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Simple Summary: As computer performance continues to grow at more affordable costs, mathe-
matical modelling and in silico experimentation begin to play a larger role in understanding cancer
evolution. The aim of our work is to formulate a control strategy for the Adaptive Cellular Therapy
(ACT) that can fully eradicates the Chronic Myelogenous Leukemia (CML) cells population in a
mathematical model describing interactions between naive T cells, effector T cells and CML cancer
cells in the circulatory blood system. Mathematical analysis and numerical simulations allow us to
conclude that it is possible to design a personalized administration protocol for the ACT in the form
of a pulse train with asymmetrical waves and a fixed amplitude to achieve complete CML cancer
cells eradication. The amplitude of the impulse on which the treatment is applied is given by an
arithmetical combination of the parameters of the system with at least a duty cycle of 45 min/day.

Abstract: This paper is devoted to exploring personalized applications of cellular immunotherapy
as a control strategy for the treatment of chronic myelogenous leukemia described by a dynamical
system of three first-order ordinary differential equations. The latter was achieved by applying
both the Localization of Compact Invariant Sets and Lyapunov’s stability theory. Combination of
these two approaches allows us to establish sufficient conditions on the immunotherapy treatment
parameter to ensure the complete eradication of the leukemia cancer cells. These conditions are
given in terms of the system parameters and by performing several in silico experimentations, we
formulated a protocol for the therapy application that completely eradicates the leukemia cancer cells
population for different initial tumour concentrations. The formulated protocol does not dangerously
increase the effector T cells population. Further, complete eradication is considered when solutions
go below a finite critical value below which cancer cells cannot longer persist; i.e., one cancer cell.
Numerical simulations are consistent with our analytical results.

Keywords: leukemia; adaptive T-cell therapy; localizing domain; asymptotic stability; in silico

1. Introduction

At the cellular level, cancer is defined as the uncontrolled growth of malignant cells
that were able to break free from their regulatory mechanisms. For a malignant cell to
emerge, several mutations need to be accumulated in the DNA sequence of a previously
normal cell. When the latter occurs, clonal expansion begins in the form of multiple cell
divisions, these descendants can undergo further mutations, increasing the possibility of a
more aggressive tumor progression. Therefore, under the right conditions, cancer cells from
a primary tumor could acquire the ability to enter into the circulatory system, travel to a
different site, and invade surrounding organs and tissues in a process known as metastasis.
Although, the great majority of primary tumors in humans are benign, metastatic or
secondary tumors are responsible for most of the cancer-related deaths. Cancer cells
may arise from almost any part of the body, hence their great diversity, grouping more
than 200 types and each one with their own complexities. These types may be classified
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by the hierarchy as follows: epithelial, nonepithelial and mixed multilineage. In this
work, we focus on a particular type of nonepithelial malignancy: Chronic Myelogenous
Leukemia (CML).

Leukemia is a type of non-solid tumour, resulting from the clonal expansion of ab-
normal hematopoietic cells. That is, it starts in the blood-forming cells affecting both the
peripheral blood and the bone marrow. Leukemias are classified based on their cell type:
myelogenous or lymphocytic; and chronicity: acute or chronic. The latter depends on
whether most of the abnormal cells are immature, with a faster growth rate; or mature,
characterized by a slower growth rate. Regardless of the case, the lifespan of leukemia
cells is longer than normal cells. Hence, they accumulate in the bone marrow and spill
over into the peripheral blood, crowding out their functional counterparts such as healthy
white blood cells, red blood cells, and platelets. Leukemia patients may eventually die due
to infections, nutritional deficiencies, and multiple organ failure [1,2]. Statistics from the
World Health Organization indicate that 474,519 new cases of leukemia and 311,594 deaths,
including both sexes in all groups of ages, were registered worldwide in 2020 [3].

In the particular case of CML, this disease occurs mostly in adults, and very rarely in
children. CML can be defined as a myeloproliferative neoplasm predominantly composed
of proliferating granulocytes that did not mature completely [4]. Therefore, these cells
do not have the ability to fight pathogens as well as a normal white blood cell would.
Concerning CML prognosis, physicians need to know the patient’s age, general health,
phase of CML, number of blasts in the blood or bone marrow, and the size of the spleen,
in order to plan the best treatment strategy. That is, the type of therapy, dose, and intervals
of application. The following six treatments are the standard for patients with CML:
targeted therapy, chemotherapy, immunotherapy, high-dose chemotherapy with stem
cell transplant, donor lymphocyte infusion, and surgery [5]. Nonetheless, new types of
treatment are being tested in clinical trials [6].

Mathematical modelling through first-order Ordinary Differential Equations (ODEs)
has been a powerful tool in understanding cancer evolution for nearly fifty years [7–10].
As computer performance continues to grow at more affordable costs [11], the so-called
in silico experimentation begins to play a larger role in understanding cancer biology.
Increased computing power enables researchers to formulate and execute more complex
mathematical models that could potentially explore several scenarios of tumor progression
in both short- and long-term. Further, one may include in these models the constantly
evolving survival mechanisms of cancer cells, the immune system response, and the
application of cancer therapies such as chemotherapy, immunotherapy, and cancer vaccines,
among others. Cell–cell interaction models suggest that intermittent therapy is more
beneficial to delay cancer relapse as compared to the standard continuous therapy [10].

