Next Article in Journal
Risk of Complications in Patients Undergoing Completion Thyroidectomy after Hemithyroidectomy for Thyroid Nodule with Indeterminate Cytology: An Italian Multicentre Retrospective Study
Next Article in Special Issue
Effectiveness of Geriatric Assessment-Driven Interventions on Survival and Functional and Nutritional Status in Older Patients with Head and Neck Cancer: A Randomized Controlled Trial (EGeSOR)
Previous Article in Journal
Local and Regional Therapies for Hepatocellular Carcinoma and Future Combinations
Previous Article in Special Issue
The Prognostic Value of Eight Comorbidity Indices in Older Patients with Cancer: The ELCAPA Cohort Study
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Oncological Treatment-Related Fatigue in Oncogeriatrics: A Scoping Review

1
Hospices Civils de Lyon, Geriatrics Department, Hôpital Lyon Sud, 69230 Saint Genis-Laval, France
2
Research on Healthcare Professionals and Performance RESHAPE, Inserm U1290, Lyon 1 University, 69008 Lyon, France
3
Geriatric Coordination Unit for Geriatric Oncology (UCOG) PACA Est CHU de Nice, 06000 Nice, France
4
FHU OncoAge, 06000 Nice, France
5
Faculty of Medicine, University of Nice Sofia Antilpolis, 06000 Nice, France
6
CarMeN Laboratory, INSERM U.1060/Université Lyon1/INRA U. 1397/INSA Lyon/Hospices Civils Lyon, Bâtiment CENS-ELI 2D, Hôpital Lyon Sud Secteur 2, 69310 Pierre-Bénite, France
7
UCOGIR—Auvergne-Rhône-Alpes Ouest–Guyane, Hôpital Lyon Sud, 69495 Pierre-Bénite, France
8
Faculty of Medicine and Maieutics Charles Mérieux, Lyon 1 University, 69310 Pierre-Bénite, France
*
Author to whom correspondence should be addressed.
Submission received: 22 March 2022 / Revised: 9 May 2022 / Accepted: 11 May 2022 / Published: 17 May 2022

Abstract

:

Simple Summary

Fatigue in older patients has multiple etiologies, as this symptom may be cancer-related, treatment-related, age-related, or part of frailty syndrome. Physicians need to identify this symptom and understand its risk factors but also evaluate the risk/benefit ratio of cancer treatments considering the risk of impairing the patient’s quality of life. This scoping review was aimed to present the level of information currently available on any-grade fatigue and grade 3 or more fatigue for each cancer treatment regimen, either in general or in older populations, for the most prevalent tumors.

Abstract

Fatigue is a highly prevalent symptom in both cancer patients and the older population, and it contributes to quality-of-life impairment. Cancer treatment-related fatigue should thus be included in the risk/benefit assessment when introducing any treatment, but tools are lacking to a priori estimate such risk. This scoping review was designed to report the current evidence regarding the frequency of fatigue for the different treatment regimens proposed for the main cancer indications, with a specific focus on age-specific data, for the following tumors: breast, ovary, prostate, urothelium, colon, lung and lymphoma. Fatigue was most frequently reported using the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) versions 3 to 5. A total of 324 regimens were analyzed; data on fatigue were available for 217 (67%) of them, and data specific to older patients were available for 35 (11%) of them; recent pivotal trials have generally reported more fatigue grades than older studies, illustrating increasing concern over time. This scoping review presents an easy-to-understand summary that is expected to provide helpful information for shared decisions with patients regarding the anticipation and prevention of fatigue during each cancer treatment.

1. Introduction

Fatigue is defined as a persistent sense of physical, emotional, and/or cognitive tiredness or exhaustion that is not proportional to recent activity and that interferes with usual functioning [1]. It is highly prevalent both in older people, in whom it is strongly associated with negative health-related events [2], and during cancer and its treatment [3]. The understanding of fatigue is hampered by several issues, including the difficulty for objective evaluation [4] and the variability in the methods used to collect relevant data on fatigue (note the coexistence of the “fatigue” or “fatigability”, “asthenia”, “weakness”, “lethargy” terms and different definitions of this concept) that has led to a wide range of estimates of its frequency [5,6], as well as its complex pathophysiological mechanisms [7]. Fatigue in older patients with cancer is multicausal (Figure 1); it may be interpreted as a primary or secondary cancer-related fatigue and may be related to one (or more) of several comorbidities and comedications, but it may also be related to emotional disorders; it may also be considered to be a syndrome by itself—an age-related nosological entity called “idiopathic fatigue” according to the fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [8]; finally, it is one of the pillars of the frailty phenotype [9]. Consequently, 70 to 80% of oncogeriatric patients questioned specifically on the topic report fatigue, and this has a severe impact on the quality of life [10,11,12]. However, fatigue has historically been seldom presented as an expected side effect of cancer treatments or included in the assessment of the risk/benefit ratio during cancer management.
With the development of targeted therapies and their related long-lasting fatigue, the consideration of fatigue has changed; during the last two decades, fatigue has been demonstrated as the most prevalent symptom in oncology [7,13], affecting both activities of daily living (ADL) and social life, interfering with thymia and cognition, predicting prognosis [14], and (above all) acting as a powerful differentiation criterion for therapeutics that has led to a change of mindset, illustrated by the increasing focus on patient-reported outcomes, quality of life, and shared decisions [15].
A significant step was taken in 2009 with the release of fourth version of the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) that standardized fatigue with the following grading [16]: (1). Fatigue relieved by rest; (2). fatigue not relieved by rest, limiting instrumental ADL (IADL); (3). fatigue not relieved by rest, limiting self-care ADL; and no grade 4 when the third version [17] was difficult to interpret/to quote. Future editions changed the grading to: (1). Mild fatigue over baseline; (2). moderate or causing difficulty performing some ADL; (3). severe fatigue interfering with ADL; and (4). disabling. It should be noted that the release of the fifth version in 2017 did not modify this scale [18], which has integrated the standardization of ADL and IADL scoring in parallel with its everyday use in oncogeriatric care.
Moreover, much work has been undertaken to decipher fatigue and its modifiable risk factors. Anemia and non-anemic iron deficiency contribute to fatigue [19,20] and fatigability [21] and accordingly should be tracked; malnutrition is associated with fatigue and decreased quality of life, cancer distress and cognitive impairment contribute to the psychosomatic signs of fatigue, and sedentary lifestyle and sarcopenia contribute to physical deconditioning, in turn leading to fatigability and fatigue. All these modifiable risk factors have led to the development of standardized work-up and the development of prehabilitation strategies, focusing on limiting and postponing the symptoms of fatigue.
Is this context, it appeared necessary to report the current level of evidence on the frequency of fatigue occurrence for the different treatment regimens proposed for the main cancer indications, with a specific focus on data specific to older adults, as has been done previously for other frequent treatment-related adverse events such as febrile neutropenia [22] and emesis [23].

2. Materials and Methods

To be included in the review, studies needed to focus on the treatment regimen currently proposed for the most frequent neoplasias (breast, ovary, non-Hodgkin’s lymphoma, prostate, lung, colon, and urothelial), reporting or not fatigue frequency of occurrence, with data specific to older adults present or absent. The inclusion criteria were that there were original studies that were published in the English or French language. To identify relevant studies, PubMed/MEDLINE was searched until December 2021. The search strategy used a combination of MeSH terms (including “fatigue” and “asthenia”), as well as “lethargy” and “weakness”. Additional manuscripts, not retrieved using electronic search strategy, were also included in the eligibility screening process by the authors. The final search results were exported into ZOTERO v6.0.4 (Digital Scholar, Vienna, VA, USA), and duplicates were removed. Titles/abstracts were independently evaluated for eligibility by two reviewers (either L.A. and C.F. or G.A. and C.F.). Any disagreement between reviewers was resolved through discussion. The reviewers assessed the full texts of articles retained after the title/abstract screening. Considering the exclusion of scoping reviews from PROSPERO registration [9], this analysis was not registered on any registration platform.
In the first step of data analysis, reviewers examined the presence or not of information on fatigue and data specific to older adults; treatment protocols were semi-quantitatively classified according to the frequency of grade 3 fatigue as defined by the CTCAE classification.

3. Results

A total of 324 regimens were included; data on fatigue were available for 217 (67%) of these, and fatigue data specific to older patients were available for 35 (11%; Figure 2). There were 24 breast cancer adjuvant treatment regimens, of which 20 (83%) reported data on fatigue (F) and 5 (21%) reported data specific to older patients (DSO); 48 breast cancer metastatic treatment regimens (F: 43 [93%]; DSO: 4 [9%]); 31 ovarian cancer treatment regimens (F: 20 [65%]; DSO: 8 [26%]); 26 prostate cancer treatment regimens (F: 24 [92%]; DSO: 1 [4%]); 10 urothelial cancer treatment regimens (F: 7 [70%]; DSO: 0 [0%]); 44 lung cancer treatment regimens (F: 29 [66%]; DSO: 3 [7%]); 5 colorectal cancer adjuvant treatment regimens (F: 5 [100%]; DSO: 0 [0%]); 52 colorectal cancer metastatic treatment regimens (F: 49 [94%]; DSO: 11 [21%]); 30 non-Hodgkin’s diffuse large B cell lymphoma treatment regimens (F: 16 [53%]; DSO: 3 [10%]); and 5 follicular lymphoma treatment regimens (F: 4 [80%]; DSO: 0 [0%]).

3.1. Fatigue during Breast Cancer Treatment

Fatigue during and after localized breast cancer treatment has been a large matter of debate. In a meta-analysis published in 2016, Abrahams et al. identified 27 studies and a total of 12,237 patients treated in trials evaluating the frequency of fatigue occurrence and risk factors of severe fatigue in breast cancer survivors. The tools used for fatigue assessment were highly heterogeneous, sometimes with several different thresholds for the same tool. The overall frequency of fatigue was 27% with a wide range of values (7 to 55%) and a large decrease in this frequency in the first 6 months after treatment completion. The strongest risk factor for severe fatigue was an association of surgery, radiotherapy, chemotherapy and hormonal treatment (RR: 1.38; 95% CI: 1.15–1.66); this was followed by the association of surgery, radiotherapy and chemotherapy (RR: 1.18; 95% CI: 1.05–1.33); surgery and radiotherapy (RR: 0.87; 95% CI: 0.78–0.96); and surgery only (RR: 0.83; 95% CI: 0.70–0.98) [5]. In another study reported by Schmidt et al., the determinants and correlates of physical, affective and cognitive fatigue assessed with the 20-item Fatigue Assessment Questionnaire included obesity (physical), poor social support and worries about the future (affective), poor sleep quality and previous use of psychopharmaceuticals (physical, affective, and cognitive) [24]. In addition, the currently ongoing CANTO longitudinal cohort has led to the validation of a predictive model of severe fatigue; severe fatigue was defined as a fatigue score ≥40% according to the European Organisation for Research and Treatment of Cancer quality-of-life core questionnaire with 30 items (EORTC QLQ-C30). In this model, retained risk factors for severe fatigue at 2 years after diagnosis were pretreatment fatigue, younger age, higher body mass index, current smoking behavior, worse anxiety, insomnia, and pain at diagnosis; hormonal treatment was found to be a risk factor for severe fatigue 4 years after diagnosis [25].
In the adjuvant setting, 34 regimens were identified; data on fatigue (any-grade and/or grade 3 or more) were reported for 25 of these, and data specific to older patients were reported for 3; 32 concerned chemotherapies with or without targeted treatment regimens, and 2 concerned adjuvant hormonal treatments (Table 1). In the chemotherapy with or without targeted treatment subgroup, any-grade fatigue rates (when reported) were high, ranging from 49 to 77% for the AC regimen (adriamycine and cyclophosphamide), to 81% for the TAC regimen (docetaxel, adriamycine, and cyclophosphamide). When considering grade 3 or more fatigue, data were more frequently available than any-grade fatigue; there were very low rates (1–3%) for adjuvant capecitabine after neoadjuvant chemotherapy [26], docetaxel cyclophosphamide [27] and paclitaxel trastuzumab [28], but rates reached more than 20% for the AC → docetaxel sequential regimen (22%) and dose-dense adriamycine docetaxel (ddAT; 28%). Reinisch et al. evaluated the impact of age on the tolerance of three regimens, A(E)C-[T/P], ddAT and TAC; there was a trend towards more frequent grade 3 or more fatigue in older subgroups [29]. When considering hormonal treatment and in contrast to the previously described analyses on chronic fatigue in breast cancer survivors and the impact of hormonal treatments on such chronic fatigue [5], the reported rates of any-grade fatigue and grade 3 or above fatigue were overall low (respectively, from 3 to 18% and 1% for tamoxifen [30,31]; from 1 to 16% and 0% for anastrozole [31,32]; 30% and 1% for letrozole [33] with a higher frequency of any-grade fatigue [45%] in study conducted specifically on older patients [34]; and 24% and 1% for exemestane [35]).
In the metastatic setting, 48 regimens were identified; data on fatigue (any-grade and/or grade 3 or more) were reported in all but 4 of them; 32 concerned chemotherapies with or without targeted treatment regimens or antibody–drug conjugates, 5 hormonal treatments alone, 9 hormonal treatments associated with targeted therapies and 2 targeted therapies only. In the chemotherapy with or without targeted treatment subgroup of regimens, any-grade fatigue rates (when reported) were highly variable, ranging from 10% for ixabepilone to up to 35 to 54% for eribulin and 60% for metronomic docetaxel capecitabine—two regimens proposed in late lines of treatments. Data were more frequently available for grade 3 or more fatigue than for any-grade fatigue; rates were very low (2%) for pertuzumab + trastuzumab + paclitaxel or nab-paclitaxel (PERUSE study [82]) and trastuzumab + docetaxel (CLEOPATRA study control arm [76]), but they reached more than 20% for 100 mg/m2 of docetaxel (15 to 24%) and gemcitabine vinorelbine (24%); in the metastatic context and according to the 5th advanced breast cancer conference guidelines, this highlights the need to favor monotherapy in such patients [101], and, when considering docetaxel, to prefer a 3w-75 mg/m2 schedule. For hormonal treatments alone, the rates of any-grade fatigue varied greatly between studies; “lethargy” was estimated to be 1% for anastrozole and 3% for tamoxifen in older reports [32], and it reached 16 and 18%, respectively, in more recent studies [31]; from 11 to 27% for letrozole [30,31,83,84]; from 22 to 26% for exemestane [31,85]; and from 31 to 44 % for fulvestrant [86,87,88,89,90]. A high number of these values were recently estimated, since such regimens were control arms of the recent studies on CDK4–CDK6 inhibitors. The rates of grade 3 or more fatigue with hormonal treatments alone were very low and probably close to any control population (0 to 3%). The addition of CDK4–CDK6 inhibitors is more frequently associated with any-grade and grade 3 or more fatigue. A similar impact was observed for the addition of everolimus to exemestane (23–50% any-grade fatigue compared to 22–26% with exemestane only and from 2 to 4% grade 3 or more fatigue compared to 0%) and for the addition of lapatinib to letrozole (21 compared to 17% any-grade fatigue and 2% compared to <1% grade 3 or more fatigue in the only comparative study [91]). Finally, the use of poly (ADP-ribose) polymerase inhibitors (PARPi) was associated with a higher frequency of any-grade and grade 3 or more fatigue compared to placebo in patients who had previously received several lines of treatment and in whom fatigue was frequent, including those in the placebo arm. Data specific to older patients were reported for 3/48 these regimens; the DOGMES study was a phase 2 study that evaluated the feasibility of pegylated liposomal doxorubicin in first-line metastatic breast cancer aged ≥70 years and reported a very high rate of any-grade and grade 3 or more fatigue (69% and 22%, respectively [66]); the BALLET subgroup analysis according to age (<70 years vs. ≥70 years old) of the exemestane–everolimus study found (non-comparative) higher rates of any-grade fatigue (69% vs. 61%, respectively) and a doubling of grade 3 or more fatigue (6% vs. 3%, respectively) [94]; finally, a recent pooled study of the PALOMA-1, -2 and -3 studies with a subgroup analysis on (selected) older patients (<65 years, 65–74 years, and ≥75 years) did not find any trend related to age except for a higher frequency of grade 3 or more fatigue ≥75 years [96].

3.2. Fatigue during Ovarian Cancer Treatments

In contrast to breast cancer, fatigue has been historically poorly evaluated during for ovarian cancer treatments, with the risk/benefit ratio of chemotherapy considered to be largely beneficial, at least as first-line treatment. Again, in contrast to breast cancer treatments, the impact of age on cancer treatments has been by far more explored. In addition, there is greater awareness of the management of targeted treatments in older patients with this disease that is shared by both clinicians and the pharmaceutical industry, which is well-illustrated by the publication in 2019 of a review paper of the Young International Society of Geriatric Oncology (SIOG) reporting several subgroup analyses of pivotal trials according to age; nevertheless, the authors highlighted that these populations remain selected and appealed for specific trials to be conducted in older patients [102].
Considering first-line chemotherapy, 17 different regimens were identified, including the maintenance regimens with bevacizumab with or without PARPi (Table 2). Data on any-grade fatigue were available for only eight of them, generally the most recent studies, and data for four regimens concerned the tolerance of maintenance treatments. Among these, the frequency of fatigue was generally high, between 35 and 63% for any-grade fatigue and between 1 and 5% for grade 3 or more fatigue, with high levels of remnant fatigue in control arms (any-grade and grade 3 or more fatigue in control arms of SOLO1 and PRIMA studies: 42% and 2%, respectively [103], and 30% and <1%, respectively [104]). Considering data specific to older patients, six regimens were evaluated, and all of these studies reported an important impact of age and frailty, since some of them were truly specific to older patients with a special interest for vulnerable populations [105,106] on cancer-related fatigue: any-grade fatigue ranged from 38% in the MITO-5 study reported by Pignata et al., who evaluated an older-specific regimen of carboplatin AUC2 and paclitaxel for 3 of 4 weeks [107], to 85% when the same regimen was evaluated in a population with a geriatric vulnerability score (GVS) of 3 or more [106].
Considering platinum-sensitive relapse, 10 regimens were included in the analysis, and data on fatigue were available in all but 2 of them. Any-grade fatigue varied from 28% to 62%, with higher rates in PARPi maintenance regimens (59% in the NOVA trial investigating niraparib maintenance [121], 62% in the SOLO2 trial investigating olaparib maintenance [120], and 69% in ARIEL3 trial investigating rucaparib maintenance [134]), in comparison to chemotherapy-only regimens (41%, 44%, and 37%, respectively, in the control arms of these trials) and targeted treatment-only regimens (39% and 40%, respectively, for the niraparib only and the niraparib + bevacizumab arms of the AVANOVA2 trial [124]). Grade 3 or more fatigue rates varied from 2% to 8%, with a higher (non-comparative) impact versus placebo reported with niraparib maintenance (8% vs. 1% in the placebo arm [121]) rucaparib maintenance (7% vs. 3%, respectively [134]), and olaparib maintenance (4% vs. 2%, respectively [120]).
Considering platinum-resistant relapse, eight regimens were identified; data on fatigue were reported in four of them and were highly variable between studies, both for any-grade fatigue (22–44% for pegylated liposomal doxorubicin, 31–46% for 3w-topotecan (5-day course), and 32% for w-topotecan) and for grade 3 or more fatigue (0–2% and 2–22% for 3-weekly [126,127] and weekly [128,129] topotecan regimens, respectively; 11% for gemcitabine [130]; and 1–6% for pegylated liposomal doxorubicin [117,130,131]). Of note, the addition of bevacizumab to chemotherapy in the AURELIA trial was associated with (non-comparative) lower levels of grade 3 or more fatigue than chemotherapy alone (4% vs. 10%, respectively [133]), illustrating the important role of tumor-related symptoms in complaints of fatigue. No data specific to older patients were reported in this setting.

3.3. Fatigue during Prostate Cancer Treatments

During the development of novel hormonal therapies for prostate cancer, first in the castration-resistant metastatic setting and then in the castration-sensitive metastatic setting and even in the non-metastatic castration-resistant setting, the preservation of quality of life, treatment-related cognitive symptoms, and fatigue were factors used to differentiate the tolerance of abiraterone acetate and other next-generation androgen receptor inhibitors (such as enzalutamide, apalutamide, and darolutamide; see Table 3). Another point is the putative differential impact of LHRH agonists versus LHRH antagonist (degarelix) on castration-related fatigue [135]. This is of importance because castration-related fatigue appears to have a high impact on the quality of life, as found in a 2013 systematic review published by Langston et al., who reported that the frequency of any fatigue and severe fatigue reached 74% and 14%, respectively [6].
In the non-metastatic castration-resistant setting, the addition of apalutamide to androgen-deprivation therapy (ADT) was found to more than double the respective rates of any-grade fatigue (33% vs. 14%) and grade 3 or more fatigue (3% vs. 1%) [136].
In the metastatic castration-sensitive setting, and with the exclusion of the meta-analysis conducted by Langston et al. [6] who did not use the CTCAE grading system, the frequency of any-grade fatigue associated with degarelix was 3% (arm with 240 mg at induction/80 mg at maintenance) vs. 6% for leuprolide in a 12-month randomized study [135]. In the control arms of more recent studies (LATITUDE, STAMPEDE, CHAARTED, TITAN, and SPARTAN), however, any-grade and grade 3 or more fatigue ranged from 14 to 20% and from <1 to 4%, respectively [136,137,138,139,140,141]. Concerning the impact of next-generation antiandrogens, abiraterone acetate (an androgen synthesis inhibitor) weakly impacted fatigue rates versus ADT only; the rates of any-grade and grade 3 or more fatigue were, respectively, 14% vs. 13% and 2% vs. 2% [137,138]. Conversely, next-generation androgen receptor inhibitors induced an increase in any-grade and grade 3 or more fatigue by 4% and 1 to 4%, respectively; for enzalutamide [139,140]; and from 5 to 15 and <1 to 1%, respectively, for apalutamide [136,141]. Finally, the addition of docetaxel 75 mg/m2/3w led to significantly higher frequency of any-grade fatigue from 20% to 74% and grade 3 or more fatigue from 1–4% to 4–7% [145,146].
In the metastatic castration-resistant setting, the first indication in which next-generation antiandrogens were historically developed, abiraterone acetate poorly impacted fatigue rates compared to ADT only, as in the castration-sensitive setting, but the basal rates were probably due to the cancer itself: any-grade fatigue rates reached 44% (vs. 43%) after docetaxel (COU-AA-301 study) and 39% (vs. 34%) in chemo-naive patients (COU-AA-302 study) [147,149]. Conversely, enzalutamide induced an increase in any-grade fatigue by 10% (36% vs. 26%) in chemo-naïve patients [153] and by 5% (34% vs. 29%) after docetaxel [151], with a weak impact on grade 3 or more fatigue rates in both settings [151,153]. Docetaxel, and to a lesser extent cabazitaxel, regimens induced high levels of any-grade and grade 3 or more fatigue. Bi-weekly and weekly docetaxel regimens did not seem to significantly reduce the frequency of fatigue, as any-grade and grade 3 or more, respectively, reached 53% and 5% of patients under the standard 3-weekly regimen [154], 49% and 5% of patients under the weekly regimen [154], and 65% and 3% of the cycles under the bi-weekly regimen [155]. The frequency of any-grade fatigue was lower with cabazitaxel (37%), even at its higher dose (25 mg/m2), but the frequency of grade 3 or more was the same (5%) [156]; surprisingly, the study comparing a 20 mg/m2 regimen to a 25 mg/m2 regimen did not evaluate fatigue as a significant adverse event [157]. Under Radium 223 chloride, the frequency of any-grade fatigue was strictly the same as in the control arm (24%) and the frequency of grade 3 or more fatigue was even lower (3% vs. 6%, respectively) [158]. Olaparib treatment induced higher rates of any-grade fatigue than the physician’s choice of enzalutamide or abiraterone (control) (41% vs. 32%, respectively) but lower rates of grade 3 or more (3% vs. 5%, respectively) [159].

