM or 50 nM of daunorubicin for 48 hand stained with 7-AAD and Annexin V for flow cytometry to
determine apoptosis. Flow plots (A,C) and percent apoptotic cells (early + late apoptosis) are shown in (B,D). Flow plots
showing representative results from three replicates. The percentage of cells in the right upper and lower quadrant of each
flow chart represents the percentage of late and early apoptotic cells, respectively. Q1-dead, Q2-late apoptosis, Q3-early
apoptosis, Q4-live. (E) Cytotoxicity and drug response measured by MTT assay after treating CK2 overexpressing U937 and
THP-1 cells and respective controls with various concentrations of daunorubicin for 48 h. p > 0.05 (ns); p < 0.05 (*); p < 0.001
(***); p < 0.0001 (****).
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3.10. CK2 Regulate AML Cell Sensitivity towards Daunorubicin

Daunorubicin (DNR) is one of the most commonly used cytotoxic therapies for AML
that induces DNA damage and apoptosis. AML cells often overexpress BCL-XL and other
anti-apoptotic genes as one mechanism of chemoresistance. As shown in Figure 2A,B,
the CK2 inhibition decreases BCL-XL expression. Here, we tested whether the CK2 inhi-
bition affects AML cells’ sensitivity to DNR-induced apoptosis, and, conversely, whether
CK2α overexpression in AML cells confers resistance to DNR induced apoptosis. CK2α
overexpressing AML cells were resistant to apoptosis (Figure 6A–D) and showed decreased
drug response (Figure 6E) following the DNR treatment compared to the control cells. Over-
all, these results confirm the role of CK2 overexpression in inducing resistance towards
cytotoxic therapy in AML.

3.11. CK2 Inhibition Augments Daunorubicin Drug Response

The addition of CX-4945 potentiates DNR induced apoptosis (Figure 7A,B). Downreg-
ulation of CK2α resulted in increased apoptosis (Figure 7C) and decreased cell viability
(Figure 7D) when exposed to DNR compared to the control cells. A combination treatment
with CX-4945 and DNR showed decreased colony formation compared to the cells treated
with DNR alone (Figure 7E). The repression of BCL-XL was significantly augmented fol-
lowing the treatment with CX-4945 and DNR compared to the DNR single-agent treatment
(Figure 7F). A combination of CX-4945 and daunorubicin showed the synergetic cytotoxic
activity in primary AML cells (Figure S9). Overall, these results provide evidence of the
functional synergy between CX-4945 and daunorubicin in suppressing BCL-XL expression
in AML.
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Figure 7. CK2 inhibition potentiates daunorubicin-induced apoptosis in AML cells. Cells were treated with 10 µM of
CX-4945 or a combination of 10 µM CX-4945 with 10 nM of daunorubicin for up to 48 h. Cells were stained with 7-AAD
and Annexin V for flow cytometry to assess apoptosis. (A) Flow plots showing representative results from three replicate
experiments. The percentage of cells in the right upper and lower quadrant of each flow chart represents the percentage of
late and early apoptotic cells, respectively, in U937 (top row), THP-1 (middle row), and AML-1 cells (bottom row) Q1: Dead,
Q2: Late apoptosis, Q3: Early apoptosis, Q4: Live. Graphed in (B) are the mean +/−SD of triplicates from two independent

Figure 7. Cont.
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CX-4945 or a combination of 10 µM CX-4945 with 10 nM of daunorubicin for up to 48 h. Cells were stained with 7-AAD
and Annexin V for flow cytometry to assess apoptosis. (A) Flow plots showing representative results from three replicate
experiments. The percentage of cells in the right upper and lower quadrant of each flow chart represents the percentage of
late and early apoptotic cells, respectively, in U937 (top row), THP-1 (middle row), and AML-1 cells (bottom row) Q1: Dead,
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Figure 7. CK2 inhibition potentiates daunorubicin-induced apoptosis in AML cells. Cells were treated with 10 µM of CX-4945 or a
combination of 10 µM CX-4945 with 10 nM of daunorubicin for up to 48 h. Cells were stained with 7-AAD and Annexin V for flow
cytometry to assess apoptosis. (A) Flow plots showing representative results from three replicate experiments. The percentage of cells
in the right upper and lower quadrant of each flow chart represents the percentage of late and early apoptotic cells, respectively, in U937
(top row), THP-1 (middle row), and AML-1 cells (bottom row) Q1: Dead, Q2: Late apoptosis, Q3: Early apoptosis, Q4: Live. Graphed
in (B) are the mean +/−SD of triplicates from two independent experiments showing the percent of apoptosis cells following the drug
treatment, as indicated above. (C) CK2α silencing in U937 cells achieved using ShCK2α and sorted for GFP after 24 h. Sorted cells
were treated with 10 nM of DNR for 24 h before staining for Annexin V and 7AAD to assess apoptosis. The graph shows the combined
percent apoptotic cells (early + late) in each group with and without the DNR treatment. (D) Cytotoxic drug response measured by the
MTT assay after treating CK2α ShRNA treated U937 cells and the respective controls with various daunorubicin concentrations for
24 h. (E) Cells were pretreated as above for 48 h and were plated in a Methocult medium. Colonies were counted under an inverted
light microscope. Colonies that contained around 50 cells or more were counted for analysis. Graphed in Figure 7E is the number of
colonies after 14 days as the mean of three replicates +/− SD of two independent experiments. (F) The qRT-PCR showing decreases
in the mRNA level in U937 cells treated with daunorubicin alone (10 nM) or a combination of CX-4945 and daunorubicin. p-value
summaries are as follows: p > 0.05 (ns); p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****).