Although not all models have been useful for clinical application, one can find the
following works concerning mathematical models of anticancer therapies relating ana-
lytical results and in silico experimentations with clinical studies. de Pillis et al. [12,13]
constructed a mathematical model of cancer chemoimmunotherapy involving the dy-
namics of tumor cells, specific and non-specific immune cells, chemotherapy and two
types of immunotherapy. The authors were able to identify appropriate values for the
parameters according to empirical data concerning two human patients. This system is
given by a set of ODEs and it is one of the most complete mathematical models of cancer
evolution under combined treatment application. Numerical simulations were performed,
following recommended dosages from drug manufacturers and clinical studies in both
therapies. Kronik et al. [14] formulated a mathematical model that could be individualized
by patient-specific parameters to predict outcomes on prostate cancer patients treated with
an allogeneic whole-cell cancer vaccine, a type of immunotherapy. In the period of one year,
they were able to accurately estimate prostate-specific antigen levels in twelve vaccine-
responsive patients. Further, the model describes the direct vaccine effect in immune
stimulation against prostate cancer by a set of linear and nonlinear ODEs. Kim et al. [15]
developed two mathematical models that explore interactions between drug-sensitive
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and resistant melanoma cells to facilitate adaptive therapy dosing. They were able to fit
patient-specific parameter values for each model and illustrate tumor burden for eight
patients. Numerical simulations predicted that adaptive therapy would have delayed time
to progression by 6–25 months compared to continuous therapy. Among many others,
these works highlight the potential benefits of applying mathematical modelling in cancer
clinical trials by fitting values related to patient-specific tumor parameters in order to better
design therapy dosing for each individual case.

In this paper, we aim to study CML evolution and its treatment by means of nonlin-
ear system theory and in silico experimentation, we apply the adaptive cellular therapy
(ACT) as a control strategy to a system describing the dynamics between naive T cells,
effector T cells and CML cancer cells in the circulatory blood system by means of three
ODEs. The mathematical model was constructed by Helen Moore and Natasha Li [16] and,
as discussed by the authors, main difficulties in modelling CML evolution is related to the
scarcity of experimental data that can be used to estimate parameters values. However, they
were able to determine 12 parameters for their system, each one with their corresponding
range of values.

ACT is a promising approach in the treatment of CML, it is one of the original forms of
cancer immunotherapy that illustrates how T-cells can recognize and eliminate malignant
cells. This therapy requires patients to be infused with a large number of autologous or
allogeneic T-cells that have undergone ex vivo selection and modification, expecting them
to target leukemia antigens with minimal impact on normal tissues [17,18]. Hence, our
interest in investigating both the short- and long-term effects of this treatment over CML
evolution and immune response on the system proposed by More and Li by means of the
Localization of Compact Invariant Sets (LCIS) method [19,20], the stability theory in the
sense of Lyapunov, and in silico experimentation.

The remainder of this paper proceeds as follows. In Section 2, we present the mathe-
matical preliminaries concerning the LCIS method and provide references concerning its ap-
plication on first-order ODEs dynamical systems describing cancer evolution. In Section 3,
we describe the CML-Immunotherapy mathematical model, the dynamics of each equation
and the description, values, and units of each parameter. In Section 4, we apply the LCIS
method to compute the localizing domain of the CML-Immunotherapy system and derived
sufficient conditions by means of Lyapunov’s stability theory to ensure CML cancer cells
eradication. In Section 5, we perform the in silico experimentation in the form of several
numerical simulations to design personalized protocols for the administration of the ACT
treatment. We illustrate how this protocol can be implemented for different initial non-solid
tumor concentrations and still successfully eradicate the CML cancer cell population. Fur-
ther, biological implications and interpretation of these results are also discussed. Finally,
conclusions are given in Section 6 and an appendix section is provided where the local
existence and uniqueness of solutions is discussed.

2. Localization of Compact Invariant Sets Method

The LCIS method was proposed by Krishchenko and Starkov in [19,20] to study the
short- and long-time dynamics of nonlinear systems of first-order ODEs by computing the
so-called localizing domain. During the past few years, this method has been successfully
applied to analyze the global dynamics of cell-cell interaction systems concerning cancer
evolution [21–25].

The localizing domain is a bounded region in the state space Rn where all compact
invariant sets of a system are located. Equilibrium points, periodic, homoclinic and
heteroclinic orbits, limit cycles and chaotic attractors are examples of compact invariant
sets. Let us take an autonomous nonlinear ODEs system of the form ẋ = f (x), where f (x)
is a C∞−differentiable vector function and x ∈ Rn is the state vector. Let h(x) : Rn → R
be a C∞−differentiable function, h|S denotes the restriction of h(x) on a set S ⊂ Rn.
The function h(x) used in this statement is called localizing and it is assumed that h(x) is
not the first integral of f (x). S(h) denotes the set

{
x ∈ Rn | L f h(x) = 0

}
, where L f h(x)
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represents the Lie derivative of f (x) and is given by: L f h(x) = (∂h/∂x) f (x). Now, let
us define hinf = inf{h(x) | x ∈ S(h)} and hsup = sup{h(x) | x ∈ S(h)}. Then, the General
Theorem concerning the localization of all compact invariant sets of a dynamical system
establishes the following:

Theorem 1. General Theorem. See Section 2 in [20]. Each compact invariant set Γ of ẋ = f (x) is
contained in the localizing domain:

K(h) =
{

hinf ≤ h(x) ≤ hsup
}

.

Localizing functions are selected by a heuristic process, this means that one may need
to analyze several functions in order to find a proper set that will allow us to fulfill the
General Theorem. If one considers the location of all compact invariant sets inside the
domain U ⊂ Rn, then the set K(h) ∩U may be formulated. It is evident that if all compact
invariant sets are located in the sets K(hi) and K

(
hj
)
, with K(hi), K

(
hj
)
⊂ Rn, then they are

located in the set K(hi)∩ K
(
hj
)

as well. Furthermore, a refinement of the localizing domain
K(h) is realized with help of the Iterative Theorem stated as follows:

Theorem 2. Iterative Theorem. See Section 2 in [20]. Let hm(x), m = 0, 1, 2, . . . be a sequence of
C∞−differentiable functions. Sets

K0 = K(h0), Km = Km−1 ∩ Km−1,m, m > 0,

with
Km−1,m =

{
x : hm,inf ≤ hm(x) ≤ hm,sup

}
,

hm,sup = sup
S(hm)∩Km−1

hm(x),

hm,inf = inf
S(hm)∩Km−1

hm(x),

contain any compact invariant set of the system ẋ = f (x) and

K0 ⊇ K1 ⊇ · · · ⊇ Km ⊇ . . . .