3.4. Fatigue during Urothelial Cancer Treatments

When considering urothelial cancers, data on fatigue occurrence under standard treatment were sparse (Table 3). Among first-line treatments, the classical MVAC induced a very high rate of grade 3 or more fatigue (24%), far higher than the paclitaxel 225 mg/m2/carboplatin AUC6 regimen (10%) [160], but no data were reported on high-dose intensity MVAC, cisplatin–gemcitabine and carboplatin–gemcitabine regimens; avelumab maintenance induced an increase in any-grade fatigue by 11% and in grade 3 or more by 1% compared to the control (placebo) arm [164]. In the second line, contrariwise, pembrolizumab monotherapy was associated with a decreased rate of any-grade and grade 3 or more fatigue compared to the control (chemotherapy) arm (14% vs. 28% and 1% vs. 4%, respectively) [166]; vinflunine was associated with a high prevalence of any-grade fatigue that was, however, lower than in the control arm (50% vs. 61%, respectively), illustrating the high impact of tumor-related fatigue [165]. In the third line, enfortumab vedotin increased any-grade fatigue by 8% and grade 3 or more fatigue by 2% compared to the control (chemotherapy) arm [168].

3.5. Fatigue during Colorectal Cancer Treatments

Contrary to other tumor models, fatigue has been assessed in studies investigating colorectal cancer for many years in both adjuvant and metastatic settings (Table 4). In the adjuvant setting, data on any-grade and grade 3 or more fatigue were available for the 5 currently used regimens; in the metastatic setting, they were available for all but one of the 35 regimens reported, and data specific to older adults were available for 8 of the latter. In the adjuvant setting, recent studies from the International Duration Evaluation of Adjuvant Chemotherapy (IDEA) collaboration have shed light on the high impact of chemotherapy duration on cumulative adverse events, including fatigue: the SCOT, TOSCA and IDEA studies reported higher rates of both any-grade fatigue (39 to 90% vs. 28 to 86%) of grade 3 or more fatigue (4 to 8% vs. 1 to 8%) in 6 vs. 3 arms of treatment, respectively [169,170,171]. In the MOSAIC adjuvant pivotal study, any-grade fatigue reached 63% in the FOLFOX arm compared to 25% in the 5-FU/leucovorin arm, demonstrating a high impact of the addition of oxaliplatin on fatigue in parallel to the classical impact on peripherical neuropathy. In most studies in the adjuvant setting, grade 3 or more fatigue was reported less than 5% [172].
In the metastatic setting, however, reported rates of severe fatigue with the oxaliplatin and 5-FU derivatives (5-FU/leucovorin or capecitabine) reached almost 10% and even higher in older populations (16% in the study reported by Feliu et al., who included patients aged ≥70 years [182], and 22% in the study reported by Twelves et al., who included patients aged ≥65 years [181]). Notably, in the FOCUS2 trial on older/frail patients who were not candidates for standard full-dose chemotherapy, Seymour et al. evaluated the impact of both the addition of oxaliplatin and the replacement of fluorouracil with capecitabine on treatment efficacy and tolerance in a 2 × 2 factorial trial, with four regimens at 80% of the standard full dose (FU: levofolinate 175 mg 2-h intravenous infusion, fluorouracil 320 mg/m2 5-min intravenous bolus, and fluorouracil 2240 mg/m2 46-h intravenous infusion; Cap: capecitabine 1000 mg/m2 orally twice per day on days 1–15 of each 21-day cycle; OxFU: previous FU regimen with the addition of oxaliplatin 68 mg/m2 by 2-h intravenous infusion concurrent to levofolinate; CapOx: previous Cap regimen with the addition of oxaliplatin 104 mg/m2 2-h intravenous infusion every day 1 of each 21-day cycle); oxaliplatin addition had no impact on the frequency of grade 3 or more lethargy (10% vs. 12%, respectively; p = 0.63), but a trend towards a higher frequency was found with the replacement of FU by capecitabine (8% vs. 14%, respectively; p = 0.06) [184]. When considering raltitrexed as an alternative to a 5-FU derivative, either alone or in association with oxaliplatin (TOMOX), the frequencies of any-grade and grade 3 or more fatigue were similar to their 5-FU-based counterparts. The addition of bevacizumab to the 5-FU derivative ± oxaliplatin did not meaningfully alter fatigue rates of FOLFOX [177,209,212] and XELOX [213,214,215]. When considering the other classical association of a 5-FU derivative with irinotecan, FOLFIRI and CAPIRI/XELIRI induced similar rates of fatigue, as the rates of grade 3 or more fatigue varied from 0 and 8% [185,186,187,188,189,190,191,192,193,194,195]. By contrast, the addition of either bevacizumab or aflibercept seemed to be associated with a higher frequency of grade 3 or more fatigue (1–9% for FOLFIRI–bevacizumab [189,207,208,209], 7–17% for XELIRI–bevacizumab [210,211], and 17% for FOLFIRI–aflibercept [217]). Data regarding the impact of cetuximab and panitumumab were highly heterogeneous, probably due to the different lines of treatment studied; one study demonstrated a high frequency of grade 3 or more fatigue with cetuximab alone in later lines (33% vs. 26% in the control arm [218]), but studies on cetuximab in association with either FOLFOX, XELOX, FOLFIRI, XELIRI, or irinotecan alone reported relatively low frequencies of grade 3 or more fatigue [188,191,208,219,220,222]. Similarly, the frequencies of fatigue with chemotherapy triplets associated with 5-FU derivatives, irinotecan and oxaliplatin, were highly variable; rates of grade 3 or more fatigue were relatively low (3 to 6%) in studies investigating FOLFOXIRI/FOLFIRINOX [186,189] and XELOXIRI [199] but reached 12% for bevacizumab–FOLFOXIRI [189,207] and even 32% for cetuximab–FOLFIRINOX [221].
When considering the trifluridine–tipiracil (TAS-102) ± bevacizumab, the frequencies of fatigue were also heterogeneous; any-grade fatigue ranged from 24 and 85%, illustrating the high level of chronic fatigue, independently of the treatment, in later lines [227,228,229]. In a pivotal trial reported by Mayer et al., the frequencies of any-grade and grade 3 or more fatigue were, respectively, 35% and 4% vs. 23% and 6% in the placebo arm [227]; in a comparative phase II trial reported by Pfeiffer et al. evaluating the addition of bevacizumab, any-grade fatigue frequencies were exactly the same in both arms (85%), and the grade 3 or more fatigue frequency was 11% in the TAS-102 arm and 7% in the TAS-102 + bevacizumab arm [228].
In the field of targeted therapies, beyond bevacizumab and cetuximab, regorafenib was associated in later lines with a manageable tolerance, including fatigue, in the CORRECT pivotal trial [225]; however, the REGOLD study demonstrated very high levels of fatigue in older patients (90% any-grade and 45% grade 3 or more fatigue), leading the authors to advise precautious conditions of follow-up for in the oldest patients (≥80 years) [226]. In BRAF V600E-mutated patients, the BEACON study demonstrated a significant advantage for the association of encorafenib and cetuximab over usual care, with an acceptable tolerance profile—in particular considering fatigue (any-grade and grade 3 or more fatigue rates of 30% and 4% vs. 27% and 4%, respectively); future specific studies are needed to evaluate the impact of age on these frequencies [230]. Recent years were also marked by the advent of immunotherapy in cancers with microsatellite instability (MSI+). In the KEYNOTE 177 study investigating pembrolizumab monotherapy as a first-line treatment compared to usual care, the frequencies of any-grade and grade 3 or more fatigue were lower in the immunotherapy arm (38% and 6%, respectively) than in the chemotherapy arm (50% and 9%, respectively) [231].

3.6. Fatigue during Lung Cancer Treatments

In the context of non-small cell lung cancer, a shift in the assessment of fatigue was observed with the advent of modern treatments—firstly targeted therapies and then immunotherapies—in parallel with the major impact that these had on overall survival rates (Table 5). Classical chemotherapies are generally delivered at higher dose intensities than in other solid tumor models, thus explaining higher rates of any-grade and grade 3 or more fatigue, with the latter frequently exceeding 10%. However, there have been some disparities; for instance, the frequency of fatigue associated with carboplatine–paclitaxel (with paclitaxel at 225 mg/m2) was historically between 9% and 15% [232,233], whereas it ranged from 3 to 5% for carboplatine–paclitaxel associated with bevacizumab [234,235] and was 3% for carboplatine–paclitaxel associated with bevacizumab and atezolizumab (with standardized doses of carboplatine AUC6 and paclitaxel 200 mg:m2 every 3 weeks) [235]. As in the breast or ovarian cancer contexts, it is notable that tyrosine kinase inhibitors, classically associated with frequent chronic fatigue, induce moderate-to-high frequencies of any-grade fatigue (from 27% for crizotinib to 47% for ceritinib) but relatively low frequencies of grade 3 or more fatigue (from 0% for erlotinib to 5% for ceritinib). When considering targeted therapies in association with chemotherapy, the addition of bevacizumab has not, as in other tumor contexts and discussed above, led to an increase in the frequency of any-grade fatigue. Conversely, immunotherapies such as pembrolizumab [236], and nivolumab [237] appear to have increased the occurrence of fatigue, except for atezolizumab, as indicated above [235]. Future studies will probably improve our knowledge on such interactions.
Considering small cell tumors and given the age of the majority of available trials, potentially as well as the poor prognosis of the disease, data on fatigue have been sparse and limited to the most recent studies. Of the 26 regimens studied, data on fatigue were reported in half of them (n = 13), and data specific to older adults were reported for 1 only [268]. When reported, the frequencies of any-grade and grade 3 or more fatigue were highly variable, probably due to the poor condition of patients in such tumor contexts and to the positive impact of chemotherapy, at least during the first months of treatment.

3.7. Fatigue during Treatments for Non-Hodgkin’s and Follicular Lymphoma

As in many other tumor models, such as small cell cancer, there has been a shift from the oldest chemotherapy regimens to the most modern ones regarding the consideration of fatigue in pivotal trials (Table 6). This was well-illustrated by the advent of rituximab in association with previous chemotherapy regimens, leading to the better reporting of fatigue in the trials [277,278,279]. In fact, no data regarding fatigue are available in papers reporting the CHOP regimen [267], even when dedicated to older patients [280,281,282]. All but one trial specifically dedicated to older patients receiving R-CHOP-based regimens did not provide data regarding fatigue [283]; one study on patients aged ≥60 years reported 49% any-grade fatigue and 0% grade 3 or more fatigue with the R-CHOP regimen [284]. Considering other chemotherapy regimens, the frequency of any-grade fatigue was moderate-to-high but with relatively low levels of grade 3 or more fatigue, with the exception of R-DHAP (9%) and R-COMP in older patients (7%) [284]. R-CVP was associated with moderate any-grade fatigue rates (53%) and almost no grade 3 or more fatigue (<1%) in the overall population but much more frequent grade 3 or more fatigue in the older patients (47 %) [285], calling into question its use in this specific population.
Considering targeted treatments, lenalinomide was associated with relatively elevated rates of grade 3 or more fatigue (7 to 9%), particularly in association with rituximab (13 to 23%) [301,302,303]. For CAR-T cells, there was a moderate-to-high frequency of any-grade fatigue, but the frequency of grade 3 or more fatigue was limited (from 1% for lisocabtagene maraleucel [307] to 6% for tisagenlecleucel [308]). No data specific to older adults were available in these first trials. A trial investigating lisocabtagene maraleucel was the only one including older patients (from 18 to 86 years old, including 10% of ≥75 years old), and fatigue rates were similar to those reported for axicabtagene ciloleucel [307,308]. Two studies reported real-life experience with commercial CAR-T, though unfortunately neither of them provided data regarding fatigue [309,310].

4. Discussion

This scoping review is, to our knowledge, the first to provide oncologists and oncogeriatricians with a simple and easy-to-understand summary of the level of information available on fatigue, either in general or in older populations, associated with the different treatment regimens proposed for the most prevalent tumors. Such information may enrich the shared decision process of patients and their families, as well as induce guided intervention to prevent fatigue occurrence as soon as care programs are established.
From a historical point of view, this work highlights the continuous increase in fatigue assessment in relationship with the evolution of patients’ expectations regarding a better consideration of their quality of life. This point is even more important in the oncogeriatric context, when overall survival is compromised due to cancer or other causes of death. It additionally highlights that this consideration is also dependent on the tumor model, the setting, and the modality of treatment. Notably, a higher consideration was observed for maintenance or continuous treatments compared to treatments of a shorter duration, such as adjuvant treatment for breast cancers and colon cancers. The concept of cancer survivorship, notably in the context of breast cancer, has shed light on the importance of long-lasting fatigue after chemotherapy cessation in general, but little is known on the differential impacts of individual regimens on this.
This work has several limitations linked to its conceptualization, which led us to consider information published over a very long period during which there were changes not only in the tools used to assess fatigue (in total, 3 Versions of the NCI CTCAE: v3 to v5 [16,17,18]) but also in patients’ expectations about their quality of life, therefore leading to a higher reporting of fatigue in the most recent years. In addition, it is impossible to ensure the exhaustivity of the data; we also encourage any additional work that will, in the future, improve the quality of information and update it with the additional results of ongoing trials. Another potential limitation is the differential place of fatigue assessment in the current development of cancer treatments; here, we chose to collect data on fatigue reported as an adverse event, which was most frequently scored using the NCI CTCAE tool. It must be highlighted that several other tools are used, as well-reviewed by Langston et al. in their systematic analysis of fatigue in prostate cancer [6]; however, these tools are infrequently used, leading to difficulties in the comparability of studies and cancer treatments. Another increasingly used tool is the EORTC QLQ-C30 for quality-of-life assessment, which includes fatigue as an interviewed item, but this tool is frequently used in longitudinal studies and only relative changes have been reported [6]. Nevertheless, highlighting the high frequency of any-grade fatigue in the different tumor contexts sheds light on the need for practitioners to pay attention to this symptom that is associated with physical, thymic, and cognitive dimensions. This may also be, in an aging population of patients, a marker of pre-frailty or frailty, and, furthermore, a topic of multi-dimensional intervention. During a multidisciplinary workshop, a specific work-up was defined to help practitioners in their comprehensive (geriatric) assessment of fatigue (Figure 3).

5. Conclusions

This scoping review provides oncologists and oncogeriatricians a simple and easy-to-understand summary of the level of information available on any-grade fatigue and grade 3 or more fatigue for each cancer treatment regimen, either in general or in older populations, for the most prevalent tumors. Despite probably being incomplete due to the very large contours of such a review, it may provide additional information for practitioners when conducting risk/benefit ratio discussions with their patients.

Author Contributions

Conceptualization, C.F.; methodology, L.A., G.A. and C.F.; software, nc.; validation, L.A., G.A., A.B., J.B., T.G., R.B. and C.F.; formal analysis, L.A., G.A. and C.F.; investigation, L.A., G.A., T.G., R.B. and C.F.; resources, L.A., G.A., T.G., R.B. and C.F.; data curation, L.A., G.A., A.B., J.B., T.G., R.B. and C.F.; writing (original draft preparation, review and editing), L.A., G.A., A.B., J.B., T.G., R.B. and C.F.; visualization, L.A., G.A., A.B., J.B., T.G., R.B. and C.F.; supervision, C.F.; project administration, C.F.; funding acquisition, R.B. and C.F. All authors have read and agreed to the published version of the manuscript.

Funding

C.F. and R.B. participated to a board organized by Teva on the topic. No specific funding was retrieved for this work.

Institutional Review Board Statement

Not applicable. Considering the exclusion of systematic scoping reviews from PROSPERO registration [9], this systematic analysis was not registered in any registration platform.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

Claire Falandry and Rabia Boulahssass reported personal fees from Teva during a dedicated board on the topic. The funder had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. Rabia Boulahssass reported additional fees from Amgen, Fresenius, Hospira, Lilly, Novartis, Nutricia, Pierre Fabre, Roche, Sanofi, and Takeda outside the submitted work. Claire Falandry reported additional fees from Amgen, Astellas, Astra Zeneca, Baxter, Biogaran, BMS, Chugai, Clovis Oncology, Eisai, Grunenthal, GSK, Hospira, Janssen Oncology, Leo Pharma, Lilly, MSD, Novartis, Pierre Fabre, Pfizer, Roche, Seagen, and Takeda outside the submitted work; grants from Astellas Pharma, Chugai Pharma, Pierre Fabre and Pfizer outside the submitted work; and non-financial support from AstraZeneca, GSK, Janssen Oncology Leo Pharma Novartis and Pierre Fabre outside the submitted work. Other authors declare no conflict of interest.