4. Discussion

Protein kinase CK2 is essential for embryonic development, cell survival, growth, and
maintenance [46,47]. The overexpression of CK2 enables cancer cells to proliferate and
resist apoptosis [48–50]. Leukemia cells are more susceptible to CK2 inhibition-triggered
cytotoxicity than their normal counterparts. CK2 has emerged as a potential anti-leukemia
target [10,11,51]. CX-4945 is an orally bioavailable, ATP competitive, small molecule in-
hibitor that has shown a favorable toxicity profile and efficacy in patients with relapsed
refractory cancers [22,24,52]. CX-4945 has shown strong in vivo efficacy in lymphoid
leukemia when used as a single agent and combined with cytotoxic therapy [25,53,54]. In
AML, several recent studies have shown cytotoxic activity of CX-4945 as a single agent and
in combination with cytotoxic therapy using the in vitro cell system and murine leukemia
models and describes another CX-4945 mechanism of action to induce cell death in AML



Cancers 2021, 13, 1127 17 of 21

[14,15,21,36,55]. Strategically targeting a promiscuous kinase CK2, which is indispensable
for several physiological cellular pathways, is challenging [56]. This nature of CK2 under-
scores the need for a thorough investigation of all signaling transduction pathways affected
by CK2 in different leukemias. A broad understanding of the mechanisms of action of CK2
inhibitors in AML helps design rational drug combinations that would be most effective to
overcome chemoresistance, sensitize cells to cytotoxic therapy, and minimize off-target effects.

In lymphoblastic leukemia, the tumor suppressor IKAROS is one of the important
substrates of CK2 [37]. IKAROS (encoded by the IKZF1 gene) is a master regulator of
lymphoid hematopoiesis and a tumor suppressor in leukemia [57]. Unlike the B cell acute
lymphoblastic leukemia (ALL), where more than 30% of cases have IKZF1 genetic alter-
ations, less than 10% of patients in AML have IKZF1 genetic mutations [33]. The functional
inactivation of IKAROS by CK2 hyperphosphorylation impairs IKAROS’s transcriptional
regulatory functions in B cell ALL, independent of the genetic alteration [37].

Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-
seq) was performed to assess IKAROS binding to DNA in U937 AML cells following
the treatment with CX-4945. Results showed enhanced IKAROS binding peaks at the
promoter region of several genes. IKAROS binding peaks were significantly increased at
the promoter region of the BCL-XL (BCL2L1) gene. Further validation by the quantitative
ChIP experiment showed that treating U937 and AML primary patient cells (AML-1) with
CX-4945 enhances IKAROS binding to the BCL-XL gene. Functional experiments using the
loss of function or gain of the IKAROS function have shown that IKAROS negatively regu-
lates BCL-XL transcription via chromatin remodeling (formation of repressive chromatin).
IKAROS is hyperphosphorylated in AML. The CK2 inhibition can reverse this process and
restore the IKAROS regulation of BCL-XL.

Here, we show that the forced overexpression of CK2 in AML cells led to increased
cell proliferation, decreased apoptosis, and resistance to DNR. More importantly, CK2
overexpressing AML cells engrafted rapidly and decreased the survival time of mice.
Downregulation and pharmacological inhibition of CK2 decreased the BCL-XL expression
and sensitized the AML cells to DNR-induced apoptosis. Anthracyclines (DNR and
mitoxantrone) are used extensively in the treatment of AML. These results provide a
mechanistic basis for the use of CX-4945 in combination with DNR.

This study shows that, in AML, IKAROS and CK2 play an essential role in the transcrip-
tional regulation of the anti-apoptotic gene BCL-XL. Other anti-apoptotic genes regulated
by CK2 and IKAROS include BCL2A1 and MCL-1. Here, we focused on the transcriptional
regulation of the anti-apoptotic gene BCL-XL, as this is one of the important genes reg-
ulating leukemia cell resistance to apoptosis [58]. The clinical use of BCL-XL inhibitors
is limited due to the platelet destruction [59]. Here, we show that by targeting CK2, we
can indirectly suppress BCL-XL expression by restoring the IKAROS transcription factor-
mediated negative regulatory mechanism. Using two AML cell line (U937 and THP-1)
derived xenograft models, we show that the treatment with oral CX-4945 causes decreased
BCL-XL expression in vivo. Decreases in the BCL-XL expression correlated with decreases
in the bone marrow engraftment suggesting an in vivo anti-leukemia effect. Interestingly,
no decrease in the platelet count was noted in the CX-4945 treated AML xenograft mice
(Table S4). Finally, the patient-derived AML xenograft mice treated with the CX-4945
single-agent oral therapy for 3 weeks showed significantly decreased leukemia burden and
prolonged survival time compared to the vehicle-treated mice. Further preclinical studies
are required to establish the in vivo efficacy of CX-4945 combined with chemotherapy such
as daunorubicin in AML.

5. Conclusions

In summary, we report for the first time on the in vivo therapeutic efficacy of CX-4945
in AML patient-derived xenograft models. These results establish that one of the central
mechanisms by which CX-4945 exerts an anti-leukemia effect in vivo is via the revival of
IKAROS-mediated transcriptional repression of the BCL-XL gene (Figure 8). The functional
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synergy shown here, between the CK2 inhibitor and daunorubicin in suppressing BCL-
XL provides a mechanistic basis for testing CK2 inhibitors combined with anthracycline
therapy for the treatment of AML.
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