3. The CML-Immunotherapy Mathematical Model

The mathematical model for CML evolution was formulated by Moore and Li by
means of three first-order ODEs that describe the interactions between naive T cells [Tn(t)],
effector T cells [Te(t)] and leukemia cancer cells [C(t)] in the circulatory blood system [16].
In the latter, authors compute equilibrium points and study their local stability by lineariza-
tion of the system. They also perform a numerical analysis of the relationships between
parameters and its influence in the leukemia cancer cells population. The latter allows
them to conclude on the biological relevance, validation of the model and how it could be
used to solve the optimal drug dosing problem for leukemia patients. Hence, we use their
mathematical model to solve the cancer cells eradication problem by considering a cellular
immunotherapy treatment application. The CML-Immunotherapy mathematical model is
given as follows.

Ṫn = sn − dnTn − kn
C

C + η
Tn, (1)

Ṫe = αnkn
C

C + η
Tn + αe

C
C + η

Te − deTe − γeCTe + φi, (2)

Ċ = rcC ln
(

Cmax

C

)
− dcC− γcCTe. (3)

These equations describe the time-evolution of each cell population in the blood
compartment and their interactions are discussed below.
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The dynamics of naive T cells, both specific and non-specific to CML cancer cells, are
described by Equation (1). Naive T cells are considered to enter the blood system at a
constant rate sn with a natural death rate of dn in the absence of a proper stimulus, e.g., the
presence of CML cancer cells. The Michaelis-Menten term represents the differentiation
of naive T cells into specific effector cells due to encounters with the CML antigen in the
lymph nodes at a constant rate kn and a half-saturation of η. Further, the Michaelis-Menten
term considers both activation and energy as contributors to the loss term; naive T cells
can become anergic if they encounter the CML antigen without co-stimulators.

The effector T cells specific to CML cancer cells that have differentiated from naive T
cells are represented by Equation (2). The first term is due to activation encounters between
naive T cells and APC presenting peptides from CML antigen. It is assumed that a total
of αn naive T cell successfully converts into effector T cells specific to CML cancer cells.
The second term is a recruitment term of effector T cells due to their encounter with cancer
cells, it is assumed that a proportion αe of effector cells will recruit other immune cells to
aid in killing CML cells. The third term represents the natural death of effector T cells with
a coefficient of de. The fourth term represents the loss of effector T cells at a rate γe due
to activation-induced cell death from leukemia cancer cells. This process is described by
the law of mass action as these encounters occur in the blood and there is no saturation
effect such as in the lymph nodes. Lastly, φi is the adaptive T-cell therapy, i.e., this term
represents the infused enhanced T-lymphocytes into the patient.

The growth and evolution of CML cancer cells are given by Equation (3). The first
term represents tumor growth in the form of a Gompertz law which is considered to be
the best fit for leukemic cancers, i.e., non-solid tumors. The CML cancer cells proliferation
rate is given by rc with a maximum carrying capacity of Cmax, this limit could be decreased
by considering the natural death of these cells which is given by the second term with
a constant rate of dc. The loss of cancer cells due to their encounter with effector T cells
is described by the law of mass action with a coefficient of γc. This last term is directly
influenced by the cellular immunotherapy treatment concentration in the blood system.

The description, range of values, and units of each parameter of the CML-
Immunotherapy mathematical model (1)–(3) is shown in Table 1 and were retrieved
from [16].

Table 1. Parameter information for the CML-immunotherapy dynamical system.

Parameter Description Value Range Units

sn Natural proliferation of naive T cells 43.20 (0, 50] cells/(µL × day)
dn Natural death rate of naive T cells 0.040 (0, 0.1] day−1

kn Differentiation rate of naive T cells into effector 0.001 (0, 0.1] day−1

T cells due to their interaction with CML cells
η Half saturation term of T cells recruitment 100 (0, 1000] cells/µL
αn Proliferation rate of effector T cells 0.410 (0, 1]
αe Recruitment rate of effector T cells by CML cells 0.100 (0, 1] day−1

de Natural death rate of effector T cells 0.060 (0, 0.5] day−1

γe Inactivation rate of effector T cells by CML cells 0.005 (0, 0.1] µL/(cells × day)
φi Adaptive T-cell therapy to be estimated cells/(µL × day)
rc Growth rate of CML cells 0.100 (0, 0.5] day−1

Cmax Maximum carrying capacity of the CML cells 3× 105 [1.5, 4]× 105 cells/µL
dc Natural death rate of the CML cells 0.020 [0, 0.8] day−1

γc Elimination of CML cells by effector T cells 0.100 (0, 0.1] µL/(cells × day)

Furthermore, the CML-Immunotherapy system (1)–(3) fulfills the positivity property
established by De Leenheer and Aeyels, see Section II.A in [26]. The latter implies that
given nonnegative initial conditions, all solutions will have nonnegative real values for
all t ∈ [0, ∞). Hence, any semi-trajectory of the system is going to be positively forward
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invariant in the nonnegative octant R3
+,0 and all dynamics of the system are located in the

following domain:
R3
+,0 = {Tn(t) > 0, Te(t), C(t) ≥ 0},

and it is important to note that given the constant influx (sn) of naive T cells [Tn(t)], this
population will persist [Tn(t) > 0] as the natural proliferation rate of these cells is higher
than its natural death rate (dn) and differentiation rate into T cells (kn), i.e., sn > dn + kn.
Nonetheless, both effector T cells and CML cells populations may be zero; the first one may
be zero in the absence of immune stimulation or complete immune suppression, while the
other if both the immune response and therapy are successful. Further, local existence and
uniqueness of solutions regarding the CML-Immunotherapy system (1)–(3) is discussed in
Appendix A.

4. Results

In this section, we will demonstrate how to apply the LCIS method and Lyapunov’s
stability theory to derive sufficient conditions on the immunotherapy treatment to ensure
the complete eradication of the CML cancer cells population described by system (1)–(3).
These conditions are given by inequalities in terms of the system parameters and are going
to be applied with in silico experimentations to formulate a therapy administration protocol
in a further section.