References

  1. PDQ Supportive and Palliative Care Editorial Board Fatigue (PDQ®): Health Professional Version. In PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda, MD, USA, 2002.
  2. Zengarini, E.; Ruggiero, C.; Pérez-Zepeda, M.U.; Hoogendijk, E.O.; Vellas, B.; Mecocci, P.; Cesari, M. Fatigue: Relevance and Implications in the Aging Population. Exp. Gerontol. 2015, 70, 78–83. [Google Scholar] [CrossRef] [PubMed]
  3. Lawrence, D.P.; Kupelnick, B.; Miller, K.; Devine, D.; Lau, J. Evidence Report on the Occurrence, Assessment, and Treatment of Fatigue in Cancer Patients. J. Natl. Cancer Inst. Monogr. 2004, 40–50. [Google Scholar] [CrossRef] [PubMed]
  4. Vogelzang, N.J.; Breitbart, W.; Cella, D.; Curt, G.A.; Groopman, J.E.; Horning, S.J.; Itri, L.M.; Johnson, D.H.; Scherr, S.L.; Portenoy, R.K. Patient, Caregiver, and Oncologist Perceptions of Cancer-Related Fatigue: Results of a Tripart Assessment Survey. The Fatigue Coalition. Semin. Hematol. 1997, 34, 4–12. [Google Scholar]
  5. Abrahams, H.J.G.; Gielissen, M.F.M.; Schmits, I.C.; Verhagen, C.A.H.H.V.M.; Rovers, M.M.; Knoop, H. Risk Factors, Prevalence, and Course of Severe Fatigue after Breast Cancer Treatment: A Meta-Analysis Involving 12 327 Breast Cancer Survivors. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2016, 27, 965–974. [Google Scholar] [CrossRef] [PubMed]
  6. Langston, B.; Armes, J.; Levy, A.; Tidey, E.; Ream, E. The Prevalence and Severity of Fatigue in Men with Prostate Cancer: A Systematic Review of the Literature. Support. Care Cancer 2013, 21, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
  7. PDQ Supportive and Palliative Care Editorial Board Fatigue (PDQ®); National Cancer Institute: Bethesda, MD, USA, 2014.
  8. American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-554-1. [Google Scholar]
  9. Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
  10. Respini, D.; Jacobsen, P.B.; Thors, C.; Tralongo, P.; Balducci, L. The Prevalence and Correlates of Fatigue in Older Cancer Patients. Crit. Rev. Oncol. Hematol. 2003, 47, 273–279. [Google Scholar] [CrossRef]
  11. Luciani, A.; Jacobsen, P.B.; Extermann, M.; Foa, P.; Marussi, D.; Overcash, J.A.; Balducci, L. Fatigue and Functional Dependence in Older Cancer Patients. Am. J. Clin. Oncol. 2008, 31, 424–430. [Google Scholar] [CrossRef]
  12. Luctkar-Flude, M.; Groll, D.; Woodend, K.; Tranmer, J. Fatigue and Physical Activity in Older Patients with Cancer: A Six-Month Follow-up Study. Oncol. Nurs. Forum 2009, 36, 194–202. [Google Scholar] [CrossRef]
  13. Cella, D.; Lai, J.-S.; Chang, C.-H.; Peterman, A.; Slavin, M. Fatigue in Cancer Patients Compared with Fatigue in the General United States Population. Cancer 2002, 94, 528–538. [Google Scholar] [CrossRef]
  14. Gupta, D.; Braun, D.P.; Staren, E.D. Prognostic Value of Changes in Quality of Life Scores in Prostate Cancer. BMC Urol. 2013, 13, 32. [Google Scholar] [CrossRef] [PubMed]
  15. Motzer, R.J.; Hutson, T.E.; Cella, D.; Reeves, J.; Hawkins, R.; Guo, J.; Nathan, P.; Staehler, M.; de Souza, P.; Merchan, J.R.; et al. Pazopanib versus Sunitinib in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2013, 369, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Common Terminology Criteria for Adverse Events (CTCAE); Version 4; National Cancer Institute: Bethesda, MD, USA, 2009.
  17. Common Terminology Criteria for Adverse Events (CTCAE); Version 3; National Cancer Institute: Bethesda, MD, USA, 2006.
  18. Common Terminology Criteria for Adverse Events (CTCAE); Version 5; National Cancer Institute: Bethesda, MD, USA, 2017; p. 155.
  19. Agnihotri, P.; Telfer, M.; Butt, Z.; Jella, A.; Cella, D.; Kozma, C.M.; Ahuja, M.; Riaz, S.; Akamah, J. Chronic Anemia and Fatigue in Elderly Patients: Results of a Randomized, Double-Blind, Placebo-Controlled, Crossover Exploratory Study with Epoetin Alfa. J. Am. Geriatr. Soc. 2007, 55, 1557–1565. [Google Scholar] [CrossRef]
  20. Silva, J.C.; de Moraes, Z.V.; Silva, C.; de Barros Mazon, S.; Guariento, M.E.; Neri, A.L.; Fattori, A. Understanding Red Blood Cell Parameters in the Context of the Frailty Phenotype: Interpretations of the FIBRA (Frailty in Brazilian Seniors) Study. Arch. Gerontol. Geriatr. 2014, 59, 636–641. [Google Scholar] [CrossRef] [PubMed]
  21. Cesari, M.; Penninx, B.W.J.H.; Lauretani, F.; Russo, C.R.; Carter, C.; Bandinelli, S.; Atkinson, H.; Onder, G.; Pahor, M.; Ferrucci, L. Hemoglobin Levels and Skeletal Muscle: Results from the InCHIANTI Study. J. Gerontol. A. Biol. Sci. Med. Sci. 2004, 59, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Aapro, M.S.; Bohlius, J.; Cameron, D.A.; Lago, L.D.; Donnelly, J.P.; Kearney, N.; Lyman, G.H.; Pettengell, R.; Tjan-Heijnen, V.C.; Walewski, J.; et al. 2010 Update of EORTC Guidelines for the Use of Granulocyte-Colony Stimulating Factor to Reduce the Incidence of Chemotherapy-Induced Febrile Neutropenia in Adult Patients with Lymphoproliferative Disorders and Solid Tumours. Eur. J. Cancer 2011, 47, 8–32. [Google Scholar] [CrossRef]
  23. Hesketh, P.J.; Kris, M.G.; Basch, E.; Bohlke, K.; Barbour, S.Y.; Clark-Snow, R.A.; Danso, M.A.; Dennis, K.; Dupuis, L.L.; Dusetzina, S.B.; et al. Antiemetics: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3240–3261. [Google Scholar] [CrossRef]
  24. Schmidt, M.E.; Wiskemann, J.; Schneeweiss, A.; Potthoff, K.; Ulrich, C.M.; Steindorf, K. Determinants of Physical, Affective, and Cognitive Fatigue during Breast Cancer Therapy and 12 Months Follow-Up. Int. J. Cancer 2018, 142, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
  25. Di Meglio, A.; Havas, J.; Soldato, D.; Presti, D.; Martin, E.; Pistilli, B.; Menvielle, G.; Dumas, A.; Charles, C.; Everhard, S.; et al. Development and Validation of a Predictive Model of Severe Fatigue After Breast Cancer Diagnosis: Toward a Personalized Framework in Survivorship Care. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, JCO2101252. [Google Scholar] [CrossRef]
  26. Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef]
  27. Jones, S.E.; Savin, M.A.; Holmes, F.A.; O’Shaughnessy, J.A.; Blum, J.L.; Vukelja, S.; McIntyre, K.J.; Pippen, J.E.; Bordelon, J.H.; Kirby, R.; et al. Phase III Trial Comparing Doxorubicin plus Cyclophosphamide with Docetaxel plus Cyclophosphamide as Adjuvant Therapy for Operable Breast Cancer. J. Clin. Oncol. 2006, 24, 5381–5387. [Google Scholar] [CrossRef] [Green Version]
  28. Tolaney, S.M.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; Shapira, I.; et al. Adjuvant Paclitaxel and Trastuzumab for Node-Negative, HER2-Positive Breast Cancer. N. Engl. J. Med. 2015, 372, 134–141. [Google Scholar] [CrossRef] [Green Version]
  29. Reinisch, M.; von Minckwitz, G.; Harbeck, N.; Janni, W.; Kümmel, S.; Kaufmann, M.; Elling, D.; Nekljudova, V.; Loibl, S. Side Effects of Standard Adjuvant and Neoadjuvant Chemotherapy Regimens According to Age Groups in Primary Breast Cancer. Breast Care 2013, 8, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  30. Mouridsen, H.; Gershanovich, M.; Sun, Y.; Pérez-Carrión, R.; Boni, C.; Monnier, A.; Apffelstaedt, J.; Smith, R.; Sleeboom, H.P.; Jänicke, F.; et al. Superior Efficacy of Letrozole versus Tamoxifen as First-Line Therapy for Postmenopausal Women with Advanced Breast Cancer: Results of a Phase III Study of the International Letrozole Breast Cancer Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 2596–2606. [Google Scholar] [CrossRef] [PubMed]
  31. Ohno, S. Tolerability of Therapies Recommended for the Treatment of Hormone Receptor-Positive Locally Advanced or Metastatic Breast Cancer. Clin. Breast Cancer 2016, 16, 238–246. [Google Scholar] [CrossRef] [PubMed]
  32. Bonneterre, J.; Buzdar, A.; Nabholtz, J.M.; Robertson, J.F.; Thurlimann, B.; von Euler, M.; Sahmoud, T.; Webster, A.; Steinberg, M. Anastrozole Is Superior to Tamoxifen as First-Line Therapy in Hormone Receptor Positive Advanced Breast Carcinoma. Cancer 2001, 92, 2247–2258. [Google Scholar] [CrossRef]
  33. Goss, P.E.; Ingle, J.N.; Martino, S.; Robert, N.J.; Muss, H.B.; Piccart, M.J.; Castiglione, M.; Tu, D.; Shepherd, L.E.; Pritchard, K.I.; et al. A Randomized Trial of Letrozole in Postmenopausal Women after Five Years of Tamoxifen Therapy for Early-Stage Breast Cancer. N. Engl. J. Med. 2003, 349, 1793–1802. [Google Scholar] [CrossRef]
  34. Muss, H.B.; Tu, D.; Ingle, J.N.; Martino, S.; Robert, N.J.; Pater, J.L.; Whelan, T.J.; Palmer, M.J.; Piccart, M.J.; Shepherd, L.E.; et al. Efficacy, Toxicity, and Quality of Life in Older Women with Early-Stage Breast Cancer Treated with Letrozole or Placebo after 5 Years of Tamoxifen: NCIC CTG Intergroup Trial MA.17. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 1956–1964. [Google Scholar] [CrossRef]
  35. Coombes, R.C.; Hall, E.; Gibson, L.J.; Paridaens, R.; Jassem, J.; Delozier, T.; Jones, S.E.; Alvarez, I.; Bertelli, G.; Ortmann, O.; et al. A Randomized Trial of Exemestane after Two to Three Years of Tamoxifen Therapy in Postmenopausal Women with Primary Breast Cancer. N. Engl. J. Med. 2004, 350, 1081–1092. [Google Scholar] [CrossRef] [Green Version]
  36. Nabholtz, J.-M.; Falkson, C.; Campos, D.; Szanto, J.; Martin, M.; Chan, S.; Pienkowski, T.; Zaluski, J.; Pinter, T.; Krzakowski, M.; et al. Docetaxel and Doxorubicin Compared with Doxorubicin and Cyclophosphamide as First-Line Chemotherapy for Metastatic Breast Cancer: Results of a Randomized, Multicenter, Phase III Trial. J. Clin. Oncol. 2003, 21, 968–975. [Google Scholar] [CrossRef]
  37. Citron, M.L.; Berry, D.A.; Cirrincione, C.; Hudis, C.; Winer, E.P.; Gradishar, W.J.; Davidson, N.E.; Martino, S.; Livingston, R.; Ingle, J.N.; et al. Randomized Trial of Dose-Dense versus Conventionally Scheduled and Sequential versus Concurrent Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 1431–1439. [Google Scholar] [CrossRef]
  38. Von Minckwitz, G.; Raab, G.; Caputo, A.; Schütte, M.; Hilfrich, J.; Blohmer, J.U.; Gerber, B.; Costa, S.D.; Merkle, E.; Eidtmann, H.; et al. Doxorubicin with Cyclophosphamide Followed by Docetaxel Every 21 Days Compared with Doxorubicin and Docetaxel Every 14 Days As Preoperative Treatment in Operable Breast Cancer: The GEPARDUO Study of the German Breast Group. J. Clin. Oncol. 2005, 23, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
  39. Perez, E.A.; Geeraerts, L.; Suman, V.J.; Adjei, A.A.; Baron, A.T.; Hatfield, A.K.; Maihle, N.; Michalak, J.C.; Kuross, S.A.; Kugler, J.W.; et al. A Randomized Phase II Study of Sequential Docetaxel and Doxorubicin/Cyclophosphamide in Patients with Metastatic Breast Cancer. Ann. Oncol. 2002, 13, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
  40. Alba, E.; Martín, M.; Ramos, M.; Adrover, E.; Balil, A.; Jara, C.; Barnadas, A.; Fernández-Aramburo, A.; Sánchez-Rovira, P.; Amenedo, M.; et al. Multicenter Randomized Trial Comparing Sequential with Concomitant Administration of Doxorubicin and Docetaxel as First-Line Treatment of Metastatic Breast Cancer: A Spanish Breast Cancer Research Group (GEICAM-9903) Phase III Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 2587–2593. [Google Scholar] [CrossRef]
  41. Slamon, D.; Eiermann, W.; Robert, N.; Pienkowski, T.; Martin, M.; Press, M.; Mackey, J.; Glaspy, J.; Chan, A.; Pawlicki, M.; et al. Adjuvant Trastuzumab in HER2-Positive Breast Cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
  42. Biganzoli, L.; Cufer, T.; Bruning, P.; Coleman, R.; Duchateau, L.; Calvert, A.H.; Gamucci, T.; Twelves, C.; Fargeot, P.; Epelbaum, R.; et al. Doxorubicin and Paclitaxel versus Doxorubicin and Cyclophosphamide as First-Line Chemotherapy in Metastatic Breast Cancer: The European Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 3114–3121. [Google Scholar] [CrossRef]
  43. Martin, M.; Pienkowski, T.; Mackey, J.; Pawlicki, M.; Guastalla, J.-P.; Weaver, C.; Tomiak, E.; Al-Tweigeri, T.; Chap, L.; Juhos, E.; et al. Adjuvant Docetaxel for Node-Positive Breast Cancer. N. Engl. J. Med. 2005, 352, 2302–2313. [Google Scholar] [CrossRef] [Green Version]
  44. Therasse, P.; Mauriac, L.; Welnicka-Jaskiewicz, M.; Bruning, P.; Cufer, T.; Bonnefoi, H.; Tomiak, E.; Pritchard, K.I.; Hamilton, A.; Piccart, M.J. Final Results of a Randomized Phase III Trial Comparing Cyclophosphamide, Epirubicin, and Fluorouracil with a Dose-Intensified Epirubicin and Cyclophosphamide + Filgrastim as Neoadjuvant Treatment in Locally Advanced Breast Cancer: An EORTC-NCIC-SAKK Multicenter Study. J. Clin. Oncol. 2003, 21, 843–850. [Google Scholar] [CrossRef]
  45. Brain, E.G.C.; Mertens, C.; Girre, V.; Rousseau, F.; Blot, E.; Abadie, S.; Uwer, L.; Bourbouloux, E.; Van Praagh-Doreau, I.; Mourey, L.; et al. Impact of Liposomal Doxorubicin-Based Adjuvant Chemotherapy on Autonomy in Women over 70 with Hormone-Receptor-Negative Breast Carcinoma: A French Geriatric Oncology Group (GERICO) Phase II Multicentre Trial. Crit. Rev. Oncol. Hematol. 2011, 80, 160–170. [Google Scholar] [CrossRef]
  46. Martín, M.; Ruiz, A.; Ruiz Borrego, M.; Barnadas, A.; González, S.; Calvo, L.; Margelí Vila, M.; Antón, A.; Rodríguez-Lescure, A.; Seguí-Palmer, M.A.; et al. Fluorouracil, Doxorubicin, and Cyclophosphamide (FAC) versus FAC Followed by Weekly Paclitaxel as Adjuvant Therapy for High-Risk, Node-Negative Breast Cancer: Results from the GEICAM/2003-02 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 2593–2599. [Google Scholar] [CrossRef]
  47. Jassem, J.; Pieńkowski, T.; Płuzańska, A.; Jelic, S.; Gorbunova, V.; Mrsic-Krmpotic, Z.; Berzins, J.; Nagykalnai, T.; Wigler, N.; Renard, J.; et al. Doxorubicin and Paclitaxel versus Fluorouracil, Doxorubicin, and Cyclophosphamide as First-Line Therapy for Women with Metastatic Breast Cancer: Final Results of a Randomized Phase III Multicenter Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
  48. Bontenbal, M.; Creemers, G.-J.; Braun, H.J.; de Boer, A.C.; Janssen, J.T.; Leys, R.B.; Ruit, J.B.; Goey, S.H.; van der Velden, P.C.; Kerkhofs, L.G.; et al. Phase II to III Study Comparing Doxorubicin and Docetaxel with Fluorouracil, Doxorubicin, and Cyclophosphamide As First-Line Chemotherapy in Patients with Metastatic Breast Cancer: Results of a Dutch Community Setting Trial for the Clinical Trial Group of the Comprehensive Cancer Centre. J. Clin. Oncol. 2005, 23, 7081–7088. [Google Scholar] [CrossRef] [PubMed]
  49. French Adjuvant Study Group Benefit of a High-Dose Epirubicin Regimen in Adjuvant Chemotherapy for Node-Positive Breast Cancer Patients with Poor Prognostic Factors: 5-Year Follow-up Results of French Adjuvant Study Group 05 Randomized Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 602–611. [CrossRef] [PubMed]
  50. Zielinski, C.; Beslija, S.; Mrsic-Krmpotic, Z.; Welnicka-Jaskiewicz, M.; Wiltschke, C.; Kahan, Z.; Grgic, M.; Tzekova, V.; Inbar, M.; Cervek, J.; et al. Gemcitabine, Epirubicin, and Paclitaxel Versus Fluorouracil, Epirubicin, and Cyclophosphamide As First-Line Chemotherapy in Metastatic Breast Cancer: A Central European Cooperative Oncology Group International, Multicenter, Prospective, Randomized Phase III Trial. J. Clin. Oncol. 2005, 23, 1401–1408. [Google Scholar] [CrossRef]
  51. Tannock, I.F.; Boyd, N.F.; DeBoer, G.; Erlichman, C.; Fine, S.; Larocque, G.; Mayers, C.; Perrault, D.; Sutherland, H. A Randomized Trial of Two Dose Levels of Cyclophosphamide, Methotrexate, and Fluorouracil Chemotherapy for Patients with Metastatic Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1988, 6, 1377–1387. [Google Scholar] [CrossRef]
  52. Ron, I.G.; Wigler, N.; Borovik, R.; Brufman, G.; Rizel, S.; Shani, A.; Brenner, J.; Farbstein, H.; Dale, A.; Inbar, M.J.; et al. CMF (Cyclophosphamide, Methotrexate, 5-Fluorouracil) versus Cnf (Cyclophosphamide, Mitoxantrone, 5-Fluorouracil) as Adjuvant Chemotherapy for Stage II Lymph-Node Positive Breast Cancer: A Phase III Randomized Multicenter Study. Am. J. Clin. Oncol. 2001, 24, 323–327. [Google Scholar] [CrossRef]
  53. Levine, M.N.; Bramwell, V.H.; Pritchard, K.I.; Norris, B.D.; Shepherd, L.E.; Abu-Zahra, H.; Findlay, B.; Warr, D.; Bowman, D.; Myles, J.; et al. Randomized Trial of Intensive Cyclophosphamide, Epirubicin, and Fluorouracil Chemotherapy Compared with Cyclophosphamide, Methotrexate, and Fluorouracil in Premenopausal Women with Node-Positive Breast Cancer. National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1998, 16, 2651–2658. [Google Scholar]
  54. Jones, S.E.; Collea, R.; Paul, D.; Sedlacek, S.; Favret, A.M.; Gore, I.; Lindquist, D.L.; Holmes, F.A.; Allison, M.A.K.; Brooks, B.D.; et al. Adjuvant Docetaxel and Cyclophosphamide plus Trastuzumab in Patients with HER2-Amplified Early Stage Breast Cancer: A Single-Group, Open-Label, Phase 2 Study. Lancet Oncol. 2013, 14, 1121–1128. [Google Scholar] [CrossRef]
  55. Breast International Group (BIG) 1-98 Collaborative Group; Thürlimann, B.; Keshaviah, A.; Coates, A.S.; Mouridsen, H.; Mauriac, L.; Forbes, J.F.; Paridaens, R.; Castiglione-Gertsch, M.; Gelber, R.D.; et al. A Comparison of Letrozole and Tamoxifen in Postmenopausal Women with Early Breast Cancer. N. Engl. J. Med. 2005, 353, 2747–2757. [Google Scholar] [CrossRef] [Green Version]
  56. Seidman, A.D.; Berry, D.; Cirrincione, C.; Harris, L.; Muss, H.; Marcom, P.K.; Gipson, G.; Burstein, H.; Lake, D.; Shapiro, C.L.; et al. Randomized Phase III Trial of Weekly Compared with Every-3-Weeks Paclitaxel for Metastatic Breast Cancer, with Trastuzumab for All HER-2 Overexpressors and Random Assignment to Trastuzumab or Not in HER-2 Nonoverexpressors: Final Results of Cancer and Leukemia Group B Protocol 9840. J. Clin. Oncol. 2008, 26, 1642–1649. [Google Scholar] [CrossRef] [Green Version]
  57. Gradishar, W.J. The Place for Eribulin in the Treatment of Metastatic Breast Cancer. Curr. Oncol. Rep. 2011, 13, 11–16. [Google Scholar] [CrossRef]
  58. Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer. N. Engl. J. Med. 2007, 357, 2666–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  59. Schneeweiss, A.; Förster, F.; Tesch, H.; Aktas, B.; Gluz, O.; Geberth, M.; Hertz-Eichenrode, M.M.; Schönegg, W.; Schumacher, C.; Kutscheidt, A.; et al. First-Line Bevacizumab-Containing Therapy for HER2-Negative Metastatic Breast Cancer: Final Results from a Prospective German Study. Anticancer Res. 2016, 36, 967–974. [Google Scholar]
  60. O’Shaughnessy, J.; Miles, D.; Vukelja, S.; Moiseyenko, V.; Ayoub, J.-P.; Cervantes, G.; Fumoleau, P.; Jones, S.; Lui, W.-Y.; Mauriac, L.; et al. Superior Survival with Capecitabine plus Docetaxel Combination Therapy in Anthracycline-Pretreated Patients with Advanced Breast Cancer: Phase III Trial Results. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
  61. Harvey, V.; Mouridsen, H.; Semiglazov, V.; Jakobsen, E.; Voznyi, E.; Robinson, B.A.; Groult, V.; Murawsky, M.; Cold, S. Phase III Trial Comparing Three Doses of Docetaxel for Second-Line Treatment of Advanced Breast Cancer. J. Clin. Oncol. 2006, 24, 4963–4970. [Google Scholar] [CrossRef] [PubMed]
  62. Joensuu, H.; Sailas, L.; Alanko, T.; Sunela, K.; Huuhtanen, R.; Utriainen, M.; Kokko, R.; Bono, P.; Wigren, T.; Pyrhönen, S.; et al. Docetaxel versus Docetaxel Alternating with Gemcitabine as Treatments of Advanced Breast Cancer: Final Analysis of a Randomised Trial. Ann. Oncol. 2010, 21, 968–973. [Google Scholar] [CrossRef]
  63. Young, S.D.; Lafrenie, R.M.; Clemons, M.J. Phase II Trial of a Metronomic Schedule of Docetaxel and Capecitabine with Concurrent Celecoxib in Patients with Prior Anthracycline Exposure for Metastatic Breast Cancer. Curr. Oncol. 2012, 19, 75–83. [Google Scholar] [CrossRef] [Green Version]
  64. Martín, M.; Ruiz, A.; Muñoz, M.; Balil, A.; García-Mata, J.; Calvo, L.; Carrasco, E.; Mahillo, E.; Casado, A.; García-Saenz, J.Á.; et al. Gemcitabine plus Vinorelbine versus Vinorelbine Monotherapy in Patients with Metastatic Breast Cancer Previously Treated with Anthracyclines and Taxanes: Final Results of the Phase III Spanish Breast Cancer Research Group (GEICAM) Trial. Lancet Oncol. 2007, 8, 219–225. [Google Scholar] [CrossRef]
  65. O’Shaughnessy, J.A. Pegylated Liposomal Doxorubicin in the Treatment of Breast Cancer. Clin. Breast Cancer 2003, 4, 318–328. [Google Scholar] [CrossRef]