4.1. Localizing Domain

In order to determine all bounds for a compact localizing domain to the CML-
Immunotherapy system we explore four localizing functions. First, let us determine
an upper bound for the concentration of naive T cells. Hence, the first localizing function is
given by

h1 = Tn,

and its Lie derivative is as follows

L f h1 = sn − dnTn − knTn

(
C

C + η

)
,

hence, set S(h1) =
{

L f h1 = 0
}

may be written as shown below

S(h1) =

{
dnTn = sn − knTn

(
C

C + η

)}
,

now, one can discard the negative term on the right-hand side and estimate the next upper
bound for the naive T cells

K1(h1) =

{
Tn(t) ≤ Tn sup =

sn

dn

}
.

The lower bound may be computed as well from set S(h1) when rewriting it as follows

S(h1) =

{
(dn + kn)Tn = sn +

knη

C + η
Tn

}
,

thus, the Michaelis–Menten term on the right-hand side is discarded and the lower bound
is estimated

K2(h1) =

{
Tn(t) ≥ Tn inf =

sn

dn + kn

}
.
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From the latter, the next result concerning the ultimate bounds for the naive T cells
population is established in the following set

KTn =

{
Tn inf =

sn

dn + kn
≤ Tn(t) ≤ Tn sup =

sn

dn

}
.

Now, let us consider the following localizing function to compute an upper bound for
the CML cancer cells

h2 = C,

hence, the Lie derivative is given by

L f h2 = rcC ln
(

Cmax

C

)
− dcC− γcCTe,

and set S(h2) =
{

L f h2 = 0
}

is written as shown below

S(h2) = {(rc ln Cmax − rc ln C− dc − γcTe)C = 0},

thus, the following two solutions can be found

S(h2) =

{
ln C = ln Cmax −

dc

rc
− γc

rc
Te

}
∪ {C = 0},

from the latter, the lower bound is determined and a preliminary upper bound for any
solution C(t) is estimated as follows

K(h2) =
{

0 ≤ C(t) ≤ Cmaxe−dc/rc
}

,

this upper bound will be improved below by applying the Iterative Theorem when consid-
ering both the immune response and the immunotherapy treatment.

The third localizing function is intended to study the dynamics of the effector T cells
population. The function is given by

h3 = Te,

and the Lie derivative is computed below

L f h3 = αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− deTe − γeCTe + φi,

thus, set S(h3) =
{

L f h3 = 0
}

is presented as follows

S(h3) =

{
Te(de + γeC) = αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
+ φi

}
,

hence, if we discard the Michaelis–Menten terms of the right-hand side to estimate a lower
bound, then the following result can be determined

S(h3) ⊂ {(de + γeC)Te ≥ φi},

where the Iterative Theorem is applied when considering immune suppression from CML
cancer cells as indicated below

S(h3) ∩ K(h2) ⊂
{(

de + γeCmaxe−dc/rc
)

Te ≥ φi

}
,
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therefore, the lower bound for the effector T cells population is given by

K(h3) =

{
Te(t) ≥ Te inf =

φi

de + γeCmaxe−dc/rc

}
.

This previous result allows us to improve the upper bound of the CML cancer cells
population. Now, both the immune response and the immunotherapy treatment are going
to be considered by applying the Iterative Theorem to set S(h2) as follows

S(h2) ∩ K(h3) ⊂
{

ln C ≤ ln Cmax −
dc

rc
− γc

rc
Te inf

}
∪ {C = 0},

and by taking the exponential form on both sides of the equation we get the following
ultimate lower and upper bounds for the leukemia cancer cells population

KC =
{

0 ≤ C(t) ≤ Csup = Cmaxe−(dc+γcTe inf)/rc
}

.

Now, to estimate the upper bound for the effector T cells population one can analyze
the following localizing function

h4 = Te + ln C,

the Lie derivative is computed as indicated below

L f h4 = αnkn
C

C + η
Tn + αe

C
C + η

Te − deTe − γeCTe

+φi +
1
C

[
rcC ln

(
Cmax

C

)
− dcC− γcCTe

]
,

and set S(h4) =
{

L f h4 = 0
}

is written as follows

S(h4) =

{
ΛTe = αnknTn −

αnknTnη

C + η
− αeTeη

C + η

−γeCTe + φi + rc ln Cmax − rc ln C− dc},

where
Λ = de + γc − αe > 0, (4)

thus, by considering Te = h4 − ln C, we get the following

S(h4) = {Λh4 −Λ ln C = φi − dc + αnknTn + rc ln Cmax

−rc ln C− αnknTnη

C + η
− αeTeη

C + η
− γeCTe

}
,

and rewrite the latter by assuming that next condition holds

0 < Λ < rc, (5)

therefore

S(h4) =

{
h4 =

1
Λ
(φi − dc + αnknTn + rc ln Cmax)

− 1
Λ

[
(rc −Λ) ln C +

αnknTnη

C + η
+

αeTeη

C + η
+ γeCTe

]}
,
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and the Iterative Theorem is applied to get the following subset

S(h4) ∩ K1(h1) ⊂
{

h4 ≤
1
Λ
(
φi − dc + αnknTn sup + rc ln Cmax

)}
,

from the latter, the next constraint is formulated

φi − dc + αnknTn sup + rc ln Cmax > 0, (6)

if (6) is fulfilled, one can conclude the next upper limit for the localizing function h4
as follows

K(h4) =

{
Te(t) + ln C(t) ≤ 1

Λ
(
φi − dc + αnknTn sup + rc ln Cmax

)}
.

Now, the next upper bound for the effector T cells population can be estimated from K(h4)

K1(h4) =

{
Te(t) ≤ Te sup =

1
Λ
(
φi − dc + αnknTn sup + rc ln Cmax

)}
,

thus, lower and upper bounds for any nondivergent solutions of Te(t) to the effector T cells
population are given in the next set

KTe =

{
Te inf =

φi

de + γeCmaxe−dc/rc
≤ Te(t) ≤ Te sup =

φi − dc + αnknTn sup + rc ln Cmax

de + γc − αe

}
.