  66. Falandry, C.; Brain, E.; Bonnefoy, M.; Mefti, F.; Jovenin, N.; Rigal, O.; Guillem, O.; El Kouri, C.; Uwer, L.; Abadie-Lacourtoisie, S.; et al. Impact of Geriatric Risk Factors on Pegylated Liposomal Doxorubicin Tolerance and Efficacy in Elderly Metastatic Breast Cancer Patients: Final Results of the DOGMES Multicentre GINECO Trial. Eur. J. Cancer 2013, 49, 2806–2814. [Google Scholar] [CrossRef]
  67. Norris, B.; Pritchard, K.I.; James, K.; Myles, J.; Bennett, K.; Marlin, S.; Skillings, J.; Findlay, B.; Vandenberg, T.; Goss, P.; et al. Phase III Comparative Study of Vinorelbine Combined with Doxorubicin versus Doxorubicin Alone in Disseminated Metastatic/Recurrent Breast Cancer: National Cancer Institute of Canada Clinical Trials Group Study MA8. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
  68. Blum, J.L.; Jones, S.E.; Buzdar, A.U.; LoRusso, P.M.; Kuter, I.; Vogel, C.; Osterwalder, B.; Burger, H.U.; Brown, C.S.; Griffin, T. Multicenter Phase II Study of Capecitabine in Paclitaxel-Refractory Metastatic Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999, 17, 485–493. [Google Scholar] [CrossRef] [PubMed]
  69. Blum, J.L.; Dieras, V.; Lo Russo, P.M.; Horton, J.; Rutman, O.; Buzdar, A.; Osterwalder, B. Multicenter, Phase II Study of Capecitabine in Taxane-Pretreated Metastatic Breast Carcinoma Patients. Cancer 2001, 92, 1759–1768. [Google Scholar] [CrossRef]
  70. Reichardt, P.; von Minckwitz, G.; Thuss-Patience, P.C.; Jonat, W.; Kölbl, H.; Jänicke, F.; Kieback, D.G.; Kuhn, W.; Schindler, A.E.; Mohrmann, S.; et al. Multicenter Phase II Study of Oral Capecitabine (Xeloda“) in Patients with Metastatic Breast Cancer Relapsing after Treatment with a Taxane-Containing Therapy. Ann. Oncol. 2003, 14, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
  71. Walko, C.M.; Lindley, C. Capecitabine: A Review. Clin. Ther. 2005, 27, 23–44. [Google Scholar] [CrossRef] [PubMed]
  72. Welt, A.; Marschner, N.; Lerchenmueller, C.; Decker, T.; Steffens, C.-C.; Koehler, A.; Depenbusch, R.; Busies, S.; Hegewisch-Becker, S. Capecitabine and Bevacizumab with or without Vinorelbine in First-Line Treatment of HER2/Neu-Negative Metastatic or Locally Advanced Breast Cancer: Final Efficacy and Safety Data of the Randomised, Open-Label Superiority Phase 3 CARIN Trial. Breast Cancer Res. Treat. 2016, 156, 97–107. [Google Scholar] [CrossRef] [Green Version]
  73. Blackstein, M.; Vogel, C.L.; Ambinder, R.; Cowan, J.; Iglesias, J.; Melemed, A. Gemcitabine as First-Line Therapy in Patients with Metastatic Breast Cancer: A Phase II Trial. Oncology 2002, 62, 2–8. [Google Scholar] [CrossRef]
  74. Swami, U.; Chaudhary, I.; Ghalib, M.H.; Goel, S. Eribulin—A Review of Preclinical and Clinical Studies. Crit. Rev. Oncol. Hematol. 2012, 81, 163–184. [Google Scholar] [CrossRef] [Green Version]
  75. Cortes, J.; Hudgens, S.; Twelves, C.; Perez, E.A.; Awada, A.; Yelle, L.; McCutcheon, S.; Kaufman, P.A.; Forsythe, A.; Velikova, G. Health-Related Quality of Life in Patients with Locally Advanced or Metastatic Breast Cancer Treated with Eribulin Mesylate or Capecitabine in an Open-Label Randomized Phase 3 Trial. Breast Cancer Res. Treat. 2015, 154, 509–520. [Google Scholar] [CrossRef]
  76. Swain, S.M.; Miles, D.; Kim, S.-B.; Im, Y.-H.; Im, S.-A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturus, E.; et al. Pertuzumab, Trastuzumab, and Docetaxel for HER2-Positive Metastatic Breast Cancer (CLEOPATRA): End-of-Study Results from a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Study. Lancet Oncol. 2020, 21, 519–530. [Google Scholar] [CrossRef]
  77. Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792. [Google Scholar] [CrossRef] [PubMed]
  78. Farhat, F.; Kattan, J.G.; Ghosn, M. Oral Vinorelbine in Combination with Trastuzumab as a First-Line Therapy of Metastatic or Locally Advanced HER2-Positive Breast Cancer. Cancer Chemother. Pharmacol. 2016, 77, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
  79. André, F.; O’Regan, R.; Ozguroglu, M.; Toi, M.; Xu, B.; Jerusalem, G.; Masuda, N.; Wilks, S.; Arena, F.; Isaacs, C.; et al. Everolimus for Women with Trastuzumab-Resistant, HER2-Positive, Advanced Breast Cancer (BOLERO-3): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet Oncol. 2014, 15, 580–591. [Google Scholar] [CrossRef]
  80. Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.-Y.; Diéras, V.; Guardino, E.; et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 367, 1783–1791. [Google Scholar] [CrossRef] [Green Version]
  81. Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef]
  82. Bachelot, T.; Ciruelos, E.; Schneeweiss, A.; Puglisi, F.; Peretz-Yablonski, T.; Bondarenko, I.; Paluch-Shimon, S.; Wardley, A.; Merot, J.-L.; du Toit, Y.; et al. Preliminary Safety and Efficacy of First-Line Pertuzumab Combined with Trastuzumab and Taxane Therapy for HER2-Positive Locally Recurrent or Metastatic Breast Cancer (PERUSE). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 766–773. [Google Scholar] [CrossRef] [Green Version]
  83. Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; et al. The Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib in Combination with Letrozole versus Letrozole Alone as First-Line Treatment of Oestrogen Receptor-Positive, HER2-Negative, Advanced Breast Cancer (PALOMA-1/TRIO-18): A Randomised Phase 2 Study. Lancet Oncol. 2015, 16, 25–35. [Google Scholar] [CrossRef]
  84. O’Shaughnessy, J.; Petrakova, K.; Sonke, G.S.; Conte, P.; Arteaga, C.L.; Cameron, D.A.; Hart, L.L.; Villanueva, C.; Jakobsen, E.; Beck, J.T.; et al. Ribociclib plus Letrozole versus Letrozole Alone in Patients with de Novo HR+, HER2- Advanced Breast Cancer in the Randomized MONALEESA-2 Trial. Breast Cancer Res. Treat. 2018, 168, 127–134. [Google Scholar] [CrossRef] [Green Version]
  85. Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A.I.; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; et al. Everolimus in Postmenopausal Hormone-Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2012, 366, 520–529. [Google Scholar] [CrossRef] [Green Version]
  86. Di Leo, A.; Jerusalem, G.; Petruzelka, L.; Torres, R.; Bondarenko, I.N.; Khasanov, R.; Verhoeven, D.; Pedrini, J.L.; Smirnova, I.; Lichinitser, M.R.; et al. Results of the CONFIRM Phase III Trial Comparing Fulvestrant 250 Mg with Fulvestrant 500 Mg in Postmenopausal Women with Estrogen Receptor-Positive Advanced Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 4594–4600. [Google Scholar] [CrossRef]
  87. Howell, A.; Sapunar, F. Fulvestrant Revisited: Efficacy and Safety of the 500-Mg Dose. Clin. Breast Cancer 2011, 11, 204–210. [Google Scholar] [CrossRef] [PubMed]
  88. Turner, N.C.; Slamon, D.J.; Ro, J.; Bondarenko, I.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. N. Engl. J. Med. 2018, 379, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
  89. Sledge, G.W.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. MONARCH 2: Abemaciclib in Combination with Fulvestrant in Women with HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2875–2884. [Google Scholar] [CrossRef]
  90. Slamon, D.J.; Neven, P.; Chia, S.; Fasching, P.A.; De Laurentiis, M.; Im, S.-A.; Petrakova, K.; Bianchi, G.V.; Esteva, F.J.; Martín, M.; et al. Phase III Randomized Study of Ribociclib and Fulvestrant in Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: MONALEESA-3. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
  91. Johnston, S.; Pippen, J.; Pivot, X.; Lichinitser, M.; Sadeghi, S.; Dieras, V.; Gomez, H.L.; Romieu, G.; Manikhas, A.; Kennedy, M.J.; et al. Lapatinib Combined with Letrozole versus Letrozole and Placebo as First-Line Therapy for Postmenopausal Hormone Receptor-Positive Metastatic Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 5538–5546. [Google Scholar] [CrossRef] [Green Version]
  92. Villanueva, C.; Romieu, G.; Salvat, J.; Chaigneau, L.; Merrouche, Y.; N’guyen, T.; Vuillemin, A.T.; Demarchi, M.; Dobi, E.; Pivot, X. Phase II Study Assessing Lapatinib Added to Letrozole in Patients with Progressive Disease under Aromatase Inhibitor in Metastatic Breast Cancer-Study BES 06. Target. Oncol. 2013, 8, 137–143. [Google Scholar] [CrossRef]
  93. Moscetti, L.; Vici, P.; Gamucci, T.; Natoli, C.; Cortesi, E.; Marchetti, P.; Santini, D.; Giuliani, R.; Sperduti, I.; Mauri, M.; et al. Safety Analysis, Association with Response and Previous Treatments of Everolimus and Exemestane in 181 Metastatic Breast Cancer Patients: A Multicenter Italian Experience. The Breast 2016, 29, 96–101. [Google Scholar] [CrossRef]
  94. Jerusalem, G.; Mariani, G.; Ciruelos, E.M.; Martin, M.; Tjan-Heijnen, V.C.G.; Neven, P.; Gavila, J.G.; Michelotti, A.; Montemurro, F.; Generali, D.; et al. Safety of Everolimus plus Exemestane in Patients with Hormone-Receptor–Positive, HER2–Negative Locally Advanced or Metastatic Breast Cancer Progressing on Prior Non-Steroidal Aromatase Inhibitors: Primary Results of a Phase IIIb, Open-Label, Single-Arm, Expanded-Access Multicenter Trial (BALLET). Ann. Oncol. 2016, 27, 1719–1725. [Google Scholar] [CrossRef]
  95. Finn, R.S.; Martin, M.; Rugo, H.S.; Jones, S.; Im, S.-A.; Gelmon, K.; Harbeck, N.; Lipatov, O.N.; Walshe, J.M.; Moulder, S.; et al. Palbociclib and Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2016, 375, 1925–1936. [Google Scholar] [CrossRef]
  96. Rugo, H.S.; Turner, N.C.; Finn, R.S.; Joy, A.A.; Verma, S.; Harbeck, N.; Masuda, N.; Im, S.-A.; Huang, X.; Kim, S.; et al. Palbociclib plus Endocrine Therapy in Older Women with HR+/HER2- Advanced Breast Cancer: A Pooled Analysis of Randomised PALOMA Clinical Studies. Eur. J. Cancer Oxf. Engl. 1990 2018, 101, 123–133. [Google Scholar] [CrossRef]
  97. De Laurentiis, M.; Borstnar, S.; Campone, M.; Warner, E.; Bofill, J.S.; Jacot, W.; Dent, S.; Martin, M.; Ring, A.; Cottu, P.; et al. Full Population Results from the Core Phase of CompLEEment-1, a Phase 3b Study of Ribociclib plus Letrozole as First-Line Therapy for Advanced Breast Cancer in an Expanded Population. Breast Cancer Res. Treat. 2021, 189, 689–699. [Google Scholar] [CrossRef]
  98. Goetz, M.P.; Toi, M.; Campone, M.; Sohn, J.; Paluch-Shimon, S.; Huober, J.; Park, I.H.; Trédan, O.; Chen, S.-C.; Manso, L.; et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3638–3646. [Google Scholar] [CrossRef] [PubMed]
  99. Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.-H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018, 379, 753–763. [Google Scholar] [CrossRef] [PubMed]
  100. Robson, M.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef] [PubMed]
  101. Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.; Biganzoli, L.; et al. 5th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 5). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 1623–1649. [Google Scholar] [CrossRef]
  102. Liposits, G.; Loh, K.P.; Soto-Perez-de-Celis, E.; Dumas, L.; Battisti, N.M.L.; Kadambi, S.; Baldini, C.; Banerjee, S.; Lichtman, S.M. PARP Inhibitors in Older Patients with Ovarian and Breast Cancer: Young International Society of Geriatric Oncology Review Paper. J. Geriatr. Oncol. 2019, 10, 337–345. [Google Scholar] [CrossRef]
  103. Moore, K.; Colombo, N.; Scambia, G.; Kim, B.-G.; Oaknin, A.; Friedlander, M.; Lisyanskaya, A.; Floquet, A.; Leary, A.; Sonke, G.S.; et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018, 379, 2495–2505. [Google Scholar] [CrossRef]
  104. González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
  105. Falandry, C.; Weber, B.; Savoye, A.M.; Tinquaut, F.; Tredan, O.; Sevin, E.; Stefani, L.; Savinelli, F.; Atlassi, M.; Salvat, J.; et al. Development of a Geriatric Vulnerability Score in Elderly Patients with Advanced Ovarian Cancer Treated with First-Line Carboplatin: A GINECO Prospective Trial. Ann. Oncol. 2013, 24, 2808–2813. [Google Scholar] [CrossRef]
  106. Falandry, C.; Rousseau, F.; Mouret-Reynier, M.-A.; Tinquaut, F.; Lorusso, D.; Herrstedt, J.; Savoye, A.-M.; Stefani, L.; Bourbouloux, E.; Sverdlin, R.; et al. Efficacy and Safety of First-Line Single-Agent Carboplatin vs Carboplatin Plus Paclitaxel for Vulnerable Older Adult Women with Ovarian Cancer: A Randomized Clinical Trial. JAMA Oncol. 2021, 7, 853–861. [Google Scholar] [CrossRef]
  107. Pignata, S.; Breda, E.; Scambia, G.; Pisano, C.; Zagonel, V.; Lorusso, D.; Greggi, S.; De Vivo, R.; Ferrandina, G.; Gallo, C.; et al. A Phase II Study of Weekly Carboplatin and Paclitaxel as First-Line Treatment of Elderly Patients with Advanced Ovarian Cancer. A Multicentre Italian Trial in Ovarian Cancer (MITO-5) Study. Crit. Rev. Oncol. Hematol. 2008, 66, 229–236. [Google Scholar] [CrossRef] [PubMed]
  108. du Bois, A.; Luck, H.J.; Meier, W.; Adams, H.P.; Mobus, V.; Costa, S.; Bauknecht, T.; Richter, B.; Warm, M.; Schroder, W.; et al. A Randomized Clinical Trial of Cisplatin/Paclitaxel versus Carboplatin/Paclitaxel as First-Line Treatment of Ovarian Cancer. J. Natl. Cancer Inst. 2003, 95, 1320–1329. [Google Scholar] [CrossRef] [PubMed]
  109. Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R. Phase III Trial of Carboplatin and Paclitaxel Compared with Cisplatin and Paclitaxel in Patients with Optimally Resected Stage III Ovarian Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef]
  110. Hilpert, F.; du Bois, A.; Greimel, E.R.; Hedderich, J.; Krause, G.; Venhoff, L.; Loibl, S.; Pfisterer, J. Feasibility, Toxicity and Quality of Life of First-Line Chemotherapy with Platinum/Paclitaxel in Elderly Patients Aged ≥70 Years with Advanced Ovarian Cancer--a Study by the AGO OVAR Germany. Ann. Oncol. 2006, 18, 282–287. [Google Scholar] [CrossRef]
  111. Pignata, S.; Scambia, G.; Katsaros, D.; Gallo, C.; Pujade-Lauraine, E.; Placido, S.D.; Bologna, A.; Weber, B.; Raspagliesi, F.; Panici, P.B.; et al. Carboplatin plus Paclitaxel Once a Week versus Every 3 Weeks in Patients with Advanced Ovarian Cancer (MITO-7): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2014, 15, 396–405. [Google Scholar] [CrossRef]
  112. Chan, J.K.; Brady, M.F.; Penson, R.T.; Huang, H.; Birrer, M.J.; Walker, J.L.; DiSilvestro, P.A.; Rubin, S.C.; Martin, L.P.; Davidson, S.A.; et al. Weekly vs. Every-3-Week Paclitaxel and Carboplatin for Ovarian Cancer. N. Engl. J. Med. 2016, 374, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  113. Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. [Google Scholar] [CrossRef]
  114. Perren, T.J.; Swart, A.M.; Pfisterer, J.; Ledermann, J.A.; Pujade-Lauraine, E.; Kristensen, G.; Carey, M.S.; Beale, P.; Cervantes, A.; Kurzeder, C.; et al. A Phase 3 Trial of Bevacizumab in Ovarian Cancer. N. Engl. J. Med. 2011, 365, 2484–2496. [Google Scholar] [CrossRef] [Green Version]
  115. Valabrega, G.; Pothuri, B.; Oaknin, A.; Graybill, W.; Sanchez, A.B.; Mccormick, C.; Baurain, J.-F.; Hoskins, P.; Denys, H.; O’Cearbhaill, R.E.; et al. Efficacy and Safety of Niraparib in Older Patients (Pts) with Advanced Ovarian Cancer (OC): Results from the PRIMA/ENGOT-OV26/GOG-3012 Trial. Ann. Oncol. 2020, 31, S619. [Google Scholar] [CrossRef]
  116. Papadimitriou, C.A.; Fountzilas, G.; Aravantinos, G.; Kalofonos, C.; Moulopoulos, L.A.; Briassoulis, E.; Gika, D.; Dimopoulos, M.-A. Second-Line Chemotherapy with Gemcitabine and Carboplatin in Paclitaxel-Pretreated, Platinum-Sensitive Ovarian Cancer Patients: A Hellenic Cooperative Oncology Group Study. Gynecol. Oncol. 2004, 92, 152–159. [Google Scholar] [CrossRef]
  117. Monk, B.J.; Herzog, T.J.; Kaye, S.B.; Krasner, C.N.; Vermorken, J.B.; Muggia, F.M.; Pujade-Lauraine, E.; Lisyanskaya, A.S.; Makhson, A.N.; Rolski, J.; et al. Trabectedin plus Pegylated Liposomal Doxorubicin in Recurrent Ovarian Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 3107–3114. [Google Scholar] [CrossRef] [PubMed]
  118. Gonzalez-Martin, A.; Gladieff, L.; Tholander, B.; Stroyakovsky, D.; Gore, M.; Scambia, G.; Kovalenko, N.; Oaknin, A.; Ronco, J.P.; Freudensprung, U.; et al. Efficacy and Safety Results from OCTAVIA, a Single-Arm Phase II Study Evaluating Front-Line Bevacizumab, Carboplatin and Weekly Paclitaxel for Ovarian Cancer. Eur. J. Cancer 2013, 49, 3831–3838. [Google Scholar] [CrossRef] [PubMed]
  119. Aghajanian, C.; Blank, S.V.; Goff, B.A.; Judson, P.L.; Teneriello, M.G.; Husain, A.; Sovak, M.A.; Yi, J.; Nycum, L.R. OCEANS: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Chemotherapy with or without Bevacizumab in Patients with Platinum-Sensitive Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 2039–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  120. Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F.; Gebski, V.; Penson, R.T.; Oza, A.M.; Korach, J.; Huzarski, T.; Poveda, A.; Pignata, S.; et al. Olaparib Tablets as Maintenance Therapy in Patients with Platinum-Sensitive, Relapsed Ovarian Cancer and a BRCA1/2 Mutation (SOLO2/ENGOT-Ov21): A Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2017, 18, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
  121. Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N. Engl. J. Med. 2016, 375, 2154–2164. [Google Scholar] [CrossRef] [PubMed]
  122. Fabbro, M.; Moore, K.N.; Dørum, A.; Tinker, A.V.; Mahner, S.; Bover, I.; Banerjee, S.; Tognon, G.; Goffin, F.; Shapira-Frommer, R.; et al. Efficacy and Safety of Niraparib as Maintenance Treatment in Older Patients (≥70 years) with Recurrent Ovarian Cancer: Results from the ENGOT-OV16/NOVA Trial. Gynecol. Oncol. 2019, 152, 560–567. [Google Scholar] [CrossRef] [Green Version]
  123. Coleman, R.E.; Biganzoli, L.; Canney, P.; Dirix, L.; Mauriac, L.; Chollet, P.; Batter, V.; Ngalula-Kabanga, E.; Dittrich, C.; Piccart, M. A Randomised Phase II Study of Two Different Schedules of Pegylated Liposomal Doxorubicin in Metastatic Breast Cancer (EORTC-10993). Eur. J. Cancer 2006, 42, 882–887. [Google Scholar] [CrossRef]
  124. Mirza, M.R.; Lundqvist, E.Å.; Birrer, M.J.; dePont Christensen, R.; Nyvang, G.-B.; Malander, S.; Anttila, M.; Werner, T.L.; Lund, B.; Lindahl, G.; et al. Niraparib plus Bevacizumab versus Niraparib Alone for Platinum-Sensitive Recurrent Ovarian Cancer (NSGO-AVANOVA2/ENGOT-Ov24): A Randomised, Phase 2, Superiority Trial. Lancet Oncol. 2019, 20, 1409–1419. [Google Scholar] [CrossRef]
  125. Omura, G.A.; Brady, M.F.; Look, K.Y.; Averette, H.E.; Delmore, J.E.; Long, H.J.; Wadler, S.; Spiegel, G.; Arbuck, S.G. Phase III Trial of Paclitaxel at Two Dose Levels, the Higher Dose Accompanied by Filgrastim at Two Dose Levels in Platinum-Pretreated Epithelial Ovarian Cancer: An Intergroup Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 2843–2848. [Google Scholar] [CrossRef]
  126. Kudelka, A.P.; Tresukosol, D.; Edwards, C.L.; Freedman, R.S.; Levenback, C.; Chantarawiroj, P.; Gonzalez de Leon, C.; Kim, E.E.; Madden, T.; Wallin, B.; et al. Phase II Study of Intravenous Topotecan as a 5-Day Infusion for Refractory Epithelial Ovarian Carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1996, 14, 1552–1557. [Google Scholar] [CrossRef]
  127. McGuire, W.P.; Blessing, J.A.; Bookman, M.A.; Lentz, S.S.; Dunton, C.J. Topotecan Has Substantial Antitumor Activity as First-Line Salvage Therapy in Platinum-Sensitive Epithelial Ovarian Carcinoma: A Gynecologic Oncology Group Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
  128. Safra, T.; Menczer, J.; Bernstein, R.; Shpigel, S.; Inbar, M.J.; Grisaru, D.; Golan, A.; Levy, T. Efficacy and Toxicity of Weekly Topotecan in Recurrent Epithelial Ovarian and Primary Peritoneal Cancer. Gynecol. Oncol. 2007, 105, 205–210. [Google Scholar] [CrossRef] [PubMed]
  129. Morris, R.; Alvarez, R.D.; Andrews, S.; Malone, J.; Bryant, C.; Heilbrun, L.K.; Smith, D.; Schimp, V.; Munkarah, A. Topotecan Weekly Bolus Chemotherapy for Relapsed Platinum-Sensitive Ovarian and Peritoneal Cancers. Gynecol. Oncol. 2008, 109, 346–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  130. Mutch, D.G.; Orlando, M.; Goss, T.; Teneriello, M.G.; Gordon, A.N.; McMeekin, S.D.; Wang, Y.; Scribner, D.R.; Marciniack, M.; Naumann, R.W.; et al. Randomized Phase III Trial of Gemcitabine Compared with Pegylated Liposomal Doxorubicin in Patients with Platinum-Resistant Ovarian Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 2811–2818. [Google Scholar] [CrossRef] [PubMed]
  131. Naumann, R.W.; Coleman, R.L.; Burger, R.A.; Sausville, E.A.; Kutarska, E.; Ghamande, S.A.; Gabrail, N.Y.; Depasquale, S.E.; Nowara, E.; Gilbert, L.; et al. PRECEDENT: A Randomized Phase II Trial Comparing Vintafolide (EC145) and Pegylated Liposomal Doxorubicin (PLD) in Combination versus PLD Alone in Patients with Platinum-Resistant Ovarian Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 4400–4406. [Google Scholar] [CrossRef]
  132. Verschraegen, C.F.; Sittisomwong, T.; Kudelka, A.P.; de Paula Guedes, E.; Steger, M.; Nelson-Taylor, T.; Vincent, M.; Rogers, R.; Atkinson, E.N.; Kavanagh, J.J. Docetaxel for Patients with Paclitaxel-Resistant Müllerian Carcinoma. J. Clin. Oncol. 2000, 18, 2733–2739. [Google Scholar] [CrossRef]
  133. Pujade-Lauraine, E.; Hilpert, F.; Weber, B.; Reuss, A.; Poveda, A.; Kristensen, G.; Sorio, R.; Vergote, I.; Witteveen, P.; Bamias, A.; et al. Bevacizumab Combined with Chemotherapy for Platinum-Resistant Recurrent Ovarian Cancer: The AURELIA Open-Label Randomized Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 1302–1308. [Google Scholar] [CrossRef]
  134. Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib Maintenance Treatment for Recurrent Ovarian Carcinoma after Response to Platinum Therapy (ARIEL3): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Lond. Engl. 2017, 390, 1949–1961. [Google Scholar] [CrossRef] [Green Version]
  135. Klotz, L.; Boccon-Gibod, L.; Shore, N.D.; Andreou, C.; Persson, B.-E.; Cantor, P.; Jensen, J.-K.; Olesen, T.K.; Schröder, F.H. The Efficacy and Safety of Degarelix: A 12-Month, Comparative, Randomized, Open-Label, Parallel-Group Phase III Study in Patients with Prostate Cancer. BJU Int. 2008, 102, 1531–1538. [Google Scholar] [CrossRef]
  136. Small, E.J.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide and Overall Survival in Non-Metastatic Castration-Resistant Prostate Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1813–1820. [Google Scholar] [CrossRef] [Green Version]
  137. Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef] [PubMed]
  138. James, N.D.; de Bono, J.S.; Spears, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Ritchie, A.W.S.; Amos, C.L.; Gilson, C.; Jones, R.J.; et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N. Engl. J. Med. 2017, 377, 338–351. [Google Scholar] [CrossRef] [PubMed]
  139. Davis, I.D.; Martin, A.J.; Stockler, M.R.; Begbie, S.; Chi, K.N.; Chowdhury, S.; Coskinas, X.; Frydenberg, M.; Hague, W.E.; Horvath, L.G.; et al. Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 121–131. [Google Scholar] [CrossRef] [PubMed]
  140. Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy with Enzalutamide or Placebo in Men with Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef]
  141. Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez Soto, Á.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef]
  142. Heyns, C.F.; Simonin, M.-P.; Grosgurin, P.; Schall, R.; Porchet, H.C.; South African Triptorelin Study Group. Comparative Efficacy of Triptorelin Pamoate and Leuprolide Acetate in Men with Advanced Prostate Cancer. BJU Int. 2003, 92, 226–231. [Google Scholar] [CrossRef]
  143. Ahmann, F.R.; Citrin, D.L.; deHaan, H.A.; Guinan, P.; Jordan, V.C.; Kreis, W.; Scott, M.; Trump, D.L. Zoladex: A Sustained-Release, Monthly Luteinizing Hormone-Releasing Hormone Analogue for the Treatment of Advanced Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1987, 5, 912–917. [Google Scholar] [CrossRef]
  144. Metz, R.; Namer, M.; Adenis, L.; Audhuy, B.; Bugat, R.; Colombel, P.; Couette, J.E.; Grise, P.; Khater, R.; LePorz, B. Zoladex as Primary Therapy in Advanced Prostatic Cancer. A French Cooperative Trial. Am. J. Clin. Oncol. 1988, 11 (Suppl. S2), S112–S114. [Google Scholar] [CrossRef]
  145. Gravis, G.; Fizazi, K.; Joly, F.; Oudard, S.; Priou, F.; Esterni, B.; Latorzeff, I.; Delva, R.; Krakowski, I.; Laguerre, B.; et al. Androgen-Deprivation Therapy Alone or with Docetaxel in Non-Castrate Metastatic Prostate Cancer (GETUG-AFU 15): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2013, 14, 149–158. [Google Scholar] [CrossRef]
  146. Sweeney, C.J.; Chen, Y.-H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.-N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef]
  147. de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B.; Saad, F.; et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
  148. Mulders, P.F.A.; Molina, A.; Marberger, M.; Saad, F.; Higano, C.S.; Chi, K.N.; Li, J.; Kheoh, T.; Haqq, C.M.; Fizazi, K. Efficacy and Safety of Abiraterone Acetate in an Elderly Patient Subgroup (Aged 75 and Older) with Metastatic Castration-Resistant Prostate Cancer after Docetaxel-Based Chemotherapy. Eur. Urol. 2014, 65, 875–883. [Google Scholar] [CrossRef]
  149. Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  150. Penson, D.F.; Armstrong, A.J.; Concepcion, R.; Agarwal, N.; Olsson, C.; Karsh, L.; Dunshee, C.; Wang, F.; Wu, K.; Krivoshik, A.; et al. Enzalutamide Versus Bicalutamide in Castration-Resistant Prostate Cancer: The STRIVE Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2098–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  151. Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  152. Fizazi, K.; Scher, H.I.; Miller, K.; Basch, E.; Sternberg, C.N.; Cella, D.; Forer, D.; Hirmand, M.; de Bono, J.S. Effect of Enzalutamide on Time to First Skeletal-Related Event, Pain, and Quality of Life in Men with Castration-Resistant Prostate Cancer: Results from the Randomised, Phase 3 AFFIRM Trial. Lancet Oncol. 2014, 15, 1147–1156. [Google Scholar] [CrossRef]
  153. Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [Green Version]
  154. Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
  155. Hervonen, P.; Joensuu, H.; Joensuu, T.; Claes, G.; Ray, M.; Ulrika, H.; Paul, N.; Tiina, L.; Akseli, H.; Igor, Z.; et al. Biweekly Docetaxel Is Better Tolerated than Conventional Three-Weekly Dosing for Advanced Hormone-Refractory Prostate Cancer. Anticancer Res. 2012, 32, 953–956. [Google Scholar]
  156. de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.-P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus Cabazitaxel or Mitoxantrone for Metastatic Castration-Resistant Prostate Cancer Progressing after Docetaxel Treatment: A Randomised Open-Label Trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
  157. De Bono, J.S.; Hardy-Bessard, A.-C.; Choung-So, K.; Geczi, L.; Ford, D.; Mouray, L.; Carles, J.; Parente, P.; Kacso, G.; Chadjaa, M.; et al. Phase III Non-Inferiority Study of Cabazitaxel (C) 20 Mg/M2 (C20) versus 25 Mg/M2 (C25) in Patients (Pts) with Metastatic Castration-Resistant Prostate Cancer (MCRPC) Previously Treated with Docetaxel (D). J. Clin. Oncol. 2016, 34, 5008. [Google Scholar] [CrossRef]
  158. Parker, C.; Finkelstein, S.E.; Michalski, J.M.; O’Sullivan, J.M.; Bruland, Ø.; Vogelzang, N.J.; Coleman, R.E.; Nilsson, S.; Sartor, O.; Li, R.; et al. Efficacy and Safety of Radium-223 Dichloride in Symptomatic Castration-Resistant Prostate Cancer Patients with or without Baseline Opioid Use From the Phase 3 ALSYMPCA Trial. Eur. Urol. 2016, 70, 875–883. [Google Scholar] [CrossRef] [Green Version]
  159. de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
  160. Dreicer, R.; Manola, J.; Roth, B.J.; See, W.A.; Kuross, S.; Edelman, M.J.; Hudes, G.R.; Wilding, G. Phase III Trial of Methotrexate, Vinblastine, Doxorubicin, and Cisplatin versus Carboplatin and Paclitaxel in Patients with Advanced Carcinoma of the Urothelium. Cancer 2004, 100, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
  161. Sternberg, C.N.; de Mulder, P.; Schornagel, J.H.; Theodore, C.; Fossa, S.D.; van Oosterom, A.T.; Witjes, J.A.; Spina, M.; van Groeningen, C.J.; Duclos, B.; et al. Seven Year Update of an EORTC Phase III Trial of High-Dose Intensity M-VAC Chemotherapy and G-CSF versus Classic M-VAC in Advanced Urothelial Tract Tumours. Eur. J. Cancer 2006, 42, 50–54. [Google Scholar] [CrossRef] [PubMed]
  162. Sternberg, C.N.; de Mulder, P.H.; Schornagel, J.H.; Théodore, C.; Fossa, S.D.; van Oosterom, A.T.; Witjes, F.; Spina, M.; van Groeningen, C.J.; de Balincourt, C.; et al. Randomized Phase III Trial of High-Dose-Intensity Methotrexate, Vinblastine, Doxorubicin, and Cisplatin (MVAC) Chemotherapy and Recombinant Human Granulocyte Colony-Stimulating Factor versus Classic MVAC in Advanced Urothelial Tract Tumors: European Organization for Research and Treatment of Cancer Protocol No. 30924. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 2638–2646. [Google Scholar]
  163. von der Maase, H. Gemcitabine in Locally Advanced and/or Metastatic Bladder Cancer. Crit. Rev. Oncol. Hematol. 2000, 34, 175–183. [Google Scholar] [CrossRef]
  164. Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
  165. Bellmunt, J.; Théodore, C.; Demkov, T.; Komyakov, B.; Sengelov, L.; Daugaard, G.; Caty, A.; Carles, J.; Jagiello-Gruszfeld, A.; Karyakin, O.; et al. Phase III Trial of Vinflunine Plus Best Supportive Care Compared with Best Supportive Care Alone After a Platinum-Containing Regimen in Patients with Advanced Transitional Cell Carcinoma of the Urothelial Tract. J. Clin. Oncol. 2009, 27, 4454–4461. [Google Scholar] [CrossRef]
  166. Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
  167. Rosenberg, J.E.; O’Donnell, P.H.; Balar, A.V.; McGregor, B.A.; Heath, E.I.; Yu, E.Y.; Galsky, M.D.; Hahn, N.M.; Gartner, E.M.; Pinelli, J.M.; et al. Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2592–2600. [Google Scholar] [CrossRef] [PubMed]
  168. Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
  169. Lonardi, S.; Sobrero, A.; Rosati, G.; Di Bartolomeo, M.; Ronzoni, M.; Aprile, G.; Massida, B.; Scartozzi, M.; Banzi, M.; Zampino, M.G.; et al. Phase III Trial Comparing 3-6 Months of Adjuvant FOLFOX4/XELOX in Stage II-III Colon Cancer: Safety and Compliance in the TOSCA Trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2016, 27, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
  170. Iveson, T.J.; Kerr, R.S.; Saunders, M.P.; Cassidy, J.; Hollander, N.H.; Tabernero, J.; Haydon, A.; Glimelius, B.; Harkin, A.; Allan, K.; et al. 3 versus 6 Months of Adjuvant Oxaliplatin-Fluoropyrimidine Combination Therapy for Colorectal Cancer (SCOT): An International, Randomised, Phase 3, Non-Inferiority Trial. Lancet Oncol. 2018, 19, 562–578. [Google Scholar] [CrossRef] [Green Version]
  171. André, T.; Vernerey, D.; Mineur, L.; Bennouna, J.; Desrame, J.; Faroux, R.; Fratte, S.; Hug de Larauze, M.; Paget-Bailly, S.; Chibaudel, B.; et al. Three Versus 6 Months of Oxaliplatin-Based Adjuvant Chemotherapy for Patients with Stage III Colon Cancer: Disease-Free Survival Results From a Randomized, Open-Label, International Duration Evaluation of Adjuvant (IDEA) France, Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
  172. André, T.; Boni, C.; Mounedji-Boudiaf, L.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Zaninelli, M.; Clingan, P.; Bridgewater, J.; et al. Oxaliplatin, Fluorouracil, and Leucovorin as Adjuvant Treatment for Colon Cancer. N. Engl. J. Med. 2004, 350, 2343–2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  173. Twelves, C.; Wong, A.; Nowacki, M.P.; Abt, M.; Burris, H.; Carrato, A.; Cassidy, J.; Cervantes, A.; Fagerberg, J.; Georgoulias, V.; et al. Capecitabine as Adjuvant Treatment for Stage III Colon Cancer. N. Engl. J. Med. 2005, 352, 2696–2704. [Google Scholar] [CrossRef]
  174. Alberts, S.R.; Sargent, D.J.; Nair, S.; Mahoney, M.R.; Mooney, M.; Thibodeau, S.N.; Smyrk, T.C.; Sinicrope, F.A.; Chan, E.; Gill, S.; et al. Effect of Oxaliplatin, Fluorouracil, and Leucovorin with or without Cetuximab on Survival among Patients with Resected Stage III Colon Cancer: A Randomized Trial. JAMA 2012, 307, 1383–1393. [Google Scholar] [CrossRef] [Green Version]
  175. Taieb, J.; Tabernero, J.; Mini, E.; Subtil, F.; Folprecht, G.; Van Laethem, J.-L.; Thaler, J.; Bridgewater, J.; Petersen, L.N.; Blons, H.; et al. Oxaliplatin, Fluorouracil, and Leucovorin with or without Cetuximab in Patients with Resected Stage III Colon Cancer (PETACC-8): An Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 862–873. [Google Scholar] [CrossRef]
  176. Cunningham, D.; Lang, I.; Marcuello, E.; Lorusso, V.; Ocvirk, J.; Shin, D.B.; Jonker, D.; Osborne, S.; Andre, N.; Waterkamp, D.; et al. Bevacizumab plus Capecitabine versus Capecitabine Alone in Elderly Patients with Previously Untreated Metastatic Colorectal Cancer (AVEX): An Open-Label, Randomised Phase 3 Trial. Lancet Oncol. 2013, 14, 1077–1085. [Google Scholar] [CrossRef]
  177. Madajewicz, S.; Waterhouse, D.M.; Ritch, P.S.; Khan, M.Q.; Higby, D.J.; Leichman, C.G.; Malik, S.K.; Hentschel, P.; Gill, J.F.; Zhao, L.; et al. Multicenter, Randomized Phase II Trial of Bevacizumab plus Folinic Acid, Fluorouracil, Gemcitabine (FFG) versus Bevacizumab plus Folinic Acid, Fluorouracil, Oxaliplatin (FOLFOX4) as First-Line Therapy for Patients with Advanced Colorectal Cancer. Investig. New Drugs 2010, 30, 772–778. [Google Scholar] [CrossRef]
  178. Zhao, C.; Zhang, H.; Ye, Y.; Sun, J.; Li, P. Meta-Analysis of TOMOX versus FOLFOX Regimens for the Treatment of Advanced Colorectal Cancer. Int. J. Clin. Exp. Med. 2016, 9, 5616–5629. [Google Scholar]
  179. Benavides, M.; Pericay, C.; Valladares-Ayerbes, M.; Gil-Calle, S.; Massutí, B.; Aparicio, J.; Dueñas, R.; González-Flores, E.; Carrato, A.; Marcuello, E.; et al. Oxaliplatin in Combination with Infusional 5-Fluorouracil as First-Line Chemotherapy for Elderly Patients with Metastatic Colorectal Cancer: A Phase II Study of the Spanish Cooperative Group for the Treatment of Digestive Tumors. Clin. Colorectal Cancer 2012, 11, 200–206. [Google Scholar] [CrossRef]
  180. Cassidy, J.; Tabernero, J.; Twelves, C.; Brunet, R.; Butts, C.; Conroy, T.; Debraud, F.; Figer, A.; Grossmann, J.; Sawada, N.; et al. XELOX (Capecitabine plus Oxaliplatin): Active First-Line Therapy for Patients with Metastatic Colorectal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 2084–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Twelves, C.J.; Butts, C.A.; Cassidy, J.; Conroy, T.; de Braud, F.; Diaz-Rubio, E.; Tabernero, J.M.; Schoffski, P.; Figer, A.; Brunet, R.; et al. Capecitabine/Oxaliplatin, a Safe and Active First-Line Regimen for Older Patients with Metastatic Colorectal Cancer: Post Hoc Analysis of a Large Phase II Study. Clin. Colorectal Cancer 2005, 5, 101–107. [Google Scholar] [CrossRef] [PubMed]
  182. Feliu, J.; Salud, A.; Escudero, P.; Lopez-Gómez, L.; Bolaños, M.; Galán, A.; Vicent, J.-M.; Yubero, A.; Losa, F.; De Castro, J.; et al. XELOX (Capecitabine plus Oxaliplatin) as First-Line Treatment for Elderly Patients over 70 Years of Age with Advanced Colorectal Cancer. Br. J. Cancer 2006, 94, 969–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Grande, C.; Quintero, G.; Candamio, S.; París Bouzas, L.; Villanueva, M.J.; Campos, B.; Gallardo, E.; Alvarez, E.; Casal, J.; Mel, J.R. Biweekly XELOX (Capecitabine and Oxaliplatin) as First-Line Treatment in Elderly Patients with Metastatic Colorectal Cancer. J. Geriatr. Oncol. 2013, 4, 114–121. [Google Scholar] [CrossRef]
  184. Seymour, M.T.; Thompson, L.C.; Wasan, H.S.; Middleton, G.; Brewster, A.E.; Shepherd, S.F.; O’Mahony, M.S.; Maughan, T.S.; Parmar, M.; Langley, R.E.; et al. Chemotherapy Options in Elderly and Frail Patients with Metastatic Colorectal Cancer (MRC FOCUS2): An Open-Label, Randomised Factorial Trial. Lancet Lond. Engl. 2011, 377, 1749–1759. [Google Scholar] [CrossRef] [Green Version]
  185. Bae, S.-B.; Lee, N.-S.; Kim, H.-J.; Kim, K.-H.; Kim, H.-J.; Kim, C.-K.; Lee, K.-T.; Park, S.-K.; Won, J.-H.; Hong, D.-S.; et al. A Phase II Study of Irinotecan, 5-Fluorouracil and Leucovorin for Treatment in Patients with Previously Untreated Advanced Colorectal Cancer. Cancer Res. Treat. Cancer Res. Treat. 2006, 38, 72–77. [Google Scholar] [CrossRef]
  186. Falcone, A.; Ricci, S.; Brunetti, I.; Pfanner, E.; Allegrini, G.; Barbara, C.; Crinò, L.; Benedetti, G.; Evangelista, W.; Fanchini, L.; et al. Phase III Trial of Infusional Fluorouracil, Leucovorin, Oxaliplatin, and Irinotecan (FOLFOXIRI) Compared with Infusional Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI) As First-Line Treatment for Metastatic Colorectal Cancer: The Gruppo Oncologico Nord Ovest. J. Clin. Oncol. 2007, 25, 1670–1676. [Google Scholar] [CrossRef]
  187. Moehler, M.; Ababneh, Y.; Verpoort, K.; Schmidt, B.; Musch, R.; Soeling, U.; Maintz, C.; Siebler, J.; Schimanski, C.C.; Galle, P.R.; et al. Efficacy and Safety of Irinotecan-Based Chemotherapy for Advanced Colorectal Cancer Outside Clinical Trials: An Observational Study. Oncol. Res. Treat. 2010, 33, 684–690. [Google Scholar] [CrossRef] [Green Version]
  188. Cutsem, E.V.; Lenz, H.-J.; Köhne, C.-H.; Heinemann, V.; Tejpar, S.; Melezínek, I.; Beier, F.; Stroh, C.; Rougier, P.; van Krieken, J.H.; et al. Fluorouracil, Leucovorin, and Irinotecan Plus Cetuximab Treatment and RAS Mutations in Colorectal Cancer. J. Clin. Oncol. 2015, 33, 692–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  189. Xu, W.; Kuang, M.; Gong, Y.; Cao, C.; Chen, J.; Tang, C. Survival Benefit and Safety of the Combinations of FOLFOXIRI ± Bevacizumab versus the Combinations of FOLFIRI ± Bevacizumab as First-Line Treatment for Unresectable Metastatic Colorectal Cancer: A Meta-Analysis. OncoTargets Ther. 2016, 9, 4833. [Google Scholar] [CrossRef] [Green Version]
  190. Park, S.H.; Bang, S.-M.; Cho, E.K.; Baek, J.H.; Oh, J.H.; Im, S.A.; Park, Y.S.; Shin, D.B.; Lee, J.H. First-Line Chemotherapy with Irinotecan plus Capecitabine for Advanced Colorectal Cancer. Oncology 2004, 66, 353–357. [Google Scholar] [CrossRef] [PubMed]
  191. Cartwright, T.; Lopez, T.; Vukelja, S.J.; Encarnacion, C.; Boehm, K.A.; Asmar, L. Results of a Phase II Open-Label Study of Capecitabine in Combination with Irinotecan as First-Line Treatment for Metastatic Colorectal Cancer. Clin. Colorectal Cancer 2005, 5, 50–56. [Google Scholar] [CrossRef]
  192. Borner, M.M.; Bernhard, J.; Dietrich, D.; Popescu, R.; Wernli, M.; Saletti, P.; Rauch, D.; Herrmann, R.; Koeberle, D.; Honegger, H.; et al. A Randomized Phase II Trial of Capecitabine and Two Different Schedules of Irinotecan in First-Line Treatment of Metastatic Colorectal Cancer: Efficacy, Quality-of-Life and Toxicity. Ann. Oncol. 2005, 16, 282–288. [Google Scholar] [CrossRef]
  193. Choi, C.K.K.; Chan, R.T.T.; Tung, S.Y.; Lui, L.; Siu, S.; Au, G.K.H.; Ho, J.W.C.; Law, W.L. Efficacy of Combination Chemotherapy with Irinotecan (CPT-11) plus Capecitabine in Patients with Metastatic or Advanced Colorectal Carcinoma—A Dual-Centre Phase II Study: The MAC-6. Clin. Oncol. 2008, 20, 168–175. [Google Scholar] [CrossRef]
  194. Skof, E.; Rebersek, M.; Hlebanja, Z.; Ocvirk, J. Capecitabine plus Irinotecan (XELIRI Regimen) Compared to 5-FU/LV plus Irinotecan (FOLFIRI Regimen) as Neoadjuvant Treatment for Patients with Unresectable Liver-Only Metastases of Metastatic Colorectal Cancer: A Randomised Prospective Phase II Trial. BMC Cancer 2009, 9, 120. [Google Scholar] [CrossRef] [Green Version]
  195. Gennatas, C.; Michalaki, V.; Gennatas, S.; Papalambros, E. Irinotecan plus Capecitabine as First-Line Chemotherapy in Advanced Colorectal Cancer. Anticancer Res. 2008, 28, 1923–1926. [Google Scholar]
  196. Kim, T.W.; Kang, W.K.; Chang, H.M.; Park, J.O.; Ryoo, B.Y.; Ahn, J.S.; Zang, D.Y.; Lee, K.H.; Kang, Y.K.; Kim, S.R.; et al. Multicenter Phase II Study of Oral Capecitabine plus Irinotecan as First-Line Chemotherapy in Advanced Colorectal Cancer: A Korean Cancer Study Group Trial. Acta Oncol. 2005, 44, 230–235. [Google Scholar] [CrossRef]
  197. Garcia-Alfonso, P.; Muñoz-Martin, A.; Mendez-Ureña, M.; Quiben-Pereira, R.; Gonzalez-Flores, E.; Perez-Manga, G. Capecitabine in Combination with Irinotecan (XELIRI), Administered as a 2-Weekly Schedule, as First-Line Chemotherapy for Patients with Metastatic Colorectal Cancer: A Phase II Study of the Spanish GOTI Group. Br. J. Cancer 2009, 101, 1039–1043. [Google Scholar] [CrossRef]