Results shown in this section allow us to formulate the following statement concerning
the ultimate bounds of a compact domain located in the nonnegative octant R3

+,0 for the
CML-Immunotherapy system (1)–(3).

Theorem 3. Localizing Domain. If conditions (4)–(6) hold, then the CML-Immunotherapy system
(1)–(3) has the following compact localizing domain containing all its compact invariant sets

KΓ = KTn ∩ KC ∩ KTe ,

where

KTn =

{
Tn inf =

sn

dn + kn
≤ Tn(t) ≤ Tn sup =

sn

dn

}
,

KC =
{

0 ≤ C(t) ≤ Csup = Cmaxe−(dc+γcTe inf)/rc
}

,

KTe =

{
Te inf =

φi

de + γeCmaxe−dc/rc
≤ Te(t) ≤ Te sup =

φi − dc + αnknTn sup + rc ln Cmax

de + γc − αe

}
.

The latter implies that all meaningful dynamics of the system will be forward invariant
located within the localizing domain KΓ ⊂ R3

+,0. These dynamics include both tumor-
free and tumor-burden equilibria. Hence, sufficient conditions for asymptotic stability
of the tumor-free equilibrium point should be derived to properly design an applicable
immunotherapy treatment protocol that could potentially control and take the system to a
clinically healthy state, i.e., cancer remission or complete tumour eradication.

4.2. Leukemia Cancer Cells Eradication

Now, we will demonstrate how to derive sufficient conditions to ensure the complete
leukemia cancer cells eradication in the CML-Immunotherapy system (1)–(3). First, when
nonlinear systems theory is combined with systems biology and in silico experimentation,
it can be assumed that there is a final critical value below which cancer cells can no longer
persist [27,28]. Taking this into account, there is no biological meaning for any numerical
value describing fewer than 1 cell in the domain of the variables of the system. Therefore,
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this threshold is established to discuss and ensure the complete eradication of the CML
cancer cells population by means of the immunotherapy treatment application. The latter
allows us to propose the following.

Assumption 1. Threshold for CML Cancer Cells Eradication. For any solution C(t) that goes
below the threshold value of 1 cell, it is possible to assume complete eradication of the CML cancer
cells described by system (1)–(3). Hence,

C(t) = 0 ∀ C(t) < 1.

Furthermore, Moore and Li [16] discuss partial remission when there are fewer than
22,500 CML cancer cells/µL. Results shown in this section are determined by means of Lya-
punov’s stability theory (see Theorem 4.2 by Khalil in [29] at Section 4.1) and the Localizing
Domain Theorem. Thus, let us exploit the following candidate Lyapunov function

h5 = C,

and compute its derivative as follows

L f h5 =

[
rc ln

(
Cmax

C

)
− dc − γcTe

]
C.

It is evident that L f h5(0) = 0, and in virtue of L f h5

∣∣∣
KΓ

when considering the Threshold for

CML Cancer Cells Eradication, one can formulate the next upper bound to function L f h5

L f h5 ≤
(
rc ln Cmax − dc − γcTeinf

)
C ≤ 0,

from the latter, the next constraint is determined

rc ln Cmax − dc −
γcφi

de + γeCmaxe−dc/rc
< 0,

and solved for the immunotherapy treatment as indicated below

φi > φinf =
(rc ln Cmax − dc)

(
de + γeCmaxe−dc/rc

)
γc

. (7)

Therefore, we are able to formulate the following statement regarding the leukemia
cancer cells eradication by means of the immunotherapy treatment application.

Theorem 4. CML Cancer Cells Eradication. If the concentration of the immunotherapy treatment
φi fulfills condition (7), then complete eradication of the CML cancer cells population described by
system (1)–(3) is achieved. Hence,

lim
t→∞

C(t) = 0.

The latter implies asymptotic stability for all solutions C(t) to the plane C = 0. Then,
when conditions for the CML Cancer Cells Eradication Theorem are fulfilled, the CML-
Immunotherapy system (1)–(3) is simplified as follows

Ṫn = sn − dnTn,

Ṫe = φi − deTe,

which is an uncoupled linear system with a unique equilibrium point (T∗n , T∗e ) =
(sn/dn, φi/de) that is globally asymptotically stable (see Theorem 4.5 by Khalil in [29]
at Section 4.3). Additionally, when conditions for the CML Cancer Cells Eradication Theo-
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rem are fulfilled, then all solutions of system (1)–(3) with nonnegative initial conditions
will go to the tumour-free equilibrium point

(T∗n , T∗e , C∗) =
(

sn

dn
,

φi
de

, 0
)

, (8)

and we come to the following result.

Theorem 5. Global Stability. If condition (7) holds, then the tumour-free equilibrium point (8) of
the CML-Immunotherapy system (1)–(3) is globally asymptotically stable in R3

+,0.

5. Discussion and In Silico Experimentation

In this section, we discuss and illustrate our mathematical results concerning the
CML cancer cells eradication by an immunotherapy treatment applied as a control strategy.
In silico experimentations were performed to formulate an administration protocol that
eradicates the CML cancer cells population when considering three different initial non-
solid tumour sizes, initial conditions C(0) are set as ratios of the maximum carrying
capacity, Cmax; a fast-growing tumor rate (rc); a persistence leukemia cells population with
a low death rate (dc); and an enhanced elimination rate of CML cells by the effector T cells
(γc) due to the therapy. Table 1 shows the specific value used for each parameter in all
numerical simulations.

Now, let us discuss conditions for the Localizing Domain Theorem, i.e., (4)–(6). Ac-
cording to the values of Table 1, these conditions hold, which implies that all compact
invariant sets of the CML-Immunotherapy system (1)–(3) are located either inside or at the
boundaries of the domain KΓ. Hence, all nondivergent solutions are bounded from above
and below. Further, it is important to notice that these conditions were derived from func-
tion h4. Therefore, in the case these conditions are not fulfilled, both naive T cells [Tn(t)]
and CML cancer cells [C(t)] will still have their corresponding lower and upper bounds.
Additionally, existence of the lower bound for the effector T cells [Te(t)] population is not
related to conditions (4)–(6), and one can still establish sufficient conditions to ensure the
CML cancer cells eradication by means of the immunotherapy treatment application.

Below, by substituting values from Table 1 into condition (7) (φi > φinf) we get the
following

φinf =
(rc ln Cmax − dc)

(
de + γeCmaxe−dc/rc

)
γc

= 15,244 cells/µL,

and, one may set the final cellular immunotherapy treatment concentration as

φi = 1.01× φinf = 15,396 cells/µL,

which is sufficient to ensure the CML cancer cells eradication and global stability of the
tumour-free equilibrium point (8). The latter is written numerically as follows

(T∗n , T∗e , C∗) =
(

sn

dn
,

φi
de

, 0
)
= (1080, 256,596, 0)× cells/µL.

Dynamics of the CML-Immunotherapy system (1)–(3) concerning results discussed
above are illustrated in Figure 1. Initial conditions for both naive T cells and effector T
cells are set to Tn(0) = 1510 cells/µL and Te(0) = 20 cells/µL, respectively, as indicated by
Moore and Li [16]; these values are applied to the remaining numerical simulations shown
in this section. For the leukemia cancer cells concentration we used the maximum carrying
capacity as initial condition [C(0) = Cmax] in order to consider the worst-case scenario of
tumour burden.
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Figure 1. When the cellular immunotherapy treatment parameter fulfills condition (7), i.e., φi = 1.01× φinf, all solu-
tions for the CML-Immunotherapy system (1)–(3) go to the tumour-free equilibrium point (8) given by (T∗n , T∗e , C∗) =

(sn/dn, φi/de, 0). For this particular case, we set the initial tumour density as C(0) = Cmax = 3× 105 cells/µL, as we
consider the concentration of leukemia cancer cells at the maximum carrying capacity. Different initial conditions will yield
the same result: CML cancer cells eradication and asymptotic stability of the tumour-free equilibrium point.

Results shown in Figure 1 are achieved when immunotherapy treatment is constantly
applied, i.e., φi = 1.01× φinf ∀ t ≥ 0 as it is shown in the upper panel. The application of
the treatment was considered as a constant for the sake of simplicity in the mathematical
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analysis as has been previously discussed through the years by many authors when
modelling the role of immunotherapy in boosting the immune system response to cancer
growth, see [9,12,13,30–35]. Nonetheless, two issues arise in this case, it is not biologically
feasible to constantly applied an immunotherapy treatment to a cancer patient and it
is evident that the solution of the effector T cells Te(t) goes to the value T∗e = φi/de =
256,596 cells/µL (a concentration close to that of the the maximum carrying capacity of
the CML cancer cells) which could produce adverse events in the patient’s health [36].
Hence, in order to avoid the latter, numerous authors have proposed different treatment
strategies to apply therapies such as chemotherapy, radiotherapy and immunotherapy
by time intervals or in the form of periodic oscillations, one can see [14,37–44]. Thus, our
hypothesis is as follows: Daily applications for a finite period of time of the immunotherapy
treatment will decrease the CML cancer cells concentration below a critical threshold under
which it is possible to ensure the complete eradication of the disease.

In order to apply the treatment for short intervals of time every day we decided to
explore a pulse train with asymmetrical waves and a fixed amplitude of φi = 1.01× φinf.
By performing an in silico experimentation process by means of several numerical simula-
tions where duty cycles were increased by 15 min in each iteration we were able to conclude
that daily applications of the cellular immunotherapy treatment with at least a duty cy-
cle of 45 min/day (3.1%) were needed to achieve complete CML cancer cells eradication
when considering the maximum carrying capacity as initial condition [C(0) = Cmax]. This
strategy is illustrated below in Figure 2, one can see the immunotherapy administration
protocol in 1 day in the upper panel (time unit is given in hours), and 1 week in the lower
panel (time unit is given in days).
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Figure 2. Administration protocol for the immunotherapy treatment. Characteristics are as follows: amplitude of
φi = 15,396 cells/µL and a duty cycle of 45 min/day. Complete CML cancer cells eradication was achieved by means
of this strategy for three considered initial non-solid tumour sizes given by C(0) = 1

3 Cmax, C(0) = 2
3 Cmax, and C(0) = Cmax.

The immunotherapy administration protocol from Figure 2 is applied when consider-
ing three different initial tumour concentrations, C(0) = Cmax in Figure 3, C(0) = 2

3 Cmax

in Figure 4, and C(0) = 1
3 Cmax in Figure 5. Solutions to Equations (1)–(3) as well as the
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treatment (φi) are illustrated in each case. It is evident that as the initial tumour density
increases, then the immunotherapy treatment should be applied for a longer period of time.
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Figure 3. Case 1: The initial tumour size for the CML cancer cells is set as C(0) = Cmax = 3× 105 cells/µL. The cellular
immunotherapy φi had to be applied 159.4 days to achieve complete leukemia cancer cells eradication.
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Figure 4. Case 2: The initial tumour size for the CML cancer cells is set as C(0) = 2
3 Cmax = 2× 105 cells/µL. The cellular

immunotherapy φi had to be applied 148.2 days to achieve complete leukemia cancer cells eradication.
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Figure 5. Case 3: The initial tumour size for the CML cancer cells is set as C(0) = 1
3 Cmax = 1× 105 cells/µL. The cellular

immunotherapy φi had to be applied 76.4 days to achieve complete leukemia cancer cells eradication.

Numerical simulations were set to stop the immunotherapy application when can-
cer cells go below the positive finite critical value of one cancer cell, as discussed in
Assumption 1. Hence, both the treatment and the CML cancer cells population were set
to zero, i.e., φi = 0 and C(t) = 0, when C(t) < 1. After the CML cancer cells eradication,
one can see that solutions to both naive T cells and effector T cells go to their respective
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equilibrium point when φi = 0. The latter is given by T∗n = sn/dn = 1080 cells/µL
and T∗e = φi/de = 0. Further, it is important to notice that the final dynamics of the
naive T cells concentration is the average value expected in healthy individuals in steady
state [16,45–47]. Concerning the maximum concentration of effector T cells, results are as
follows: 367 cells/µL in Figure 3, 455 cells/µL in Figure 4, and 371 cells/µL in Figure 5.
These values are significantly lower than the 256,596 cells/µL obtained in Figure 1 when
the immunotherapy treatment is applied constantly over time.