  198. Guion-Dusserre, J.-F.; Bertaut, A.; Ghiringhelli, F.; Vincent, J.; Quipourt, V.; Marilier, S.; Tharin, Z.; Bengrine-Lefevre, L. Folfirinox in Elderly Patients with Pancreatic or Colorectal Cancer-Tolerance and Efficacy. World J. Gastroenterol. 2016, 22, 9378. [Google Scholar] [CrossRef] [PubMed]
  199. Vasile, E.; Masi, G.; Fornaro, L.; Cupini, S.; Loupakis, F.; Bursi, S.; Petrini, I.; Di Donato, S.; Brunetti, I.M.; Ricci, S.; et al. A Multicenter Phase II Study of the Combination of Oxaliplatin, Irinotecan and Capecitabine in the First-Line Treatment of Metastatic Colorectal Cancer. Br. J. Cancer 2009, 100, 1720–1724. [Google Scholar] [CrossRef] [Green Version]
  200. Bajetta, E.; Verzoni, E.; Ferrario, E.; Dotti, K.; Gevorgyan, A.; Celio, L. Feasibility Study of Biweekly Capecitabine, Oxaliplatin, and Irinotecan in Patients with Untreated Advanced Gastric Cancer. Tumori J. 2009, 95, 43–47. [Google Scholar] [CrossRef]
  201. Recchia, F.; Nuzzo, A.; Lalli, A.; Di Lullo, L.; De Filippis, S.; Saggio, G.; Di Blasio, A.; Rea, S. Multicenter Phase II Study of CPT-11 Fractionated over Two Days with Bimonthly Leucovorin and 5-Fluorouracil in Patients with Metastatic Colorectal Cancer. Anticancer Res. 2003, 23, 2903–2908. [Google Scholar] [PubMed]
  202. Bécouarn, Y.; Senesse, P.; Thézenas, S.; Boucher, E.; Adenis, A.; Cany, L.; Jacob, J.H.; Cvitkovic, F.; Montoto-Grillot, C.; Ychou, M.; et al. A Randomized Phase II Trial Evaluating Safety and Efficacy of an Experimental Chemotherapy Regimen (Irinotecan + Oxaliplatin, IRINOX) and Two Standard Arms (LV5 FU2 + Irinotecan or LV5 FU2 + Oxaliplatin) in First-Line Metastatic Colorectal Cancer: A Study of the Digestive Group of the Fédération Nationale Des Centres de Lutte Contre Le Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2007, 18, 2000–2005. [Google Scholar] [CrossRef]
  203. Cunningham, D.; Zalcberg, J.R.; Rath, U.; Olver, I.; Van Cutsem, E.; Svensson, C.; Scitz, J.F.; Harper, P.; Kerr, D.; Perez-Manga, G.; et al. ‘Tomudex’ (ZD1694): Results of a Randomised Trial in Advanced Colorectal Cancer Demonstrate Efficacy and Reduced Mucositis and Leucopenia. Eur. J. Cancer 1995, 31, 1945–1954. [Google Scholar] [CrossRef]
  204. Cascinu, S.; Graziano, F.; Ferraù, F.; Catalano, V.; Massacesi, C.; Santini, D.; Silva, R.R.; Barni, S.; Zaniboni, A.; Battelli, N.; et al. Raltitrexed plus Oxaliplatin (TOMOX) as First-Line Chemotherapy for Metastatic Colorectal Cancer. A Phase II Study of the Italian Group for the Study of Gastrointestinal Tract Carcinomas (GISCAD). Ann. Oncol. 2002, 13, 716–720. [Google Scholar] [CrossRef]
  205. Feliu, J.; Castañón, C.; Salud, A.; Mel, J.R.; Escudero, P.; Pelegrín, A.; López-Gómez, L.; Ruiz, M.; González, E.; Juárez, F.; et al. Phase II Randomised Trial of Raltitrexed–Oxaliplatin vs Raltitrexed–Irinotecan as First-Line Treatment in Advanced Colorectal Cancer. Br. J. Cancer 2005, 93, 1230–1235. [Google Scholar] [CrossRef] [Green Version]
  206. Feliu, J.; Salud, A.; Escudero, P.; López-Gómez, L.; Pericay, C.; Castañón, C.; de Tejada, M.R.L.; Rodríguez-García, J.M.; Martínez, M.P.; Martín, M.S.; et al. Irinotecan plus Raltitrexed as First-Line Treatment in Advanced Colorectal Cancer: A Phase II Study. Br. J. Cancer 2004, 90, 1502–1507. [Google Scholar] [CrossRef]
  207. Loupakis, F.; Cremolini, C.; Masi, G.; Lonardi, S.; Zagonel, V.; Salvatore, L.; Cortesi, E.; Tomasello, G.; Ronzoni, M.; Spadi, R.; et al. Initial Therapy with FOLFOXIRI and Bevacizumab for Metastatic Colorectal Cancer. N. Engl. J. Med. 2014, 371, 1609–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  208. Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.-E.; Heintges, T.; Lerchenmüller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus Cetuximab versus FOLFIRI plus Bevacizumab as First-Line Treatment for Patients with Metastatic Colorectal Cancer (FIRE-3): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2014, 15, 1065–1075. [Google Scholar] [CrossRef]
  209. Yamazaki, K.; Nagase, M.; Tamagawa, H.; Ueda, S.; Tamura, T.; Murata, K.; Nakajima, T.E.; Baba, E.; Tsuda, M.; Moriwaki, T.; et al. Randomized Phase III Study of Bevacizumab plus FOLFIRI and Bevacizumab plus MFOLFOX6 as First-Line Treatment for Patients with Metastatic Colorectal Cancer (WJOG4407G). Ann. Oncol. 2016, 27, 1539–1546. [Google Scholar] [CrossRef]
  210. García-Alfonso, P.; Muñoz-Martin, A.J.; Alvarez-Suarez, S.; Jerez-Gilarranz, Y.; Riesco-Martinez, M.; Khosravi, P.; Martin, M. Bevacizumab in Combination with Biweekly Capecitabine and Irinotecan, as First-Line Treatment for Patients with Metastatic Colorectal Cancer. Br. J. Cancer 2010, 103, 1524–1528. [Google Scholar] [CrossRef]
  211. Garcia-Alfonso, P.; Chaves, M.; Muñoz, A.; Salud, A.; García-Gonzalez, M.; Grávalos, C.; Massuti, B.; González-Flores, E.; Queralt, B.; López-Ladrón, A.; et al. Capecitabine and Irinotecan with Bevacizumab 2-Weekly for Metastatic Colorectal Cancer: The Phase II AVAXIRI Study. BMC Cancer 2015, 15, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  212. Yamada, Y.; Takahari, D.; Matsumoto, H.; Baba, H.; Nakamura, M.; Yoshida, K.; Yoshida, M.; Iwamoto, S.; Shimada, K.; Komatsu, Y.; et al. Leucovorin, Fluorouracil, and Oxaliplatin plus Bevacizumab versus S-1 and Oxaliplatin plus Bevacizumab in Patients with Metastatic Colorectal Cancer (SOFT): An Open-Label, Non-Inferiority, Randomised Phase 3 Trial. Lancet Oncol. 2013, 14, 1278–1286. [Google Scholar] [CrossRef]
  213. Uehara, K.; Hiramatsu, K.; Maeda, A.; Sakamoto, E.; Inoue, M.; Kobayashi, S.; Tojima, Y.; Yoshioka, Y.; Nakayama, G.; Yatsuya, H.; et al. Neoadjuvant Oxaliplatin and Capecitabine and Bevacizumab without Radiotherapy for Poor-Risk Rectal Cancer: N-SOG 03 Phase II Trial. Jpn. J. Clin. Oncol. 2013, 43, 964–971. [Google Scholar] [CrossRef] [PubMed]
  214. Feliu, J.; Salud, A.; Safont, M.J.; García-Girón, C.; Aparicio, J.; Vera, R.; Serra, O.; Casado, E.; Jorge, M.; Escudero, P.; et al. First-Line Bevacizumab and Capecitabine-Oxaliplatin in Elderly Patients with MCRC: GEMCAD Phase II BECOX Study. Br. J. Cancer 2014, 111, 241–248. [Google Scholar] [CrossRef]
  215. Munemoto, Y.; Kanda, M.; Ishibashi, K.; Hata, T.; Kobayashi, M.; Hasegawa, J.; Fukunaga, M.; Takagane, A.; Otsuji, T.; Miyake, Y.; et al. Capecitabine and Oxaliplatin Combined with Bevacizumab Are Feasible for Treating Selected Japanese Patients at Least 75 Years of Age with Metastatic Colorectal Cancer. BMC Cancer 2015, 15, 786. [Google Scholar] [CrossRef] [Green Version]
  216. Naeim, A.; Ward, P.R.; Wang, H.-J.; Dichmann, R.; Liem, A.K.D.; Chan, D.; Patel, R.; Hu, E.H.L.; Tchekmedyian, N.S.; Wainberg, Z.A.; et al. A Phase II Trial of Frontline Capecitabine and Bevacizumab in Poor Performance Status and/or Elderly Patients with Metastatic Colorectal Cancer. J. Geriatr. Oncol. 2013, 4, 302–309. [Google Scholar] [CrossRef]
  217. Van Cutsem, E.; Tabernero, J.; Lakomy, R.; Prenen, H.; Prausová, J.; Macarulla, T.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.; Ferry, D.; et al. Addition of Aflibercept to Fluorouracil, Leucovorin, and Irinotecan Improves Survival in a Phase III Randomized Trial in Patients with Metastatic Colorectal Cancer Previously Treated with an Oxaliplatin-Based Regimen. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 3499–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  218. Jonker, D.J.; O’Callaghan, C.J.; Karapetis, C.S.; Zalcberg, J.R.; Tu, D.; Au, H.-J.; Berry, S.R.; Krahn, M.; Price, T.; Simes, R.J.; et al. Cetuximab for the Treatment of Colorectal Cancer. N. Engl. J. Med. 2007, 357, 2040–2048. [Google Scholar] [CrossRef] [Green Version]
  219. Fernandez-Plana, J.; Pericay, C.; Quintero, G.; Alonso, V.; Salud, A.; Mendez, M.; Salgado, M.; Saigi, E.; Cirera, L.; ACROSS Study Group. Biweekly Cetuximab in Combination with FOLFOX-4 in the First-Line Treatment of Wild-Type KRAS Metastatic Colorectal Cancer: Final Results of a Phase II, Open-Label, Clinical Trial (OPTIMIX-ACROSS Study). BMC Cancer 2014, 14, 865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  220. Soda, H.; Maeda, H.; Hasegawa, J.; Takahashi, T.; Hazama, S.; Fukunaga, M.; Kono, E.; Kotaka, M.; Sakamoto, J.; Nagata, N.; et al. Multicenter Phase II Study of FOLFOX or Biweekly XELOX and Erbitux (Cetuximab) as First-Line Therapy in Patients with Wild-Type KRAS/BRAF Metastatic Colorectal Cancer: The FLEET Study. BMC Cancer 2015, 15, 695. [Google Scholar] [CrossRef] [PubMed]
  221. Assenat, E.; Desseigne, F.; Thezenas, S.; Viret, F.; Mineur, L.; Kramar, A.; Samalin, E.; Portales, F.; Bibeau, F.; Crapez-Lopez, E.; et al. Cetuximab Plus FOLFIRINOX (ERBIRINOX) as First-Line Treatment for Unresectable Metastatic Colorectal Cancer: A Phase II Trial. Oncologist 2011, 16, 1557–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  222. Kang, M.J.; Hong, Y.S.; Kim, K.; Kim, S.Y.; Baek, J.Y.; Ryu, M.-H.; Lee, J.-L.; Chang, H.M.; Kim, M.-J.; Chang, H.J.; et al. Biweekly Cetuximab plus Irinotecan as Second-Line Chemotherapy for Patients with Irinotecan-Refractory and KRAS Wild-Type Metastatic Colorectal Cancer According to Epidermal Growth Factor Receptor Expression Status. Investig. New Drugs 2011, 30, 1607–1613. [Google Scholar] [CrossRef]
  223. Eng, C.; Bessudo, A.; Hart, L.L.; Severtsev, A.; Gladkov, O.; Müller, L.; Kopp, M.V.; Vladimirov, V.; Langdon, R.; Kotiv, B.; et al. A Randomized, Placebo-Controlled, Phase 1/2 Study of Tivantinib (ARQ 197) in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with Wild-Type KRAS Who Have Received First-Line Systemic Therapy. Int. J. Cancer 2016, 139, 177–186. [Google Scholar] [CrossRef] [Green Version]
  224. Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; André, T.; Chan, E.; Lordick, F.; Punt, C.J.A.; et al. Randomized Phase III Study of Panitumumab with Fluorouracil, Leucovorin, and Irinotecan (FOLFIRI) Compared with FOLFIRI Alone as Second-Line Treatment in Patients with Metastatic Colorectal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 4706–4713. [Google Scholar] [CrossRef]
  225. Grothey, A.; Cutsem, E.V.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
  226. Aparicio, T.; Darut-Jouve, A.; Khemissa Akouz, F.; Montérymard, C.; Artru, P.; Cany, L.; Romano, O.; Valenza, B.; Le Foll, C.; Delbaldo, C.; et al. Single-Arm Phase II Trial to Evaluate Efficacy and Tolerance of Regorafenib Monotherapy in Patients over 70 with Previously Treated Metastatic Colorectal Adenocarcinoma FFCD 1404 – REGOLD. J. Geriatr. Oncol. 2020, 11, 1255–1262. [Google Scholar] [CrossRef]
  227. Mayer, R.J.; Van Cutsem, E.; Falcone, A.; Yoshino, T.; Garcia-Carbonero, R.; Mizunuma, N.; Yamazaki, K.; Shimada, Y.; Tabernero, J.; Komatsu, Y.; et al. Randomized Trial of TAS-102 for Refractory Metastatic Colorectal Cancer. N. Engl. J. Med. 2015, 372, 1909–1919. [Google Scholar] [CrossRef] [Green Version]
  228. Pfeiffer, P.; Yilmaz, M.; Möller, S.; Zitnjak, D.; Krogh, M.; Petersen, L.N.; Poulsen, L.Ø.; Winther, S.B.; Thomsen, K.G.; Qvortrup, C. TAS-102 with or without Bevacizumab in Patients with Chemorefractory Metastatic Colorectal Cancer: An Investigator-Initiated, Open-Label, Randomised, Phase 2 Trial. Lancet Oncol. 2020, 21, 412–420. [Google Scholar] [CrossRef]
  229. Kuboki, Y.; Nishina, T.; Shinozaki, E.; Yamazaki, K.; Shitara, K.; Okamoto, W.; Kajiwara, T.; Matsumoto, T.; Tsushima, T.; Mochizuki, N.; et al. TAS-102 plus Bevacizumab for Patients with Metastatic Colorectal Cancer Refractory to Standard Therapies (C-TASK FORCE): An Investigator-Initiated, Open-Label, Single-Arm, Multicentre, Phase 1/2 Study. Lancet Oncol. 2017, 18, 1172–1181. [Google Scholar] [CrossRef]
  230. Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  231. André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
  232. Schiller, J.H.; Harrington, D.; Belani, C.P.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Comparison of Four Chemotherapy Regimens for Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2002, 346, 92–98. [Google Scholar] [CrossRef]
  233. Pilkington, G.; Boland, A.; Brown, T.; Oyee, J.; Bagust, A.; Dickson, R. A Systematic Review of the Clinical Effectiveness of First-Line Chemotherapy for Adult Patients with Locally Advanced or Metastatic Non-Small Cell Lung Cancer. Thorax 2015, 70, 359–367. [Google Scholar] [CrossRef] [Green Version]
  234. Patel, J.D.; Socinski, M.A.; Garon, E.B.; Reynolds, C.H.; Spigel, D.R.; Olsen, M.R.; Hermann, R.C.; Jotte, R.M.; Beck, T.; Richards, D.A.; et al. PointBreak: A Randomized Phase III Study of Pemetrexed Plus Carboplatin and Bevacizumab Followed by Maintenance Pemetrexed and Bevacizumab Versus Paclitaxel Plus Carboplatin and Bevacizumab Followed by Maintenance Bevacizumab in Patients with Stage IIIB or IV Nonsquamous Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2013, 31, 4349–4357. [Google Scholar] [CrossRef] [PubMed]
  235. Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodríguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
  236. Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
  237. Rizvi, N.A.; Hellmann, M.D.; Brahmer, J.R.; Juergens, R.A.; Borghaei, H.; Gettinger, S.; Chow, L.Q.; Gerber, D.E.; Laurie, S.A.; Goldman, J.W.; et al. Nivolumab in Combination with Platinum-Based Doublet Chemotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 2969. [Google Scholar] [CrossRef] [PubMed]
  238. Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.-Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus Nintedanib versus Docetaxel plus Placebo in Patients with Previously Treated Non-Small-Cell Lung Cancer (LUME-Lung 1): A Phase 3, Double-Blind, Randomised Controlled Trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
  239. Font, A.; Moyano, A.J.; Puerto, J.M.; Tres, A.; Garcia-Giron, C.; Barneto, I.; Anton, A.; Sanchez, J.J.; Salvador, A.; Rosell, R. Increasing Dose Intensity of Cisplatin-Etoposide in Advanced Nonsmall Cell Lung Carcinoma: A Phase III Randomized Trial of the Spanish Lung Cancer Group. Cancer 1999, 85, 855–863. [Google Scholar] [CrossRef]
  240. Barlesi, F.; Chouaid, C.; Crequit, J.; Le Caer, H.; Pujol, J.-L.; Legodec, J.; Vergnenegre, A.; Le Treut, J.; Fabre-Guillevin, E.; Loundou, A.; et al. A Randomized Trial Comparing Adjuvant Chemotherapy with Gemcitabine plus Cisplatin with Docetaxel plus Cisplatin in Patients with Completely Resected Non-Small-Cell Lung Cancer with Quality of Life as the Primary Objective. Interact. Cardiovasc. Thorac. Surg. 2015, 20, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  241. Quoix, E.; Zalcman, G.; Oster, J.-P.; Westeel, V.; Pichon, E.; Lavolé, A.; Dauba, J.; Debieuvre, D.; Souquet, P.-J.; Bigay-Game, L.; et al. Carboplatin and Weekly Paclitaxel Doublet Chemotherapy Compared with Monotherapy in Elderly Patients with Advanced Non-Small-Cell Lung Cancer: IFCT-0501 Randomised, Phase 3 Trial. Lancet 2011, 378, 1079–1088. [Google Scholar] [CrossRef]
  242. Okamoto, I.; Schuette, W.H.W.; Stinchcombe, T.E.; Rodrigues-Pereira, J.; Antonio, B.S.; Chen, J.; Liu, J.; John, W.J.; Zinner, R.G. Meta-Analysis of Pemetrexed plus Carboplatin Doublet Safety Profile in First-Line Non-Squamous Non-Small Cell Lung Cancer Studies. Curr. Med. Res. Opin. 2017, 33, 937–941. [Google Scholar] [CrossRef]
  243. Karampeazis, A.; Vamvakas, L.; Kotsakis, A.; Christophyllakis, C.; Kentepozidis, N.; Chandrinos, V.; Agelidou, A.; Polyzos, A.; Tsiafaki, X.; Hatzidaki, D.; et al. Docetaxel plus Gemcitabine versus Gemcitabine in Elderly Patients with Advanced Non-Small Cell Lung Cancer and Use of a Geriatric Assessment: Lessons from a Prematurely Closed Hellenic Oncology Research Group Randomized Phase III Study. J. Geriatr. Oncol. 2016, 8, 23–30. [Google Scholar] [CrossRef]
  244. Brodowicz, T.; Krzakowski, M.; Zwitter, M.; Tzekova, V.; Ramlau, R.; Ghilezan, N.; Ciuleanu, T.; Cucevic, B.; Gyurkovits, K.; Ulsperger, E.; et al. Cisplatin and Gemcitabine First-Line Chemotherapy Followed by Maintenance Gemcitabine or Best Supportive Care in Advanced Non-Small Cell Lung Cancer: A Phase III Trial. Lung Cancer 2006, 52, 155–163. [Google Scholar] [CrossRef]
  245. Ciuleanu, T.; Brodowicz, T.; Zielinski, C.; Kim, J.H.; Krzakowski, M.; Laack, E.; Wu, Y.-L.; Bover, I.; Begbie, S.; Tzekova, V.; et al. Maintenance Pemetrexed plus Best Supportive Care versus Placebo plus Best Supportive Care for Non-Small-Cell Lung Cancer: A Randomised, Double-Blind, Phase 3 Study. Lancet 2009, 374, 1432–1440. [Google Scholar] [CrossRef]
  246. Shaw, A.T.; Kim, D.-W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.-J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef] [Green Version]
  247. Kim, D.-W.; Mehra, R.; Tan, D.S.W.; Felip, E.; Chow, L.Q.M.; Camidge, D.R.; Vansteenkiste, J.; Sharma, S.; De Pas, T.; Riely, G.J.; et al. Activity and Safety of Ceritinib in Patients with ALK-Rearranged Non-Small-Cell Lung Cancer (ASCEND-1): Updated Results from the Multicentre, Open-Label, Phase 1 Trial. Lancet Oncol. 2016, 17, 452–463. [Google Scholar] [CrossRef] [Green Version]
  248. de Jong, W.K.; Groen, H.J.M.; Koolen, M.G.J.; Biesma, B.; Willems, L.N.A.; Kwa, H.-B.; van Bochove, A.; van Tinteren, H.; Smit, E.F. Phase III Study of Cyclophosphamide, Doxorubicin, and Etoposide Compared with Carboplatin and Paclitaxel in Patients with Extensive Disease Small-Cell Lung Cancer. Eur. J. Cancer 2007, 43, 2345–2350. [Google Scholar] [CrossRef] [PubMed]
  249. von Pawel, J.; Schiller, J.H.; Shepherd, F.A.; Fields, S.Z.; Kleisbauer, J.P.; Chrysson, N.G.; Stewart, D.J.; Clark, P.I.; Palmer, M.C.; Depierre, A.; et al. Topotecan versus Cyclophosphamide, Doxorubicin, and Vincristine for the Treatment of Recurrent Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999, 17, 658–667. [Google Scholar] [CrossRef] [PubMed]
  250. O’Brien, M.E.R.; Ciuleanu, T.-E.; Tsekov, H.; Shparyk, Y.; Čučeviá, B.; Juhasz, G.; Thatcher, N.; Ross, G.A.; Dane, G.C.; Crofts, T. Phase III Trial Comparing Supportive Care Alone with Supportive Care with Oral Topotecan in Patients with Relapsed Small-Cell Lung Cancer. J. Clin. Oncol. 2006, 24, 5441–5447. [Google Scholar] [CrossRef] [PubMed]
  251. Dy, G.K.; Jett, J.R.; Geoffroy, F.J.; Krewer, K.D.; Tazelaar, H.; Maurer, M.; Rowland, K.; Mailliard, J.; Krook, J.; Dakhil, S.; et al. Topotecan and Paclitaxel in Previously Treated Patients with Relapsed Small Cell Lung Cancer: Phase II Trial of the North Central Cancer Treatment Group. J. Thorac. Oncol. 2006, 1, 211–217. [Google Scholar] [CrossRef] [Green Version]
  252. Sekine, I.; Nishiwaki, Y.; Noda, K.; Kudoh, S.; Fukuoka, M.; Mori, K.; Negoro, S.; Yokoyama, A.; Matsui, K.; Ohsaki, Y.; et al. Randomized Phase II Study of Cisplatin, Irinotecan and Etoposide Combinations Administered Weekly or Every 4 Weeks for Extensive Small-Cell Lung Cancer (JCOG9902-DI). Ann. Oncol. 2003, 14, 709–714. [Google Scholar] [CrossRef]
  253. Lorigan, P.; Woll, P.J.; O’Brien, M.E.R.; Ashcroft, L.F.; Sampson, M.R.; Thatcher, N. Randomized Phase III Trial of Dose-Dense Chemotherapy Supported by Whole-Blood Hematopoietic Progenitors in Better-Prognosis Small-Cell Lung Cancer. J. Natl. Cancer Inst. 2005, 97, 666–674. [Google Scholar] [CrossRef]
  254. Lee, H.-S.; Lee, Y.-G.; Koo, D.-H.; Oh, S.; Nam, H.; Song, J.-U.; Lim, S.Y.; Lim, S.; Lee, S.-S. Efficacy and Safety of Ifosfamide in Combination with Carboplatin and Etoposide in Small Cell Lung Cancer. Cancer Chemother. Pharmacol. 2015, 76, 933–937. [Google Scholar] [CrossRef]
  255. Woll, P.J.; Hodgetts, J.; Lomax, L.; Bildet, F.; Cour-Chabernaud, V.; Thatcher, N. Can Cytotoxic Dose-Intensity Be Increased by Using Granulocyte Colony-Stimulating Factor? A Randomized Controlled Trial of Lenograstim in Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995, 13, 652–659. [Google Scholar] [CrossRef]
  256. Thatcher, N.; Qian, W.; Clark, P.I.; Hopwood, P.; Sambrook, R.J.; Owens, R.; Stephens, R.J.; Girling, D.J. Ifosfamide, Carboplatin, and Etoposide with Midcycle Vincristine Versus Standard Chemotherapy in Patients with Small-Cell Lung Cancer and Good Performance Status: Clinical and Quality-of-Life Results of the British Medical Research Council Multicenter Randomized LU21 Trial. J. Clin. Oncol. 2005, 23, 8371–8379. [Google Scholar] [CrossRef]