Now, results concerning the CML cancer cells [C(t)] populations for each initial
concentration are summarized in Figure 6. These dynamics are illustrated in both linear
and logarithmic scales in the upper and lower panels, respectively. In the upper panel one
can see the threshold for tumour remission (CRe = 22,500 cells/µL) and the tumour-free
plane (C∗ = 0). Whilst, in the lower panel, both thresholds for tumor remission and tumor
eradication (CTh = 1 cell/µL) are shown. Times when CML cancer cells go below the
tumour eradication threshold are as follows: 76.4 days for C1(t) (initial concentration
C(0) = 1

3 Cmax); 148.2 days for C2(t) (initial concentration C(0) = 2
3 Cmax); and 159.4 days

for C3(t) (initial concentration C(0) = Cmax). These results are also indicated in Figures 3–5.
When condition (7) is fulfilled, then the CML cancer cells population will decrease

as it is stated by the CML Cancer Cells Eradication Theorem. Therefore, it is necessary to
note that immediately after stopping treatment in each iteration, then the leukemia cancer
cells begin to grow again, which implies that is imperative for the patient to continue with
the daily applications of the treatment until the cancer cells concentration goes below the
established threshold (CTh) of one cancer cell.

We expect our work will benefit a leukemia patient in the sense that the methodol-
ogy described in this paper could be applied to solve the optimal ACT dosing problem
for each particular case in any scenario that may potentially be described by the CML-
Immunotherapy system (1)–(3). The mathematical analysis indicates that only a subset
of parameters influence the amount of treatment concentration that should ultimately be
applied to the patient in order to fulfill condition (7) to achieve CML Cancer Cells Eradi-
cation from Theorem 4 and, it should be noted that this expression is written as a simple
algebraic combination of this subset of parameters. With this condition, an administration
protocol that can be individualized for each patient was designed and, as Moore and Li
concluded in their research [16], this kind of control strategy may increase the time-period
in which a cancer patient remains healthy. Additionally, the cost of the treatment could
be constrained to the severity of the disease in each patient, as immunotherapy is often
very expensive [48]. We aim to further extend our work to design a control strategy for the
application of combined cancer therapies such as chemoimmunotherapy and, if possible,
discussed how these strategies could be useful in avoiding cancer cell resistance to the
prolonged administration of these treatments.
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Figure 6. Dynamics of solutions of the CML cancer cells population [C(t)] when considering three initial tumour
sizes: C1(t) with C(0) = 1

3 Cmax = 1 × 105 cells/µL, C2(t) with C(0) = 2
3 Cmax = 2 × 105 cells/µL, and C3(t) with

C(0) = Cmax = 3× 105 cells/µL. Regardless of the initial tumour concentration, complete leukemia cells eradication is
achieved in all cases. The immunotherapy administration protocol from Figure 2 is applied to each case, i.e., daily applica-
tions of the treatment with a duty cycle of 45 min/day (3.1%) and a fixed amplitude of φi = 1.01× φinf = 15,396 cells/µL.
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6. Conclusions

Cancer dynamics result in a complex set of events all happening at the same time in
the tumor site. These events may trigger cancer cells to evolve with diverse mechanisms
that allow them to escape immune response and invade other tissues and organs in the
human body. Adaptive cellular immunotherapy is a type of treatment that can help the
immune system to better respond against cancer growth. However, open questions still
remain, e.g., What is the right dose of the treatment to be applied? and How often should
the treatment be applied? Mathematical modelling and nonlinear systems theory combined
with in silico experimentation may help us to provide scientifically formulated answers to
these important questions related to cancer evolution.

Moore and Li [16] provided some insights concerning local stability of the two main
equilibrium points of their system, i.e., the healthy state and one with tumor burden.
They determined, under certain conditions on the parameters, that both could be locally
asymptotically stable. Further, their numerical analysis regarding relationships between
parameters and the dynamics of solutions C(t) indicate that both the growth rate (rc) and
natural death rate (dc) of CML cancer cells are the most important parameters to control
tumour growth. Nonetheless, conditions for local stability may not always be fulfilled,
at least not without a proper treatment that can influence the values of the parameters.
However, these values are expected to be different for each individual case. Authors
conclude their work by providing recommendations on how the model may be applied
to include immune system-boosting treatments and to solve the optimal drug dosing
problem. Hence, in this paper, we incorporate the adaptive cellular therapy treatment and
demonstrate how to apply the LCIS method and Lyapunov’s stability theory to derive
sufficient conditions to ensure the complete eradication of the CML cancer cells population,
i.e., global asymptotic stability conditions. Further, extensive in silico experimentations
allowed us to formulate a control strategy for the administration of the immunotherapy
treatment in diverse scenarios.

Numerical simulations allow us to understand and explore diverse scenarios which
are illustrated in Figures 3–5. We formulate these cases in terms of the initial tumor
concentration, initial conditions are set as ratios of Cmax. This parameter describes the
maximum carrying capacity of the CML cancer cells in the circulatory blood system,
as it is shown in Table 1. Hence, we decided to explore the dynamics between cancer
growth, the immune response and the effect of the cellular immunotherapy treatment
for three initial tumour concentration given as follows: C1(0) = 1

3 Cmax, C2(0) = 2
3 Cmax,

and C3(0) = Cmax. Results concerning the final dynamics of the leukemia cancer cells
in each case are summarized in Figure 6. Further, one can see two important numerical
values concerning cancer cells, the first is given by the threshold for tumor remission
on CML (CRe = 22,500 cells/µL) , and the second by the threshold for complete tumor
eradication (CTh = 1 cell/µL). The latter is discussed in Assumption 1 as we consider that
there is no biological meaning for any numerical value describing fewer than one cancer
cell. Further, this assumption allows us to establish conditions to ensure both CML cancer
cells eradication and global stability of the tumor-free equilibrium point.

Mathematical and in silico results shown in this paper allow us to conclude that it
possible to formulate a control strategy for the cellular immunotherapy administration that
can fully eradicate the CML cancer cells population described by system (1)–(3). Numerical
simulations illustrate that the total iterations of the treatment application are directly related
to the initial tumor concentration in order to decrease it below the final critical value of one
cancer cell. The amplitude of the impulse on which the treatment is applied is given by
an arithmetical combination of the parameters of the system, as it is written in condition
(7), i.e., φi > φinf = (rc ln Cmax − dc)

(
de + γeCmaxe−dc/rc

)
/γc. In Table 1 one can see the

range of values for parameters of the CML-Immunotherapy mathematical model. Hence,
the latter implies that therapy doses could be personalized for an individual patient as
parameters may have different values for each particular case.
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Appendix A. Existence and Uniqueness

In this section we discuss the local existence and uniqueness concerning solutions
to the CML-Immunotherapy system (1)–(3). First, for the sake of simplicity, let us define
the following

f1 = sn − dnTn − kn
C

C + η
Tn,

f2 = αnkn
C

C + η
Tn + αe

C
C + η

Te − deTe − γeCTe + φi,

f3 = rcC ln
(

Cmax

C

)
− dcC− γcCTe,

with fi(t, x), i = 1, . . . , 3 and x = [Tn, Te, C]T . Now, the Jacobian matrix [∂ f /∂x](t, x) of
(1)–(3) is computed as indicated below

J =


−dn − kn

C
C + η

0 −kn
η

(C + η)2 Tn

αnkn
C

C + η
αe

C
C + η

− de − γeC αnkn
η

(C + η)2 Tn + αe
η

(C + η)2 Te − γeTe

0 −γcC rc ln
Cmax

C
− rc − dc − γcTe

,

and it is evident that both fi(t, x) and [∂ f /∂x](t, x) are continuous and exist on the domain
[t0, t1]× KΓ0, with KΓ0 = KΓ − {C = 0} and [t0, t1] ∈ [t0, ∞). It is important to note that
the value C = 0 should not be considered as initial condition due to the indetermination of
the logarithmic term. Further, C(0) = 0 does not represent a biologically meaningful initial
scenario concerning any type of cancer evolution.

Now, the latter implies that fi(t, x) is locally Lipschitz in x on [t0, t1] × KΓ0 where
KΓ0 ⊂ R3

+,0, see Lemma 3.2 by Khalil in [29] at Section 3.1. Further, by conditions of
the Localizing Domain Theorem each element of J is bounded. Therefore, we conclude
the following.
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Theorem A1. Local existence and uniqueness. There is a Lipschitz constant L ≥ 0 such that
‖[∂ f /∂x](t, x)‖ ≤ L on [t0, t1]× KΓ0. Then, fi(t, x) satisfies the Lipschitz condition

‖ f (t, x1)− f (t, x2)‖ ≤ L‖x1 − x2‖,

and there exists some ρ > 0 such that the CML-Immunotherapy system (1)–(3), given as ẋ =
fi(t, x) with x(t0) = x0, has a unique solution over [t0, t0 + ρ].

References
1. Weinberg, R.A. The Biology of Cancer, 3rd ed.; Garland Science: New York, NY, USA, 2013.
2. Ruddon, R.W. Cancer Biology, 4th ed.; Oxford University Press: Oxford, UK, 2007.
3. Cancer Today. 2020. Available online: https://gco.iarc.fr/today/online-analysis-table (accessed on 12 March 2021).
4. Eden, R.E.; Coviello, J.M. Chronic myelogenous leukemia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL,

USA, 2020.
5. National Cancer Institute. Chronic Myelogenous Leukemia. 2020. Available online: https://www.cancer.gov/types/leukemia/

patient/cml-treatment-pdq (accessed on 12 March 2021).
6. National Cancer Institute. Clinical Trials. 2021. Available online: https://www.cancer.gov/about-cancer/treatment/clinical-

trials/search/r?loc=0&rl=1&t=C3173 (accessed on 12 March 2021).
7. Swan, G.W. Role of optimal control theory in cancer chemotherapy. Math. Biosci. 1990, 101, 237–284. [CrossRef]
8. Swierniak, A.; Kimmel, M.; Smieja, J. Mathematical modeling as a tool for planning anticancer therapy. Eur. J. Pharmacol. 2009,

625, 108–121. [CrossRef] [PubMed]
9. Talkington, A.; Dantoin, C.; Durrett, R. Ordinary differential equation models for adoptive immunotherapy. Bull. Math. Biol.

2018, 80, 1059–1083. [CrossRef] [PubMed]
10. Phan, T.; Crook, S.M.; Bryce, A.H.; Maley, C.C.; Kostelich, E.J.; Kuang, Y. Mathematical modeling of prostate cancer and clinical

application. Appl. Sci. 2020, 10, 2721. [CrossRef]
11. Colquitt, R.B.; Colquhoun, D.A.; Thiele, R.H. In silico modelling of physiologic systems. Best Pract. Res. Clin. Anaesthesiol. 2011,

25, 499–510. [CrossRef]
12. De Pillis, L.G.; Gu, W.; Radunskaya, A.E. Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and

biological interpretations. J. Theor. Biol. 2006, 238, 841–862. [CrossRef]
13. De Pillis, L.; Renee Fister, K.; Gu, W.; Collins, C.; Daub, M.; Gross, D.; Moore, J.; Preskill, B. Mathematical model creation for

cancer chemo-immunotherapy. Comput. Math. Methods Med. 2009, 10, 165–184. [CrossRef]
14. Kronik, N.; Kogan, Y.; Elishmereni, M.; Halevi-Tobias, K.; Vuk-Pavlović, S.; Agur, Z. Predicting outcomes of prostate cancer
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