  257. Ardizzoni, A.; Tjan-Heijnen, V.C.G.; Postmus, P.E.; Buchholz, E.; Biesma, B.; Karnicka-Mlodkowska, H.; Dziadziuszko, R.; Burghouts, J.; Van Meerbeeck, J.P.; Gans, S.; et al. Standard versus Intensified Chemotherapy with Granulocyte Colony-Stimulating Factor Support in Small-Cell Lung Cancer: A Prospective European Organization for Research and Treatment of Cancer-Lung Cancer Group Phase III Trial-08923. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
  258. Masutani, M.; Ochi, Y.; Kadota, A.; Akusawa, H.; Kisohara, A.; Takahashi, N.; Koya, Y.; Horie, T. Dose-Intensive Weekly Alternating Chemotherapy for Patients with Small Cell Lung Cancer: Randomized Trial, Can It Improve Survival of Patients with Good Prognostic Factors? Oncol. Rep. 2000, 7, 305–315. [Google Scholar] [CrossRef] [PubMed]
  259. Hesketh, P.J.; McCoy, J.; Dunphy II, F.R.; Bearden III, J.D.; Weiss, G.R.; Giguere, J.K.; Atkins, J.N.; Dakhil, S.R.; Kelly, K.; Crowley, J.J.; et al. Phase II Trial of Paclitaxel, Carboplatin, and Topotecan with G-CSF Support in Previously Untreated Patients with Extensive Stage Small Cell Lung Cancer: Southwest Oncology Group 9914. J. Thorac. Oncol. 2006, 1, 991–995. [Google Scholar] [CrossRef] [PubMed]
  260. Sundstrøm, S.; Bremnes, R.M.; Kaasa, S.; Aasebø, U.; Hatlevoll, R.; Dahle, R.; Boye, N.; Wang, M.; Vigander, T.; Vilsvik, J.; et al. Cisplatin and Etoposide Regimen Is Superior to Cyclophosphamide, Epirubicin, and Vincristine Regimen in Small-Cell Lung Cancer: Results From a Randomized Phase III Trial with 5 Years’ Follow-Up. J. Clin. Oncol. 2002, 20, 4665–4672. [Google Scholar] [CrossRef]
  261. Noda, K.; Nishiwaki, Y.; Kawahara, M.; Negoro, S.; Sugiura, T.; Yokoyama, A.; Fukuoka, M.; Mori, K.; Watanabe, K.; Tamura, T.; et al. Irinotecan plus Cisplatin Compared with Etoposide plus Cisplatin for Extensive Small-Cell Lung Cancer. N. Engl. J. Med. 2002, 346, 85–91. [Google Scholar] [CrossRef]
  262. Fink, T.H.; Huber, R.M.; Heigener, D.F.; Eschbach, C.; Waller, C.; Steinhauer, E.U.; Virchow, J.C.; Eberhardt, F.; Schweisfurth, H.; Schroeder, M.; et al. Topotecan/Cisplatin Compared with Cisplatin/Etoposide as First-Line Treatment for Patients with Extensive Disease Small-Cell Lung Cancer: Final Results of a Randomized Phase III Trial. J. Thorac. Oncol. 2012, 7, 1432–1439. [Google Scholar] [CrossRef] [Green Version]
  263. Reck, M.; Luft, A.; Szczesna, A.; Havel, L.; Kim, S.-W.; Akerley, W.; Pietanza, M.C.; Wu, Y.; Zielinski, C.; Thomas, M.; et al. Phase III Randomized Trial of Ipilimumab Plus Etoposide and Platinum Versus Placebo Plus Etoposide and Platinum in Extensive-Stage Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 34, 3740–3748. [Google Scholar] [CrossRef]
  264. Hermes, A.; Bergman, B.; Bremnes, R.; Ek, L.; Fluge, S.; Sederholm, C.; Sundstrøm, S.; Thaning, L.; Vilsvik, J.; Aasebø, U.; et al. Irinotecan Plus Carboplatin Versus Oral Etoposide Plus Carboplatin in Extensive Small-Cell Lung Cancer: A Randomized Phase III Trial. J. Clin. Oncol. 2008, 26, 4261–4267. [Google Scholar] [CrossRef]
  265. Okamoto, H.; Naoki, K.; Narita, Y.; Hida, N.; Kunikane, H.; Watanabe, K. A Combination Chemotherapy of Carboplatin and Irinotecan with Granulocyte Colony-Stimulating Factor (G-CSF) Support in Elderly Patients with Small Cell Lung Cancer. Lung Cancer 2006, 53, 197–203. [Google Scholar] [CrossRef]
  266. Ardizzoni, A.; Manegold, C.; Debruyne, C.; Gaafar, R.; Buchholz, E.; Smit, E.F.; Lianes, P.; ten Velde, G.; Bosquee, L.; Legrand, C.; et al. European Organization for Research and Treatment of Cancer (EORTC) 08957 Phase II Study of Topotecan in Combination with Cisplatin as Second-Line Treatment of Refractory and Sensitive Small Cell Lung Cancer. Am. Assoc. Cancer Res. 2003, 9, 143–150. [Google Scholar]
  267. Skarlos, D.-V.; Dimopoulos, A.-M.; Kosmidis, P.; Papakostas, P.; Pavlidis, N.; Bacoyiannis, C.; Kiamouris, C.; Klouvas, G.; Gogas, H.; Fountzilas, G.; et al. Docetaxel and Gemcitabine Combination, as First-Line Treatment, in Patients with Extensive Disease Small-Cell Lung Cancer. A Phase II Study of the Hellenic Cooperative Oncology Group. Lung Cancer 2003, 41, 107–111. [Google Scholar] [CrossRef]
  268. Hainsworth, J.D.; Carrell, D.; Drengler, R.L.; Scroggin, C.; Greco, F.A. Weekly Combination Chemotherapy with Docetaxel and Gemcitabine as First-Line Treatment for Elderly Patients and Patients with Poor Performance Status Who Have Extensive-Stage Small Cell Lung Carcinoma. Cancer 2004, 100, 2437–2441. [Google Scholar] [CrossRef] [PubMed]
  269. Rocha-Lima, C.M.; Herndon, J.E.; Lee, M.E.; Atkins, J.N.; Mauer, A.; Vokes, E.; Green, M.R. Phase II Trial of Irinotecan/Gemcitabine as Second-Line Therapy for Relapsed and Refractory Small-Cell Lung Cancer: Cancer and Leukemia Group B Study 39902. Ann. Oncol. 2007, 18, 331–337. [Google Scholar] [CrossRef]
  270. Furuse, K.; Fukuoka, M.; Nishiwaki, Y.; Kurita, Y.; Watanabe, K.; Noda, K.; Ariyoshi, Y.; Tamura, T.; Saijo, N. Phase III Study of Intensive Weekly Chemotherapy with Recombinant Human Granulocyte Colony-Stimulating Factor versus Standard Chemotherapy in Extensive-Disease Small-Cell Lung Cancer. The Japan Clinical Oncology Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1998, 16, 2126–2132. [Google Scholar] [CrossRef]
  271. Murray, N.; Livingston, R.B.; Shepherd, F.A.; James, K.; Zee, B.; Langleben, A.; Kraut, M.; Bearden, J.; Goodwin, J.W.; Grafton, C.; et al. Randomized Study of CODE Versus Alternating CAV/EP for Extensive-Stage Small-Cell Lung Cancer: An Intergroup Study of the National Cancer Institute of Canada Clinical Trials Group and the Southwest Oncology Group. J. Clin. Oncol. 1999, 17, 2300. [Google Scholar] [CrossRef]
  272. Edelman, M.J.; Chansky, K.; Gaspar, L.E.; Leigh, B.; Weiss, G.R.; Taylor, S.A.; Crowley, J.; Livingston, R.; Gandara, D.R. Phase II Trial of Cisplatin/Etoposide and Concurrent Radiotherapy Followed by Paclitaxel/Carboplatin Consolidation for Limited Small-Cell Lung Cancer: Southwest Oncology Group 9713. J. Clin. Oncol. 2004, 22, 127–132. [Google Scholar] [CrossRef] [PubMed]
  273. Grilley-Olson, J.E.; Keedy, V.L.; Sandler, A.; Moore, D.T.; Socinski, M.A.; Stinchcombe, T.E. A Randomized Phase II Study of Carboplatin with Weekly or Every-3-Week Nanoparticle Albumin-Bound Paclitaxel (Abraxane) in Patients with Extensive-Stage Small Cell Lung Cancer. Oncologist 2015, 20, 105–106. [Google Scholar] [CrossRef]
  274. Noronha, V.; Sahu, A.; Patil, V.M.; Joshi, A.; Ramaswamy, A.; Chandrasekharan, A.; Kadam, N.; Prabhash, K. Weekly Paclitaxel as Metronomic Palliative Chemotherapy in Small Cell Lung Cancer. South Asian J. Cancer 2016, 5, 67. [Google Scholar] [CrossRef] [PubMed]
  275. van der Lee, I.; Smit, E.F.; van Putten, J.W.; Groen, H.J.; Schlösser, N.J.; Postmus, P.E.; Schramel, F.M. Single-Agent Gemcitabine in Patients with Resistant Small-Cell Lung Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. ESMO 2001, 12, 557–561. [Google Scholar] [CrossRef]
  276. Hoang, T.; Kim, K.; Jaslowski, A.; Koch, P.; Beatty, P.; McGovern, J.; Quisumbing, M.; Shapiro, G.; Witte, R.; Schiller, J.H. Phase II Study of Second-Line Gemcitabine in Sensitive or Refractory Small Cell Lung Cancer. Lung Cancer 2003, 42, 97–102. [Google Scholar] [CrossRef]
  277. Flinn, I.W.; van der Jagt, R.; Kahl, B.S.; Wood, P.; Hawkins, T.E.; MacDonald, D.; Hertzberg, M.; Kwan, Y.-L.; Simpson, D.; Craig, M.; et al. Randomized Trial of Bendamustine-Rituximab or R-CHOP/R-CVP in First-Line Treatment of Indolent NHL or MCL: The BRIGHT Study. Blood 2014, 123, 2944–2952. [Google Scholar] [CrossRef] [PubMed]
  278. Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 351–363. [Google Scholar] [CrossRef] [PubMed]
  279. Crump, M.; Kuruvilla, J.; Couban, S.; MacDonald, D.A.; Kukreti, V.; Kouroukis, C.T.; Rubinger, M.; Buckstein, R.; Imrie, K.R.; Federico, M.; et al. Randomized Comparison of Gemcitabine, Dexamethasone, and Cisplatin versus Dexamethasone, Cytarabine, and Cisplatin Chemotherapy before Autologous Stem-Cell Transplantation for Relapsed and Refractory Aggressive Lymphomas: NCIC-CTG LY.12. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 3490–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  280. Mounier, N.; Briere, J.; Gisselbrecht, C.; Emile, J.-F.; Lederlin, P.; Sebban, C.; Berger, F.; Bosly, A.; Morel, P.; Tilly, H.; et al. Rituximab plus CHOP (R-CHOP) Overcomes Bcl-2--Associated Resistance to Chemotherapy in Elderly Patients with Diffuse Large B-Cell Lymphoma (DLBCL). Blood 2003, 101, 4279–4284. [Google Scholar] [CrossRef] [Green Version]
  281. Jais, J.-P.; Haioun, C.; Molina, T.J.; Rickman, D.S.; de Reynies, A.; Berger, F.; Gisselbrecht, C.; Brière, J.; Reyes, F.; Gaulard, P.; et al. The Expression of 16 Genes Related to the Cell of Origin and Immune Response Predicts Survival in Elderly Patients with Diffuse Large B-Cell Lymphoma Treated with CHOP and Rituximab. Leukemia 2008, 22, 1917–1924. [Google Scholar] [CrossRef] [Green Version]
  282. Mounier, N.; Heutte, N.; Thieblemont, C.; Briere, J.; Gaulard, P.; Feugier, P.; Ghesquieres, H.; Van Den Neste, E.; Robu, D.; Tilly, H.; et al. Ten-Year Relative Survival and Causes of Death in Elderly Patients Treated with R-CHOP or CHOP in the GELA LNH-985 Trial. Clin. Lymphoma Myeloma Leuk. 2012, 12, 151–154. [Google Scholar] [CrossRef] [PubMed]
  283. Peyrade, F.; Jardin, F.; Thieblemont, C.; Thyss, A.; Emile, J.-F.; Castaigne, S.; Coiffier, B.; Haioun, C.; Bologna, S.; Fitoussi, O.; et al. Attenuated Immunochemotherapy Regimen (R-MiniCHOP) in Elderly Patients Older than 80 Years with Diffuse Large B-Cell Lymphoma: A Multicentre, Single-Arm, Phase 2 Trial. Lancet Oncol. 2011, 12, 460–468. [Google Scholar] [CrossRef]
  284. Sancho, J.-M.; Fernández-Alvarez, R.; Gual-Capllonch, F.; González-García, E.; Grande, C.; Gutiérrez, N.; Peñarrubia, M.-J.; Batlle-López, A.; González-Barca, E.; Guinea, J.-M.; et al. R-COMP versus R-CHOP as First-Line Therapy for Diffuse Large B-Cell Lymphoma in Patients ≥60 Years: Results of a Randomized Phase 2 Study from the Spanish GELTAMO Group. Cancer Med. 2021, 10, 1314–1326. [Google Scholar] [CrossRef]
  285. Laribi, K.; Denizon, N.; Bolle, D.; Truong, C.; Besançon, A.; Sandrini, J.; Anghel, A.; Farhi, J.; Ghnaya, H.; Baugier de Materre, A. R-CVP Regimen Is Active in Frail Elderly Patients Aged 80 or over with Diffuse Large B Cell Lymphoma. Ann. Hematol. 2016, 95, 1705–1714. [Google Scholar] [CrossRef]
  286. Ösby, E.; Hagberg, H.; Kvaløy, S.; Teerenhovi, L.; Anderson, H.; Cavallin-Ståhl, E.; Holte, H.; Myhre, J.; Pertovaara, H.; Björkholm, M. CHOP Is Superior to CNOP in Elderly Patients with Aggressive Lymphoma While Outcome Is Unaffected by Filgrastim Treatment: Results of a Nordic Lymphoma Group Randomized Trial. Blood 2003, 101, 3840–3848. [Google Scholar] [CrossRef] [Green Version]
  287. Velasquez, W.S.; Cabanillas, F.; Salvador, P.; McLaughlin, P.; Fridrik, M.; Tucker, S.; Jagannath, S.; Hagemeister, F.B.; Redman, J.R.; Swan, F. Effective Salvage Therapy for Lymphoma with Cisplatin in Combination with High-Dose Ara-C and Dexamethasone (DHAP). Blood 1988, 71, 117–122. [Google Scholar] [CrossRef] [Green Version]
  288. Johnson, P.W.M.; Sweetenham, J.W.; McCallum, P.; Norton, A.J.; Rohatiner, A.Z.S.; Lister, T.A. E-SHAP: Inadequate Treatment for Poor-Prognosis Recurrent Lymphoma. Ann. Oncol. 1993, 4, 63–67. [Google Scholar] [CrossRef] [PubMed]
  289. Velasquez, W.S.; McLaughlin, P.; Tucker, S.; Hagemeister, F.B.; Swan, F.; Rodriguez, M.A.; Romaguera, J.; Rubenstein, E.; Cabanillas, F. ESHAP--an Effective Chemotherapy Regimen in Refractory and Relapsing Lymphoma: A 4-Year Follow-up Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1994, 12, 1169–1176. [Google Scholar] [CrossRef]
  290. Öztürk, M.A.; Barışta, İ.; Altundağ, M.K.; Türker, A.; Yalçın, Ş.; Çelik, İ.; Güllü, İ.; Güler, N.; Özışık, Y.; Kars, A.; et al. Modified ESHAP as Salvage Chemotherapy for Recurrent or Refractory Non-Hodgkin’s Lymphoma: Results of a Single-Center Study of 32 Patients. Chemotherapy 2002, 48, 252–258. [Google Scholar] [CrossRef] [PubMed]
  291. Santoro, P.; Martinelli, G.; Ferrucci, P.F.; Mingrone, W.; Cocorocchio, E.; Conconi, A.; Peccatori, F.A.; Luzio, K.D.; Mazzetta, C.; Zucca, E.; et al. ACOD, a Modified CHOP Regimen for Elderly Patients with Aggressive Non-Hodgkin’s Lymphoma. Leuk. Lymphoma 2003, 44, 801–806. [Google Scholar] [CrossRef]
  292. Dimopoulos, M.A.; Fountzilas, G.; Papageorgiou, E.; Kiamouris, C.; Mantzios, G.; Anagnostopoulos, A.; Nicolaides, C.; Economopoulos, T. Primary Treatment of Low-Grade Non-Hodgkin’s Lymphoma with the Combination of Fludarabine and Mitoxantrone: A Phase II Study of the Hellenic Cooperative Oncology Group. Leuk. Lymphoma 2002, 43, 111–114. [Google Scholar] [CrossRef] [PubMed]
  293. Coiffier, B.; Lepage, E.; Briere, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef]
  294. Miura, K.; Konishi, J.; Miyake, T.; Makita, M.; Hojo, A.; Masaki, Y.; Uno, M.; Ozaki, J.; Yoshida, C.; Niiya, D.; et al. A Host-Dependent Prognostic Model for Elderly Patients with Diffuse Large B-Cell Lymphoma. Oncologist 2017, 22, 554–560. [Google Scholar] [CrossRef] [Green Version]
  295. Thieblemont, C.; Tilly, H.; Gomes da Silva, M.; Casasnovas, R.-O.; Fruchart, C.; Morschhauser, F.; Haioun, C.; Lazarovici, J.; Grosicka, A.; Perrot, A.; et al. Lenalidomide Maintenance Compared with Placebo in Responding Elderly Patients with Diffuse Large B-Cell Lymphoma Treated with First-Line Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2473–2481. [Google Scholar] [CrossRef]
  296. Visani, G.; Ferrara, F.; Alesiani, F.; Ronconi, S.; Catarini, M.; D’adamo, F.; Guiducci, B.; Bernardi, D.; Barulli, S.; Piccaluga, P.; et al. R-COMP 21 for Frail Elderly Patients with Aggressive B-Cell Non-Hodgkin Lymphoma: A Pilot Study. Leuk. Lymphoma 2008, 49, 1081–1086. [Google Scholar] [CrossRef]
  297. Miyata, Y.; Saito, A.M.; Yano, T.; Yoshida, I.; Suehiro, Y.; Harada, N.; Nagai, H. R-Mini CHP in ≥80-Year-Old Patients with Diffuse Large B-Cell Lymphoma: A Multicenter, Open-Label, Single-Arm Phase II Trial Protocol. Acta Med. Okayama 2018, 72, 315–318. [Google Scholar] [CrossRef]
  298. Merli, F.; Vitolo, U.; Luminari, S.; Mazza, P.; Stelitano, C.; Rossi, G.; Baldini, L.; Ilariucci, F.; Levis, A. R-CHOP vs R-Mini-CEOP in Elderly Patients with Diffuse Large B Cell Lymphoma: An Interim Report from Intergruppo Italiano Linfomi (IIL). Blood 2005, 106, 4729. [Google Scholar] [CrossRef]
  299. Bartlett, N.L.; Wilson, W.H.; Jung, S.-H.; Hsi, E.D.; Maurer, M.J.; Pederson, L.D.; Polley, M.-Y.C.; Pitcher, B.N.; Cheson, B.D.; Kahl, B.S.; et al. Dose-Adjusted EPOCH-R Compared with R-CHOP as Frontline Therapy for Diffuse Large B-Cell Lymphoma: Clinical Outcomes of the Phase III Intergroup Trial Alliance/CALGB 50303. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
  300. Mounier, N.; El Gnaoui, T.; Tilly, H.; Canioni, D.; Sebban, C.; Casasnovas, R.-O.; Delarue, R.; Sonet, A.; Beaussart, P.; Petrella, T.; et al. Rituximab plus Gemcitabine and Oxaliplatin in Patients with Refractory/Relapsed Diffuse Large B-Cell Lymphoma Who Are Not Candidates for High-Dose Therapy. A Phase II Lymphoma Study Association Trial. Haematologica 2013, 98, 1726–1731. [Google Scholar] [CrossRef]
  301. Tuscano, J.M.; Dutia, M.; Chee, K.; Brunson, A.; Reed-Pease, C.; Abedi, M.; Welborn, J.; O’Donnell, R.T. Lenalidomide plus Rituximab Can Produce Durable Clinical Responses in Patients with Relapsed or Refractory, Indolent Non-Hodgkin Lymphoma. Br. J. Haematol. 2014, 165, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  302. Leonard, J.P.; Jung, S.-H.; Johnson, J.; Pitcher, B.N.; Bartlett, N.L.; Blum, K.A.; Czuczman, M.; Giguere, J.K.; Cheson, B.D. Randomized Trial of Lenalidomide Alone Versus Lenalidomide Plus Rituximab in Patients with Recurrent Follicular Lymphoma: CALGB 50401 (Alliance). J. Clin. Oncol. 2015, 33, 3635–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  303. Ruan, J.; Shah, B.; Martin, P.; Schuster, S.J. Clinical Experience with Lenalidomide Alone or in Combination with Rituximab in Indolent B-Cell and Mantle Cell Lymphomas. Ann. Oncol. 2016, 27, 1226–1234. [Google Scholar] [CrossRef] [Green Version]
  304. Goy, A.; Sinha, R.; Williams, M.E.; Besisik, S.K.; Drach, J.; Ramchandren, R.; Zhang, L.; Cicero, S.; Fu, T.; Witzig, T.E. Single-Agent Lenalidomide in Patients with Mantle-Cell Lymphoma Who Relapsed or Progressed After or Were Refractory to Bortezomib: Phase II MCL-001 (EMERGE) Study. J. Clin. Oncol. 2013, 31, 3688–3695. [Google Scholar] [CrossRef]
  305. Salles, G.; Duell, J.; González Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; et al. Tafasitamab plus Lenalidomide in Relapsed or Refractory Diffuse Large B-Cell Lymphoma (L-MIND): A Multicentre, Prospective, Single-Arm, Phase 2 Study. Lancet Oncol. 2020, 21, 978–988. [Google Scholar] [CrossRef]
  306. Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients with Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet Lond. Engl. 2020, 396, 839–852. [Google Scholar] [CrossRef]
  307. Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
  308. Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
  309. Sermer, D.; Batlevi, C.; Palomba, M.L.; Shah, G.; Lin, R.J.; Perales, M.-A.; Scordo, M.; Dahi, P.; Pennisi, M.; Afuye, A.; et al. Outcomes in Patients with DLBCL Treated with Commercial CAR T Cells Compared with Alternate Therapies. Blood Adv. 2020, 4, 4669–4678. [Google Scholar] [CrossRef]
  310. Sesques, P.; Ferrant, E.; Safar, V.; Wallet, F.; Tordo, J.; Dhomps, A.; Karlin, L.; Brisou, G.; Vercasson, M.; Hospital-Gustem, C.; et al. Commercial Anti-CD19 CAR T Cell Therapy for Patients with Relapsed/Refractory Aggressive B Cell Lymphoma in a European Center. Am. J. Hematol. 2020, 95, 1324–1333. [Google Scholar] [CrossRef]
  311. Colombat, P.; Salles, G.; Brousse, N.; Eftekhari, P.; Soubeyran, P.; Delwail, V.; Deconinck, E.; Haïoun, C.; Foussard, C.; Sebban, C.; et al. Rituximab (Anti-CD20 Monoclonal Antibody) as Single First-Line Therapy for Patients with Follicular Lymphoma with a Low Tumor Burden: Clinical and Molecular Evaluation. Blood 2001, 97, 101–106. [Google Scholar] [CrossRef] [PubMed]
  312. Federico, M.; Luminari, S.; Dondi, A.; Tucci, A.; Vitolo, U.; Rigacci, L.; Di Raimondo, F.; Carella, A.M.; Pulsoni, A.; Merli, F.; et al. R-CVP versus R-CHOP versus R-FM for the Initial Treatment of Patients with Advanced-Stage Follicular Lymphoma: Results of the FOLL05 Trial Conducted by the Fondazione Italiana Linfomi. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 1506–1513. [Google Scholar] [CrossRef]
  313. Marcus, R.; Davies, A.; Ando, K.; Klapper, W.; Opat, S.; Owen, C.; Phillips, E.; Sangha, R.; Schlag, R.; Seymour, J.F.; et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N. Engl. J. Med. 2017, 377, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
  314. Hiddemann, W.; Barbui, A.M.; Canales, M.A.; Cannell, P.K.; Collins, G.P.; Dürig, J.; Forstpointner, R.; Herold, M.; Hertzberg, M.; Klanova, M.; et al. Immunochemotherapy with Obinutuzumab or Rituximab for Previously Untreated Follicular Lymphoma in the GALLIUM Study: Influence of Chemotherapy on Efficacy and Safety. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2395–2404. [Google Scholar] [CrossRef]
  315. Martin, P.; Jung, S.-H.; Pitcher, B.; Bartlett, N.L.; Blum, K.A.; Shea, T.; Hsi, E.D.; Ruan, J.; Smith, S.E.; Leonard, J.P.; et al. A Phase II Trial of Lenalidomide plus Rituximab in Previously Untreated Follicular Non-Hodgkin’s Lymphoma (NHL): CALGB 50803 (Alliance). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2806–2812. [Google Scholar] [CrossRef]
Figure 1. The multiple etiologies of fatigue in older patients with cancer. Abbreviations: CRF: cancer-related fatigue; COPD: chronic obstructive pulmonary disease.
Figure 1. The multiple etiologies of fatigue in older patients with cancer. Abbreviations: CRF: cancer-related fatigue; COPD: chronic obstructive pulmonary disease.
Cancers 14 02470 g001
Figure 2. Flowchart detailing for each cancer type, indicating the total (T) number of regimens analyzed, the number of regimens for which fatigue (F) was reported, and the number including data specific to older adults (DSO).
Figure 2. Flowchart detailing for each cancer type, indicating the total (T) number of regimens analyzed, the number of regimens for which fatigue (F) was reported, and the number including data specific to older adults (DSO).
Cancers 14 02470 g002
Figure 3. A proposed work-up on comprehensive (geriatric) assessment of fatigue.
Figure 3. A proposed work-up on comprehensive (geriatric) assessment of fatigue.
Cancers 14 02470 g003
Table 1. Fatigue events in the most common anticancer regimens for adjuvant and advanced breast cancers.
Table 1. Fatigue events in the most common anticancer regimens for adjuvant and advanced breast cancers.
SettingTreatment Regimen and ReferenceFatigue Any-Grade (%)Fatigue Gr ≥ 3 (%)
AdjuvantAC [27,36]49–772–4
AC → docetaxel [37,38]nr22
AC → paclitaxel [37]nrnr
A(E)C-[T/P] [29]nr10
<60nr9
60–64nr12
>64nr16
Paclitaxel → AC [39]nrnr
AT [36,40]519–16
ddAT [29,38]nr28
<60nr25
60–64nr40
>64nr35
Doxorubicin → docetaxel [41]nr7
Doxorubicin/paclitaxel [42]nrnr
TAC [29,43]8111 (asthenia)–12
<60nr12
60–64nr13
>64nr17
DDG epirubicin/cyclophosphamide [44]nr7
Liposomal doxorubicin–cyclophosphamide ≥70 [45]888
Docetaxel/cyclophosphamide [27]783
CEF [44]nr6
FAC [43,46]71 (asthenia)3–6
FAC ≥ w-paclitaxel ×8 [46]nr8
FAC 50 [47,48]nrnr
FEC 90/100 [49,50]nrnr
CMF [51,52]nrnr
CMF oral [53]nrnr
Doxorubicin → paclitaxel → cyclophosphamide [37]nrnr
Doxorubicin docetaxel [47,48]nrnr
FAC → paclitaxel [46]nr8
Capecitabine [26]261
Trastuzumab/Docetaxel/Cyclophosphamide [54]544
Trastuzumab/Paclitaxel [28]nr (gr2: 20)2
Trastuzumab paclitaxel for 12 weeks + trastuzumab for 9 months [28]222
Docetaxel + carboplatin + trastuzumab for 52 weeks (TCH) [41]nr7
AC → TH [41]nr7
Tamoxifen (ABC) [30,31]3 (lethargy)–181
Anastrozole (ABC) [31,32]1 (lethargy)–16 (asthenia)0
Letrozole [33,55]301
≥70 [34]45nr
Exemestane [35]241
Any adjuvant chemotherapy (CANTO) [25]
Risk factors for post-treatment fatigue:
Severe fatigue (score ≥40%, EORTC QLQ-C30 fatigue item)
~pre-treatment fatigue
~higher BMI
~younger age
~hormonal treatment
~current smoking behavior
~worse anxiety
~insomnia
~pain at diagnosis
T1 (1 y): 36
T2 (2 y): 34
T3 (4 y): 32
MetastaticA → T [40]nr7
AT [40]nr16
Paclitaxel 175 mg/m2/3w [56,57]nr1–5
Paclitaxel 90 mg/m2/3w/4 [56]nr5
Paclitaxel 80 mg/m2/w [56]nr6
Nab-paclitaxel 260 mg/m2/3w [57]nr5
Bevacizumab paclitaxel [58,59]nr1–9
Docetaxel 100 mg/m2/3w [60,61,62]nr15–24
Docetaxel 75 mg/m2/3w [61]nr8
Docetaxel 60 mg/m2/3w [61]nr3
Docetaxel capecitabine [60]nr8
Metronomic docetaxel capecitabine [63]6013
Gemcitabine vinorelbine [64]nr24
Vinorelbine [31,64]3617
Liposomal Pegylated Doxorubicin [65]nrnr
≥70 [66]6922
Doxorubicin/vinorelbine [67]nrnr
Capecitabin [68,69,70,71]17–410–8
Bevacizumab capecitabine [72]nrnr
Bevacizumab capecitabine vinorelbine [72]nrnr
Gemcitabine [73]nrnr
Eribulin [74,75]35–549
Ixabepilone [31]10nr
Trastuzumab docetaxel (CLEOPATRAc) [76]382
Trastuzumab paclitaxel [77]8nr
Trastuzumab + oral vinorelbine [78,79]424
Trastuzumab vinorelbine everolimus (BOLERO-3) [79]4312
Trastuzumab emsantine (EMILIAi) [80]352
Lapatinib capecitabine (EMILIAc and HER2CLIMBc) [80,81]28–434
Pertuzumab–trastuzumab–docetaxel (CLEOPATRAi and PERUSE) [76,82]372–3
Pertuzumab–trastuzumab–paclitaxel (PERUSE) [82]nr2
Pertuzumab–trastuzumab–nab-paclitaxel (PERUSE) [82]nr2
Tucatinib–trastuzumab–capecitabine [81]455
Tamoxifen (ABC) [30,31]3 (lethargy)–181
Anastrozole (ABC) [31,32]1.2 (lethargy)–16 (asthenia)0
Letrozole (MONALEESA-2c) [30,31,83,84]11–270–1
Exemestane [31,85]22–260
Fulvestrant (CONFIRM, PALOMA-3c, MONARCH2c, and MONALEESA-3c) [86,87,88,89,90]31–44<1–3
Lapatinib letrozole [91,92]21–33 (ctrl: 17)0–2 (ctrl: <1)
Exemestane–Everolimus [85,93,94]
BALLET: sub-analysis by ages (<70 vs. ≥70, non-comparative)
23 (asthenia)–50
29 vs. 21
2–4
6 vs. 3
Palbociclib letrozole (PALOMA-1 and PALOMA-2) [83,95]37–40 (ctrl: 23–28)2–4 (ctrl: 1)
Palbociclib fulvestrant (PALOMA-3) [88]44 (ctrl: 31)3 (ctrl: 1)
Palbociclib-ET (pooled analysis PALOMA 1, 2, 3)
<65 [96]40 (ctrl: 27)2 (ctrl: 1)
65–74 [96]41 (ctrl: 28)3 (ctrl: 0)
≥75 [96]37 (ctrl: 31)6 (ctrl: 0)
Ribociclib letrozole (MONALEESA-2, CompLEEment-1) [84,97]23–42 (ctrl: 27)1–2 (ctrl: 1)
Ribociclib fulvestrant (MONALEESA-3) [90]32 (ctrl: 33)2 (ctrl: <1)
Abemaciclib letrozole or anastrozole (MONARCH-3) [98]40 (ctrl: 32; gr2+: 17)2 (ctrl: 0)
Abemaciclib fulvestrant (MONARCH-2) [89]40 (ctrl: 27)3 (ctrl: <1)
Talazoparib (EMBRACA) [99]50 (ctrl: 43)2 (ctrl: 3)
Olaparib (OlympiaAD) [100]29 (ctrl: 23)3 (ctrl: 1)
The colors refer to the higher reported frequency of grade 3 or more fatigue for each regimen: Cancers 14 02470 i001: [30–40%]; Cancers 14 02470 i002: [20–30%]; Cancers 14 02470 i003: [10–20%]; Cancers 14 02470 i004: [5–10%]; Cancers 14 02470 i005: [0–5%]; Cancers 14 02470 i006: not reported. Data specific to older patients are underlined. Abbreviations: ctrl: control; ET: endocrine therapy; gr: grade; gr2+: grade 2 or more; nr: not reported.
Table 2. Fatigue events in the most common anticancer regimens for ovarian cancer. Abbreviations: AUC: area under the curve; ctrl: control; nr: not reported; PLD: pegylated liposomal doxorubicin.
Table 2. Fatigue events in the most common anticancer regimens for ovarian cancer. Abbreviations: AUC: area under the curve; ctrl: control; nr: not reported; PLD: pegylated liposomal doxorubicin.
SchemeTreatment Regimen and ReferenceFatigue Any-Grade (%)Fatigue Gr ≥ 3 (%)
First line3w-carboplatin monotherapy (ICON3)
≥70 (EWOT-3, EWOC-1) [66,106]
nr
73
nr
8–15
3w-cisplatin 75 mg/m2 paclitaxel 185 mg/m2 (AGO OVAR-3) [108]nrnr
3w-cisplatin 75 mg/m2 paclitaxel 135 mg/m2 (GOG-158) [109]nrnr
3w-carboplatin AUC6 paclitaxel 185 mg/m2 (AGO OVAR-3) [108]nrnr
≥70 (AGO OVAR-3) [110]nrnr
3w-carboplatin AUC7.5 paclitaxel 175 mg/m2 (GOG-158) [109]nrnr
3w-carboplatin AUC5 paclitaxel 175 mg/m2 (MITO-2c) [107]443
≥70 and GVS ≥3 (EWOC-1) [106]7010
3w-carboplatin AUC6 paclitaxel 175 mg/m2 (MITO-7) [111]485
3w-carboplatin AUC5 PLD 30 mg/m2 (MITO-2i) [107]433
3w-carboplatin AUC6 w-paclitaxel 80 mg/m2 (GOG262) [112]nrnr
w-carboplatin AUC2 w-paclitaxel 60 mg/m2 (MITO-7) [111]554
Regimen specific to older patients 3w/4 carboplatin AUC2 + paclitaxel 60 mg/m2 (MITO-5, EWOC-1) (≥70) [107]380
≥70 and GVS ≥3 (EWOC-1) [106]8510
15 mg/kg bevacizumab maintenance 3w-carboplatin AUC6 + paclitaxel 175 mg/m2 (GOG-218, PAOLAc) [113]321
7.5 mg/kg bevacizumab maintenance 3w-carboplatin AUC6 + paclitaxel 175 mg/m2 (ICON7) [114]nrnr
Olaparib maintenance (SOLO1) [103]63 (ctrl: 42)4 (ctrl: 2)
Niraparib maintenance (PRIMA) [104]
≥65 [115]
35 (ctrl: 30)
nr
2 (ctrl: <1)
nr
Rucaparib maintenance
Olaparib bevacizumab maintenance (PAOLA) [113]53 (ctrl: 32)5 (ctrl: 1)
Platin-sensitive relapsePLD/carboplatin [107]433
Paclitaxel/carboplatin [107]443
Gemcitabine/cisplatin [116]282
Trabectidin/PLD [117]nr6
Bevacizumab 3w-carboplatine w-paclitaxel (OCTAVIA) [118]nrnr
Bevacizumab carboplatin gemcitabine 1000 mg/m2 J1,J8 (OCEANS) [119]nrnr
Olaparib maintenance (SOLO2) [120]62 (ctrl: 37)4 (ctrl: 2)
Niraparib maintenance (NOVA) [121]59 (ctrl: 41)8 (ctrl: 1)
<70 [122]nr8 (ctrl: 2)
≥70 [122]nr8 (ctrl: 0)
Rucaparib maintenance (ARIEL3) [123]69 (ctrl: 44)7 (ctrl: 3)
Niraparib alone (w/o CT) (AVANOVA2) [124]392
Bevacizumab + niraparib w/o CT (AVANOVA2) [124]406
Platin-resistant relapsePaclitaxel 175 mg/m2/3 sem [125]nrnr
Paclitaxel 175 mg/m2/3 sem [125]nrnr
Paclitaxel 225 mg/m2/3 sem [125]nrnr
Weekly paclitaxelnrnr
3w-topotecan [126,127]31–460–2
w-topotecan [128,129]322–22
PLD [117,130,131]22–441–6
Gemcitabine [130]nr (gr2: 36)11
Docetaxel [132]nrnr
Bevacizumab + chemotherapy (AURELIA) [133]nr4 (ctrl: 10)
The colors refer to the higher reported frequency of grade 3 or more fatigue for each regimen: Cancers 14 02470 i001: [30–40%]; Cancers 14 02470 i002: [20–30%]; Cancers 14 02470 i003: [10–20%]; Cancers 14 02470 i004: [5–10%]; Cancers 14 02470 i005: [0–5%]; Cancers 14 02470 i006: not reported. Data specific to older patients are underlined. Abbreviations: ctrl: control; gr: grade; gr2+: grade 2 or more; nr: not reported.
Table 3. Fatigue events in the most common anticancer regimens for prostate and urothelial cancers. Abbreviations: ADT: androgen deprivation therapy; ctrl: control; DDGc: dose dense with G-CSF; gr: grade; gr2+: grade 2 or over; LHRHa: LHRH analog; nr: not reported; (2/3)w (bi/three)-weekly.
Table 3. Fatigue events in the most common anticancer regimens for prostate and urothelial cancers. Abbreviations: ADT: androgen deprivation therapy; ctrl: control; DDGc: dose dense with G-CSF; gr: grade; gr2+: grade 2 or over; LHRHa: LHRH analog; nr: not reported; (2/3)w (bi/three)-weekly.
SettingTreatment Regimen and ReferenceFatigue Any-Grade (%)Fatigue Gr ≥3 (%)
Prostate cancers
Non metastatic castration resistantADT + apalutamide (SPARTAN) [136]33 (ctrl: 14)3 (ctrl: 1)
Metastatic castration sensitiveADT [6]
(LATITUDEc, STAMPEDEc, CHAARTEDc, TITANc, and SPARTANc) [136,137,138,139,140,141]
Any (FSS): 74%
14–20
Severe (FSS): 14%
<1–4
LHRHa:
Leuprolide [135,142]6nr
Goselerin [143,144]nrnr
Triptorelin [142]nrnr
Degarelix (induction 240 mg/maintenance 80 mg)30
ADT + abiraterone acetate (LATITUDEi and STAMPEDEi) [137,138]13 (ctrl: 14)2 (ctr: 2)
ADT + enzalutamide (ENZAMET and ARCHES) [139,140]24 (ctrl: 20)2–6 (ctrl: 1–2)
ADT + apalutamide (TITAN and SPARTAN) [136,141]20–32 (ctrl: 15–17)1–2 (ctrl: <1–1)
ADT + docetaxel 75 mg/m2/3w (GETUG-AFU-15, E3805, and STAMPEDE) [145,146]74 (ctrl: 20)4–7 (ctrl: 1–4)
Metastatic castration resistantADT + abiraterone acetate
After docetaxel (COU-AA-301) [147]
<75 [148]
≥75 [148]
In chemo-naive patients (COU-AA-302) [149]
44 (ctrl: 43)
47 (ctrl: 45)
48 (ctrl: 42)
39 (ctrl: 34)
8 (ctrl: 10)
8 (ctrl: 11)
13 (ctrl: 11)
nr
ADT + enzalutamide (STRIVE) [150]38 (ctrl: 28)5 (ctrl: 3)
After docetaxel (AFFIRM) [151]
At baseline [152]
In chemo-naïve patients (PREVAIL) [153]
34–62 (ctrl: 29, gr2+: 9)
64 (gr2+: 9)
36 (ctrl: 26)
6 (ctrl: 7)
2 (ctrl: 2)
nr
3w-docetaxel 75 mg/m2/3w [154]535
w-docetaxel 30 mg/m2/w [154]495
2w-docetaxel 50 mg/m2 [155]65 (cyc; ctrl: 51)3 (cyc, ctrl: 3)
Cabazitaxel 25 mg/m2/3w [156]375
Cabazitaxel 20 mg/m2/3w [157]nrnr
Radium 223 chloride [158]24 (plb: 24)3 (plb: 6)
Olaparib [159]41 (ctrl: 32)3 (ctrl: 5)
Urothelial cancers
1st lineMVAC [160,161]nr24
DDGc MVAC [161,162]nrnr
Paclitaxel 225 mg/m2/carboplatin AUC6 [160]nr10
Gemcitabine cisplatin [163]nrnr
Gemcitabine weekly cisplatin [163]nrnr
Gemcitabine carboplatin [163]nrnr
Avelumab maintenance (JAVELIN Bladder 100) [164]18 (ctrl: 7)2 (ctrl: 1)
2nd lineGemcitabine [163]nrnr
Vinflunine [165]50 (ctrl: 61)19 (ctrl: 18)
Pembrolizumab (KEYNOTE-045) [166]14 (ctrl: 28)1 (ctrl: 4)
3rd lineEnfortumab vedotin (EV201, EV301) [167,168]31–50 (ctrl: 23)6 (ctrl: 5)
The colors refer to the higher reported frequency of grade 3 or more fatigue for each regimen: Cancers 14 02470 i001: [30–40%]; Cancers 14 02470 i002: [20–30%]; Cancers 14 02470 i003: [10–20%]; Cancers 14 02470 i004: [5–10%]; Cancers 14 02470 i005: [0–5%]; Cancers 14 02470 i006: not reported. Data specific to older patients are underlined.
Table 4. Fatigue events in the most common anticancer regimens for colorectal cancers.
Table 4. Fatigue events in the most common anticancer regimens for colorectal cancers.
Scheme 3Treatment Regimen and ReferenceFatigue Any-Grade (%)Fatigue Gr ≥3 (%)
Adjuvant5-FU/leucovorin (MOSAICc) [172,173]2–25<1–2
Capecitabine [173]231
FOLFOX (MOSAICi and PETACC-8c) [172,174,175]634–5
XELOX/CAPOX 6mo (TOSCA, IDEA, SCOT, and HORG) [169,170,171]SCOT: 90 (p = 0.022)
TOSCA: 39 (asthenia)
SCOT: 8
IDEA: 5 (p = 0.0027)
TOSCA: 4 (asthenia)
XELOX/CAPOX 3mo (TOSCA, IDEA, SCOT, and HORG) [169,170,171]SCOT: 86 (p = 0.022)
TOSCA: 28 (asthenia, p < 0.0001)
SCOT: 8
IDEA: 3 (p = 0.0027)
TOSCA: 1 (asthenia)
MetastaticCapecitabine
≥70 (AVEXc) [176]
21–23
27
1
1
FOLFOX [177,178]420–6
≥72 [179]7510
XELOX [180]629
≥65 vs. < 65 [181]64 vs. 6322 vs. 19
≥70 [182]3816
2w-XELOX/CapeOX regimen specific to older patients (≥70) [183]466
FOCUS2 trial on older/frail patients not candidate for standard full-dose chemotherapy [184]:
80% FU
80% FOLFOX (OxFU)
80% Cap (Capecitabine)
80% CapOx
Fluorouracil vs. capecitabin (FU/FOLFOX vs. Cap/CapOx)
Addition of oxaliplatin (FOLFOX/CpOx vs. FU/Cap)
nr (lethargy ≥ gr2: 38)
nr (lethargy ≥ gr2: 42)
nr (lethargy ≥ gr2: 36)
nr (lethargy ≥ gr2: 43)
lethargy ≥ gr2: 40 vs. 39
lethargy ≥ gr2: 37 vs. 43
7 (lethargy)
9 (lethargy)
13 (lethargy)
15 (lethargy)
8 vs. 14 (lethargy, p = 0.06)
10 vs. 12 (lethargy; p = 0.88)
FOLFIRI [185,186,187,188,189]43–460–6
XELIRI [190,191,192,193,194,195]8–48 (≥gr2: 22%)0–8
CAPIRI [196]nrnr
XELIRI weeklynr5
XELIRI 2-weekly [197]5713
FOLFOXIRI/FOLFIRINOX [186,189]nr6
≥70 [198]9410
XELOXIRI [199]503
COI 2-weekly [200]nrnr
IFL 21d [201]350–6
IRINOX [202]9013
Raltitrexed [203]nr5
TOMOX [178,204,205]35–534–16
TOMIRI [205,206]33–533–7
Bevacizumab–FOLFIRI [189,207,208,209]55–751–9
Bevacizumab XELIRI [210,211]677–17
Bevacizumab–FOLFOX [177,209,212]54–711–11
Bevacizumab XELOX [213]59
≥70 [214]6216
≥75 [214,215]28–848
Bevacizumab–FOLFOXIRI [189,207]nr12
Bevacizumab capecitabine
≥70 (AVEXi) [176]244
≥70/PS = 2 [216]6713
Aflibercept–FOLFIRI [217]6017
Cetuximab [218]nr33 (ctrl: 26)
Cetuximab–FOLFIRI [188,208]49<1–4
Cetuximab XELIRI [191]nr5 (asthenia)
Cetuximab–FOLFOX [219,220]668
Cetuximab XELOX [220]nrnr
Cetuximab FOLFIRINOX [221]nr32
Cetuximab-irinotecan [222,223]34–753–5
Panitumumab–FOLFIRI [224]nrnr
Regorafenib [225]47 (ctrl: 28)9 (ctrl: 5)
≥70 (REGOLD) [226]9045
TAS-102 (trifluridine–tipiracil) (RECOURSE) [227,228]35–85 (ctrl: 23)4–11 (ctrl: 6)
Bevacizumab-TAS-102 (C-TASK FORCE) [228,229]24–850–7
Encorafenib cetuximab (BEACON) [230]30 (ctrl: 27)4 (ctrl: 4)
Pembrolizumab (KEYNOTE 177) [231]38 (ctrl: 50)4 (ctrl: 9)
The colors refer to the higher reported frequency of grade 3 or more fatigue for each regimen: Cancers 14 02470 i001: [30–40%]; Cancers 14 02470 i002: [20–30%]; Cancers 14 02470 i003: [10–20%]; Cancers 14 02470 i004: [5–10%]; Cancers 14 02470 i005: [0–5%]; Cancers 14 02470 i006: not reported. Data specific to older patients are underlined.
Table 5. Fatigue events in the most common anticancer regimens for lung cancers.
Table 5. Fatigue events in the most common anticancer regimens for lung cancers.
SettingTreatment Regimen and ReferenceFatigue
Any-Grade (%)
Fatigue
Gr3 (%)
Non-small cell lung cancerDocetaxel [238]274
Docetaxel/carboplatin [233]nr10–16
16 (weakness)
10 (asthenia)
Etoposide/cisplatin [239]nrnr
Paclitaxel/cisplatin [232,233]nr9 (lethargy)-
15 (weakness)
Docetaxel/cisplatin [232,233,240]nr7–16
Vinorelbine/cisplatin [233]nr9
Paclitaxel/carboplatin [232,233]nr9–15
Carboplatin paclitaxel regimen specific to older patients (3w-carboplatin AUC6, w-paclitaxel 90mg/m2) (≥70) [241]nr10 (asthenia)
Pemetrexed/cisplatin [233]nr7
Carboplatin/pemetrexed [242]
PCb5 (Carboplatin AUC5)
PCb6 (Carboplatin AUC6)
11–48
11
48
0–3
0
3
Pembrolizumab/pemetrexed/cisplatin or carboplatin [236]416
Gemcitabine/cisplatin [232,233,240]nr8–40
Gemcitabine/carboplatin [233]nr40
Bevacizumab carboplatin/paclitaxel [234,235]20–453–5
Bevacizumab atezolizumab carboplatin/paclitaxel [235]223
Bevacizumab carboplatin/pemetrexed [234]5311
Nivolumab 10mg/kg + gemcitabine/cisplatin [237]670
Nivolumab 10mg/kg + pemetrexed/cisplatin [237]807
Nivolumab 10mg/kg + paclitaxel/carboplatin [237]6713
Nivolumab 5mg/kg + paclitaxel/carboplatin [237]710
Gemcitabine/docetaxel
≥70 [243]
nr
48
nr
6
Gemcitabine (maintenance) [244]
≥70 [243]
nr
31
nr
6
Pemetrexed (maintenance) [245]245
Bevacizumab pemetrexed (maintenance) [234]493
Bevacizumab (maintenance) [234]6212
Erlotinib [233]30
Crizotinib [246]272
Ceritinib [247]475
Gefitinib [233]nr3
Nintedanib-docetaxel [238]306
Small cell lung cancerACE [248]nr13
Topotecan [249,250]264
Topotecan/paclitaxel [251]nr22
ICE [252,253,254]nrnr
wICE [252]nrnr
VICE [255,256]66nr
DDG ACE [257]nrnr
DDG ICE [253]nrnr
DDG CAV → PE [258]nrnr
Paclitaxel carboplatin topotecan [259]nr12
CAV [249]34nr
Etoposide/cisplatin [260,261,262,263]11<1–2
Etoposide/carboplatin [263,264]11<1
Irinotecan/carboplatin [264,265]nrnr
Irinotecan/cisplatin [261]nrnr
Ipilimumab-Etoposide/cisplatin [263]132
Topotecan/cisplatin [262,266]131–3
Docetaxel/gemcitabine [267]
Age > 65 or PS=2 [268]
nr
nr
nr
25
Irinotecan/gemcitabine [269]nr9–15
CODE [270,271]nrnr
CAV → PE [258,270,271] nrnr
Paclitaxel/carboplatin [248]
consolidation after CT-RT [272]
nr
nr
9
15
Nab P/C 3w [273]nr1
Nab-P/C w [273]nr0
wPaclitaxel 80mg/m2/sem [274]271
Gemcitabine [275,276]nrnr
The colors refer, for each regimen, to the higher reported frequency of grade 3 or more fatigue: Cancers 14 02470 i001: [30–40%]; Cancers 14 02470 i002: [20–30%]; Cancers 14 02470 i003: [10–20%]; Cancers 14 02470 i004: [5–10%]; Cancers 14 02470 i005: [0–5%]; Cancers 14 02470 i006: not reported. Data specific to older patients are underlined.
Table 6. Fatigue events in the most common anticancer regimens for non-Hodgkin’s and follicular lymphoma.
Table 6. Fatigue events in the most common anticancer regimens for non-Hodgkin’s and follicular lymphoma.
SettingTreatment Regimen and ReferenceFatigue Any-Grade (%)Fatigue Gr3 (%)
Diffuse large B-cell lymphomaCHOP-21 [286]
CHOP: data specific to older patients (60–80) [280,281,282]
nr
nr
nr
nr
DHAP [287]nrnr
ESHAP [288,289,290]nrnr
CNOP [286]nrnr
ACOD [291]30
Fludarabine/mitoxantrone [292]nrnr
R-CHOP-21 [277,278]27–463
R-CHOP: data specific to older patients (>60) [280,281,282,284,293,294]490
R-CHOP–Lenalinomide maintenance: data specific to older patients (58–80) [295]nrnr
R-miniCHOP regimen specific to older patients (≥80) [283]nrnr
R-COMP [284,296]: data specific to older patients537
R-mini-CHP: regimen specific to older patients (≥80) [297]nrnr
R-mini-CEOP regimen specific to “frail” patients (64–84 years) [298]nrnr
R-CVP [277]53<1
R-mini-CVP regimen specific to older patients (≥80) [285]5847
DA-EPOCH-R [299]nrnr
R-pola-CHP 21 [278]261
R-DHAP [279]nr9
R-GemOx [300]nrnr
Lenalinomide–rituximab [301,302,303]nr13–23
Lenalinomide [302,303,304]347–9
Tafasitamab–lenalidomide (L-MIND) [305]152
CAR-T Lisocabtagene maraleucel (TRANSCEND NHL 001) [306]441
CAR-T Axicabtagene ciloleucel (ZUMA-1) [307]512
CAR-T Tisagenlecleucel (JULIET) [308]256
CAR-T real life experience USA [309]nrnr
France [310]nrnr
Indolent lymphomasRituximab [311]22nr
Bendamustine-rituximab (BRIGHT) [277]44–583–4
R-CHOP (FOLL05 and BRIGHT) [277]462
R-CVP (FOLL05 and BRIGHT) [277]53<1
R-FM (FOLL05) [312]nrnr
Rituximab-chemotherapy [313]37nr
G-CHOP (GALLIUM) [314]16nr
G-CVP (GALLIUM) [314]57nr
G-Bendamustine (GALLIUM) [314]44nr
Obinutuzumab-chemotherapy [313]36nr
Revlimid–lenalidomide (CALGB 50803) [315]786
The colors refer to the higher reported frequency of grade 3 or more fatigue for each regimen: Cancers 14 02470 i001: [30–40%]; Cancers 14 02470 i002: [20–30%]; Cancers 14 02470 i003: [10–20%]; Cancers 14 02470 i004: [5–10%]; Cancers 14 02470 i005: [0–5%]; Cancers 14 02470 i006: not reported. Data specific to older patients are underlined.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

André, L.; Antherieu, G.; Boinet, A.; Bret, J.; Gilbert, T.; Boulahssass, R.; Falandry, C. Oncological Treatment-Related Fatigue in Oncogeriatrics: A Scoping Review. Cancers 2022, 14, 2470. https://0-doi-org.brum.beds.ac.uk/10.3390/cancers14102470

AMA Style

André L, Antherieu G, Boinet A, Bret J, Gilbert T, Boulahssass R, Falandry C. Oncological Treatment-Related Fatigue in Oncogeriatrics: A Scoping Review. Cancers. 2022; 14(10):2470. https://0-doi-org.brum.beds.ac.uk/10.3390/cancers14102470

Chicago/Turabian Style

André, Louise, Gabriel Antherieu, Amélie Boinet, Judith Bret, Thomas Gilbert, Rabia Boulahssass, and Claire Falandry. 2022. "Oncological Treatment-Related Fatigue in Oncogeriatrics: A Scoping Review" Cancers 14, no. 10: 2470. https://0-doi-org.brum.beds.ac.uk/10.3390/cancers14102470

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop