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Simple Summary: Systemic mastocytosis (SM) is a clonal haematopoietic stem cell disease typically 

characterized by the expansion and accumulation of neoplastic mast cells carrying the activating 

KIT D816V as a driver mutation. Multilineage involvement of haematopoiesis by this KIT mutation, 

particularly in a multi-mutated context, also involving other genes (e.g., SRSF2, ASXL1, DNMT3A, 

RUNX1, EZH2, CBL and NRAS) found to be frequently mutated in other myeloid neoplasms, have 

recently emerged as a genetic background associated with malignant transformation of SM. There-

fore, assessment of multilineage involvement of haematopoiesis by KIT D816V and additional mu-

tations in genes known to be associated with the prognosis of SM have become of great help to 

identify good vs. poor-prognosis SM patients who could benefit from a closer follow-up and, even-

tually, also early cytoreductive treatment. 

Abstract: Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which ac-

tivating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult 

patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V 

mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation 

early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, 

which has been associated with higher tumour burden and additional mutations in other genes, 

leading to an increased rate of transformation to advanced SM. Thus, among other mutations, al-

terations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been 

reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, 

SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because 

of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mu-

tation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., 

ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient 

outcome, has become of great help to identify SM patients at higher risk of disease progression 

and/or poor survival who could benefit from closer follow-up and eventually also early cytoreduc-

tive treatment. 
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1. Introduction 

Systemic mastocytosis (SM) is a rare hematologic disease characterized by an abnor-

mal expansion and accumulation of pathological mast cells (MCs) in skin and/or other 

several extracutaneous tissues such as bone marrow (BM) and the gastro-intestinal tract. 

Currently, SM is divided into five different diagnostic subtypes according to the World 

Health Organization (WHO) 2016 classification [1]. These include indolent SM (ISM), 

smouldering SM (SSM), aggressive SM (ASM), SM with associated haematological neo-

plasms (SM-AHN) and MC leukaemia (MCL). Additionally, the inclusion of two new sub-

types of SM into the classification of the disease is currently under consideration: a variant 

of ISM known as BM mastocytosis (BMM) [2,3], which is characterized by a low BM MC 

burden in the absence of skin lesions, and a very rare (<5%) variant of mastocytosis, which 

shows tumour mast cells (MCs) with a well-differentiated morphology together with a 

CD25− CD2− immunophenotype and unique clinical, biological and molecular features, 

termed well-differentiated SM (WDSM) [4]. From a prognostic point of view, all these 

diagnostic subtypes of SM can be grouped into (i) non-advanced forms of SM (Non-

AdvSM), which include BMM, ISM and SSM, typically characterized by a more stable and 

indolent course of the disease and a life expectancy similar or close to that of a sex- and 

age-matched population; and (ii) advanced SM (AdvSM) including ASM, SM-AHN and 

MCL, which typically display an adverse prognosis associated with a significantly short-

ened life expectancy requiring cytoreductive therapy [1]. Despite this, some ISM patients 

(<5%) can eventually evolve to SSM and AdvSM [5]. Conversely, a small proportion of 

AdvSM patients may also show a relatively stable disease course over years or even dec-

ades [6,7]. 

Currently, the aetiopathogenic mechanisms involved in malignant transformation of 

SM remain largely unknown. However, from an ontogenetic point of view, it is known 

that pathological MCs from the vast majority of patients (>90%) carries the D816V muta-

tion in the KIT protooncogene [8,9] regardless of the diagnostic subtype of SM and its 

clinical course (e.g., Non-AdvSM or AdvSM). Despite this, multilineage involvement of 

hematopoietic cells other than MCs by KIT D816V, together with the existence of addi-

tional mutations in genes other than KIT (e.g., SRSF2, ASXL1, RUNX1, EZH2) have been 

demonstrated in recent years to mostly affect (but not only) AdvSM patients [10–12]. It is 

noteworthy that most of the latter mutations involve genes that are also recurrently mu-

tated in other (myeloid) haematological malignancies [10,11,13], suggesting a tendency 

for their acquisition in haematopoietic cells that have an appropriate altered genetic back-

ground (i.e., KIT D816V-positive cells) that could favour malignant transformation and a 

more aggressive disease behaviour. 

2. KIT Mutations in Systemic Mastocytosis 

The KIT gene is a proto-oncogene encoding for a trans-membrane receptor 

(mast/stem cell growth factor receptor (KIT)) with tyrosine kinase (TK) activity located on 

the long arm of human chromosome 4 [14]. When the KIT ligand—stem cell growth factor 

(SCF)—binds to KIT, conformational changes occur that lead to dimerization of the recep-

tor and its activation by autophosphorylation [15]. Of note, intracellular signalling trig-

gered upon activation of the KIT receptor is key to the normal development of haemato-

poiesis and the survival of haematopoietic stem cells (HSC) [16]. Except for MCs and some 

natural killer (NK) cells, KIT is no longer expressed by other mature myeloid and lym-

phoid haematopoietic cells [17]. In MCs, KIT expression remains at high levels throughout 

maturation [18,19], playing a critical role in MC proliferation, differentiation and survival 

[15,20]. Therefore, the acquisition of mutations that could impair the normal function of 

KIT (e.g., activating KIT mutations) has pro-oncogenic effects associated with inhibition 

of apoptosis and increased MC proliferation and survival [21,22]. 
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2.1. KIT D816V Mutation 

The D816V mutation of KIT is located at exon 17 within the tyrosine kinase (TK) 2 

domain of the KIT gene. This mutation causes constitutive activation of the KIT receptor 

in the absence of SCF binding and represents the most frequent genetic alteration in SM 

(>90% of adult SM patients) [9,15]. In fact, constitutive activation of KIT causes preferential 

differentiation of HSC toward cell lines regulated by KIT expression and signalling 

(mainly MCs and to a large extent also other myeloid lineages). The fact that MCs are the 

only haematopoietic cells that express KIT throughout their maturation [18,19] would ex-

plain why this KIT-activating mutation induces the expansion and accumulation of patho-

logical MCs in different organs and tissues, as typically observed in SM and other KIT-

mutated MC diseases [23]. Of note, the prevalence of the KIT D816V mutation is very 

similar among adult patients diagnosed with Non-AdvSM and AdvSM [9]. Therefore, the 

KIT D816V mutation is considered as a (specific) diagnostic marker of SM, regardless of 

the subtype of the disease, its presence being one of the four minor criteria required by 

WHO for the diagnosis of SM [1,24,25]. However, the presence of this mutation cannot 

explain by itself the wide spectrum of disease behaviour observed among SM patients, 

ranging from stable and even pauci-symptomatic to progressive and even highly-aggres-

sive disease [5]. 

2.2. Other KIT Mutations 

Overall, KIT mutations other than KIT D816V can be found in up to 4–5% adults and 

one third of children with mastocytosis [9]. In adults, these mutations are mostly located 

at codons 814–822 within exon 17 [9,26–31], including several mutant variants at codon 

816 [9,32–46] (Table 1). KIT mutations located outside exon 17 include rare mutations that 

mostly affect exons 2 [29], 5 [40], 7–11 [29,32,40,46–58], 13 [29,59] and 18 [29]. Of note, most 

mutations other than KIT D816V correspond to isolated cases of SM-AHN, MCL or 

WDSM (Table 1). Interestingly, MCL patients with KIT mutations other than D816V often 

lack additional somatic high-risk mutations [46]. Although the vast majority of KIT muta-

tions defined above are acquired (somatic) genetic variants, a few mutations typically lo-

cated in exons 8 to 10 of KIT (e.g., delD419 [60], S451C [61], K509I [62,63] or F522C [54]) 

correspond to germinal mutations that frequently show a familial aggregation pattern. 

From a clinical point of view, the exact location of the mutations in the KIT gene is of 

great relevance, since those mutations that occur within the transmembrane or juxtamem-

brane domains of the KIT gene (exons 9–11) induce spontaneous receptor dimerization, 

making pathological MCs sensitive to conventional TK inhibitor therapies (e.g., imatinib) 

[52–55,62,64], while KIT mutations involving the catalytic domain (exons 13–18) cause a 

conformational change of the protein, which confers intrinsic resistance to imatinib and 

other TK inhibitors commonly used to treat other human tumours [65,66]. 

Table 1. KIT mutations other than D816V described in adult patients with systemic mastocytosis 

(SM). 

Domain  Exon Mutation Subtype SM 

Extracellular: 

Ligand (SCF) 

binding  

domain 

2 R49C  SM-u [29] 

5  Y269C SM-AHN [40] 

Extracellular: Di-

merization do-

main 

7 V399I  SM-u [29] 

8 D419del ISM [47] 

9 

S451C SM-u [61] 

S476I MCL [48] 

S501_A502dup ASM [50] MCL [49] 

A502_Y503dup SM-u [29] MCL [51,52] 

Y503_F504InsAY ASM [40] 
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F504_N505delIns5 SM-AHN [51]  

K509R SM-u [29] 

K509I ISM [62] ASM [53] MCL [62] WDSM [63] 

Transmembrane 

domain 
10 F522C WDSM [32,54,55] MCL [46] 

Juxta-membrane 

domain 
11 

V559I ASM [56] 

V560G SM-u [40] ISM [57] MCL [58] 

TK1 

domain 
13 

K642E ASM [29,40] 

V654A MCL [59] 

TK2 

domain 

17 

A814S SM-AHN [26] 

A814T SM-AHN [27] 

I815-V816Ins ISM [9] 

D816H AdvSM [32,33] SM-AHN [26,34–36] MCL [46,67,68] 

D816Y 
ISM [37] AdvSM [32,33] SM-AHN [26,27,36,38,39]  

MCL [9,46] 

D816I SM-AHN [40] 

D816A SM-AHN [41,45] ASM [42] 

D816G MCL [43] 

D816T SM-u [44] 

I817V WDSM [9] 

D820G ASM [28] 

N822K SM-u [30] SM-AHN [31] 

18 V852G SM-u [29] 

Abbreviations: AdvSM: advanced systemic mastocytosis (SM); ASM: aggressive SM; ISM: indolent 

SM; MCL: mast cell leukaemia; SM-AHN: SM with an associated haematological neoplasm; SM-u: 

SM unclassified; WDSM: well-differentiated SM. 

3. Clonal Haematopoiesis in Systemic Mastocytosis 

SM is considered a clonal HSC disease characterized by the expansion and accumu-

lation of neoplastic MCs [69–71]. As a neoplasm involving the HSC compartment, the KIT 

D816V (and other KIT) mutations can be found in both neoplastic MCs and CD34+ BM 

HSC, as well as in other myeloids (e.g., neutrophils [9,72–74], monocytes [9,70,72–74], ba-

sophils [70,72,74] and/or eosinophils [9,74]) and/or lymphoid (e.g., T and B lymphocytes 

[9,70,73,74]) cells. In such cases presenting multilineage involvement of haematopoiesis, 

clonal myeloid (MM) or myeloid plus lymphoid (MML) cells are found, which derive from 

the expansion and differentiation of D816V-mutated HSCs to different myeloid and/or 

lymphoid cell lineages [5,75]. Moreover, KIT D816V-mutated BM mesenchymal stem cells 

(MSCs) are also frequently detected in MML-mutated cases [36,76,77]. Overall, multiline-

age involvement of haematopoiesis by the KIT D816V mutation is found in virtually all 

ASM and SSM patients, in around one third of ISM cases and in a small proportion (≤10%) 

of BMM patients [9,78]. In SM-AHN, the frequency of patients that show a multilineage 

KIT D816V mutation may vary significantly [36] depending on the specific subtypes of 

SM and AHN [9]. Thus, KIT D816V-mutated AHN cells have been found in 89% of SM 

associated with chronic myelomonocytic leukaemia (SM-CMML), while this would only 

occur in 20% of SM associated with myeloproliferative neoplasms (MPN) and 30% of SM 

associated with acute myeloblastic leukaemia (AML); in turn, the KIT mutation is almost 

systematically restricted to the MC compartment in patients with SM associated with lym-

phoid neoplasms [36]. 

4. Mutations in Genes Other than KIT 

Emergence of the KIT D816V mutation in an HSC during the development of haem-

atopoietic cells would potentially lead to multilineage involvement of haematopoiesis 

[77]. This would favour the expansion of neoplastic MCs and an increasing tumour bur-

den; in addition, it might also lead to an increased genomic instability that may facilitate 
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acquisition and accumulation of additional genetic alterations (Tables 2 and S1) in the KIT-

mutated or unmutated HSC and contribute to the malignant transformation of the disease 

via distinct molecular mechanisms, e.g., activation/repression of anti-/pro-apoptotic 

mechanisms [79]. 

Table 2. Mutations in genes other than KIT reported in systemic mastocytosis. 

Gene Exon Gene Mutations 

ASXL1 

6 S135C [12]     

8 G219V [12]     

12 

Y591* [80] I641fs [13] P698Afs* [32] I919Yfs* [29] H1008Tfs* [29] 

E602* [29] G642fs [12] R786Efs* [29] P920Tfs* [80] G1026Dfs* [29] 

A611T [29] G643Wfs* [13] D820Mfs* [29] R965_G966del [12] I1220F [80] 

I617Pfs* [32] G646Wfs* [29,81] T844fs [12] Y974* [32] G1397S [29] 

H630fs [12]/Gfs* [29] G646Afs* [29] S846Vfs* [81] I980Kfs* [32] A1521S [12] 

E635Rfs* [13,29,32] R693* [13] P849Lfs* [29] E997* [29] *1542fs [13] 

CBL 

8 
Q367dup [80] Y371C [29]/H [29]/S [29] M374K [29] L380P [10,29,82] 

C384R [12]/Y [29] M400K [10,32] C404Y [10,29] W408C [10,32]  

9 G413D [29] R420Q [10,29] I423N [29]   

11 R550W [12]     

DNMT3A 

3 E30A [80]     

4 N90S [12]     

8 R320* [12,29]     

10 A380V [12] K420* [12]    

15 W581C [12] L594Cfs* [29] R598* [29] D600Afs* [29]  

16 S638C [12]     

17 S663L [12]     

18 S714F [12] R720L [12]    

19 E733G [29] F755S [12] R771G [29]/Q [80]   

23 N879D [13] R882C [12,13]/H [12,13,80]   

EZH2 

3 L50Wfs* [13]     

5 I146T [13]     

7 S220F [32]     

8 R288* [32]     

14 Q545* [13]     

15 R583Q [13] N608K [13]    

17 F672L [29]     

18 R690C [29] H694R [40]    

JAK2 14 V617F [12,29,32] S605Y [12]    

KRAS 

2 V14I [83]     

3 Q70H [12]     

5 I187N [12]     

NRAS 
2 G12S [29] G12D [29,84] G13D [84]   

3 Q61L [29]    

RUNX1 

4 
L56S [29] P86fs [13]  E88Rfs* [13] S94I [29] 

D96Gfs [85] R107C [13]  N109T [13]/del [29] F116L [12] 

5 S141L [29] A142T [13] N146K [12,13] R162K [13,29] 

7 V238Gfs* [13]    

SF3B1 

5 Y141C [12]     

14 R625C [29] W658C [29] T663I [29] K666N [29]/T [13,32]  

15 K700E [13,29,83] A711D [86]    

SRSF2 1 V18L [10] P95 A [13]/H [10,32,85]/L [10]/R [12,13]/T [87]  

TET2 3 
L34F [29] Q321* [83] P562Tfs* [29] Q729* [32] Q933* [51] 

H192Y [13] E368* [13] N595Ifs* [51] Q731* [51] Q939* [29] 
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V218Wfs* [32] Q373Rfs* [51] P612fs [12] Q734* [51] K948Nfs* [83] 

Y234* [51] P409Lfs* [80] L615Sfs* [29] Q752_fs* [29] W954* [29] 

R248Q [29] G429R [29] Y620fs [12] L757Tfs* [29] Q958Tfs* [29] 

S254Rfs* [51] L431* [51] Y634* [29] L806Rfs* [29] Q963* [29] 

E259Gfs* [29] E452Rfs* [29,88] Q652* [29] Q810* [29,88] S972Ffs* [29] 

N275Ifs* [12,13] D527Gfs* [29] Q652Sfs* [80] N837Yfs* [32] C1016Wfs* [29,88] 

Q278* [29] Q530* [29] Q659Rfs* [29] L840* [51] Q1020* [80] 

T279fs [12] E537Sfs* [29] Q684Nfs* [29] T849Hfs* [89] I1024Qfs* [51] 

N281* [29] R550* [29] Q705Sfs* [29] Y867H [29] P1061Qfs* [51] 

R282G [29] H558Lfs* [51] A727S [12] V872Cfs* [29] Q1084P [29] 

4 D1143Mfs* [32,51]     

5 Q1170* [88]     

6 H1219D [32] Y1245Lfs [85] S1246* [51] Y1255fs [12]  

8 Y1337* [80] A1341E [85]    

9 
Y1351* [51] R1359 C [88]/H [29] S1369L [29] H1380Y [29] D1384V [29] 

Q1389* [51] T1393I [29]    

10 R1465* [29] R1467G_fs* [29] K1493fs [12]   

11 

L1515Ffs* [51] M1615* [89] V1718L [29] L1819* [29] N1890S [12] 

L1531A_fs* [29,88] Q1652Hfs* [29] P1723S [29] I1873T [80] R1891G [29] 

K1533* [29] Y1679L_fs* [29] D1750Efs* [51] E1879* [29] F1901Lfs* [51] 

E1555R_fs* [29] Q1680* [29] N1765* [29] H1881L [29]/R [29,51,88] Y1902C [29] 

Y1598Sfs* [29] S1688_fs* [29,51,88] M1800Dfs* [51] T1884A [29] H1904R [80] 

S1611Y [12] M1701I [29] H1817Pfs* [29] L1886S [29] H1912Y [13] 

*: Stop codon resulting in an incomplete protein. 

In line with this hypothesis, mutations in genes which are also frequently mutated in 

other myeloid malignancies are also present at relatively high frequencies in AdvSM pa-

tients [10,11,13,90–92] (Figure 1). In this regard, it has been recently described that certain 

DNA methylation patterns may be relevant in the pathogenesis of systemic diseases asso-

ciated with MC activation [93]. Moreover, a significant number of somatic mutations has 

been identified in a broad number of genes involved in epigenetic regulatory mechanisms, 

which have been associated, at least in part, with the pathogenesis, clinical behaviour and 

evolution of different myeloid neoplasms, including SM [94,95]. Thus, around 30–40% of 

AdvSM present with an associated myeloid haematological neoplasm already at diagno-

sis [69], suggesting a close relationship between both malignancies. In line with this, next 

generation sequencing (NGS) studies have confirmed the presence of recurrent mutations 

in genes involved in post-transcriptional mRNA processing, epigenetic modification of 

DNA and transcription and signal transduction factors, in both SM and other myeloid 

neoplasms [10,11,51,81,87]. Among others, mutations have been recurrently reported in 

AdvSM in the ASXL1, CBL, DNMT3A, NRAS, RUNX1, SRSF2 and TET2 genes in AdvSM 

[10,12,13,29,32,46,50,51,68,80,81,87,96,97]. In contrast, the presence of these additional mu-

tations is a relatively infrequent finding in BMM and ISM patients [10,29,51,80,87]. 
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Figure 1. Genes recurrently mutated in systemic mastocytosis categorized by cellular functions. (A) 

Signal transduction and transcription regulation. Extracellular signals are received and transmitted 

effectively into the cell by activation of cell-surface receptors such as tyrosine kinase receptors TKR 

(e.g., FLT3 or KIT), resulting in the activation of intracellular signalling cascades, including the 

MAPK (i.e., RAS), STATs (i.e., JAK2) and PI3K pathways, which promote cell proliferation, survival 

and apoptosis by inducing gene transcription and/or DNA epigenetic modifications [98]. Activa-

tion/repression of these pathways require appropriate regulation of the activity and/or quantity of 

specific proteins. As an example, CBL proteins negatively regulate TKR (e.g., FLT3, KIT) and non-

TKR (e.g., PI3K, JAK2) proteins through their ubiquitination and proteasomal degradation [99]. (B) 

Epigenetic regulation. ASXL1 and EZH2 are members of the Polycomb group (PcG) of proteins, 

which are considered necessary to disrupt chromatin compaction in localized areas by activating/re-

pressing specific histone markers. EZH2 is involved in transferring methyl groups to histone H3 

lysine 27 (H3K27), whereas ASXL1, associated with BAP1, is involved in de-ubiquitinating mono-

ubiquitinated histone H2AK119 and, when associated with the OGT/HCFC1 complex, in the meth-

ylation (Me3) of H3K4 [100]. The DNMT3A protein is recruited by the histone mark H3K36me2 

[101] to be involved in the methylation of cytosines (5mC), whereas the TET protein family is in-

volved in active demethylation through oxidation of 5mC to 5hmC [102]. Overall, this mechanism 

results in enhancing transcription of certain genes while repressing the transcription of other genes. 

(C) RNA splicing. At the pre-mRNA level, the SF3B1, SRSF2 and U2AF1 proteins cooperate with 

U1–U6 small nuclear ribonucleoproteins (sn-RNPs), forming the U2-dependent splicing complex 

that brings the two intronic ends together by attaching the two exons and removing the intron [103]. 

This process transforms the pre-mRNA into mRNA, which can be transduced into a protein by ri-

bosomes. Abbreviations: A, branch site; AG, splice receptor site; BAP1, BRCA-1-associated protein 

1; ESE, exonic splicing enhancer; 5mC, 5 methyl cytosine; H, histone; HCFC1, host cell factor C1; 

Me, methylation; OH, hydroxylation; OGT, O-linked N-acetylglucosamine (GlcNAc) transferase; 

pre-mRNA, precursor messenger RNA; PcG, polycomb group; RTKs, receptor tyrosine kinases; Ub, 

ubiquitin; U1-U6, small nuclear ribonucleoproteins (snRNPs). Created using BioRender. 

4.1. Mutations Affecting Transcription Factors and Signalling Pathways 

The correct function and development of the human organism strongly relies on the 

precise regulation and appropriate production of specific sets of proteins. Gene expression 
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is largely regulated by transcription factors and the activation of processes involved in 

various intracellular signalling pathways. In this regard, alterations in genes involved in 

these processes, such as the CBL, JAK2, K/NRAS and/or RUNX1 genes [104], have been 

associated with several haematological malignancies. To date, mutations in a total of 11 

genes related to transcription factors and signalling pathways have been described in pa-

tients with different subtypes of SM; of note, while some of these genes have been spo-

radically reported to be mutated in SM (EPHA7 [12,13], FLT3 [29], IKZF1 [13], PIK3CD 

[12,13], ROS1 [12,13] and TP53 [29]) (Tables S1 and S2), others (e.g., CBL, JAK2, K/NRAS 

and RUNX1) are recurrently found to be altered in SM, particularly among SM-AHN pa-

tients (Table 3). 

Table 3. Frequency of mutations in genes affecting transcription factors and signalling pathways 

found to be recurrently altered in systemic mastocytosis. 

Gene 
SM Diagnostic 

Subgroup 

Mutated Cases/To-

tal Cases (%) 

Overall  

Frequency 

WHO  

Subtype 

Mutated Cases/ 

Total Cases (%) 

Overall  

Frequency 

CBL 

Non-AdvSM 

1/12 (0) [10] 

1/216 (0.5) [12] 

0/6 (0) [13] 

0/44 (0) [29] 

0/1 (0) [50] 

1/29 (3.4) [51] 

0/26 (0) [68] 

0/15 (0) [80] 

0/6 (0) [85] 

1% 

BMM 0/65 (0) [12]  0% 

ISM 

1/10 (10) [10] 

0/3 (0) [13] 

0/1 (0) [50] 

0/26 (0) [68] 

0/4 (0) [85] 

1/144 (1) [12] 

0/44 (0) [29] 

1/28 (4) [51] 

0/15 (0) [80] 

1% 

SSM 

0/2 (0) [10] 

0/3 (0) [13] 

0/2 (0) [85] 

0/7 (0) [12] 

0/1 (0) [51] 
0% 

AdvSM 

7/27 (26) [10] 

1/13 (8) [12] 

0/14 (0) [13] 

16/106 (15) [29] 

25/272 (9) [32] 

1/25 (4) [50] 

0/35 (0) [51] 

10/83 (12) [68] 

1/10 (10) [80] 

3/26 (12) [81] 

2/13 (15) [85] 

4/19 (21) [90] 

11% 

ASM 

0/1 (0) [10] 

0/9 (0) [13] 

0/2 (0) [50] 

0/3 (0) [68]         

0/1 (0) [85]         

0/9 (0) [12] 

1/25 (4) [29] 

0/9 (0) [51] 

0/2 (0) [80] 

0/6 (0) [90] 

2% 

SM-AHN 

6/23 (26) [10] 

0/5 (0) [13]         

1/21 (5) [50]        

10/72 (14) [68]     

2/12 (17) [85]       

1/4 (25) [12] 

15/80 (19) 

[29]     

0/23 (0) [51] 

3/26 (12) [81] 

4/13 (31) [90] 

15% 

MCL 

2/7 (29) [10]        

0/2 (0) [50]         

0/8 (0) [68] 

0/1 (0) [29] 

0/3 (0) [51] 
10% 

JAK2 

Non-AdvSM 

0/12 (0) [10] 

2/97 (2) [12] 

0/6 (0) [13] 

0/44 (0) [29] 

0/1 (0) [50] 

0/29 (0) [51] 

2/26 (8) [68] 

0/6 (0) [85] 

0/13 (0) [88] 

2% 

BMM 1/23 (4) [12]  4% 

ISM 

0/10 (0) [10]  

0/3 (0) [13]         

0/1 (0) [50]  

2/26 (8) [68]         

0/13 (0) [88]         

1/70 (1) [12] 

0/44 (0) [29] 

0/28 (0) [51] 

0/4 (0) [85] 

2% 

SSM 

0/2 (0) [10]  

0/3 (0) [13]             

0/2 (0) [85]  

0/4 (0) [12] 

0/1 (0) [51] 
0% 

AdvSM 

2/27 (7) [10] 

0/14 (0) [13] 

9/106 (9) [29] 

25/213 (12) [32]  

3/25 (12) [50] 

3/35 (9) [51] 

12/83 (15) [68] 

3/47 (6) [81] 

10% 

ASM 

0/1 (0) [10]  

0/9 (0) [13]          

0/2 (0) [50]           

0/3 (0) [68] 

0/5 (0) [88]    

0/7 (0) [12] 

0/25 (0) [29] 

0/9 (0) [51] 

0/1 (0) [85] 

0% 

SM-AHN 

2/23 (9) [10]         

0/5 (0) [13] 

3/21 (14) [50]      

0/3 (0) [12] 

9/80 (11) [29] 

3/23 (13) [51] 

11% 



Cancers 2022, 14, 2487 9 of 26 
 

 

1/13 (8) [85] 

2/29 (7) [88] 

12/72 (17) [68]     

1/12 (8) [85]        

3/47 (6) [81]        

2/23 (9) [88] 

MCL 

0/3 (0) [10]              

0/1 (0) [50]  

0/8 (0) [68]  

0/1 (0) [29] 

0/3 (0) [51] 

0/1 (0) [88] 

0% 

KRAS 

Non-AdvSM 

0/12 (0) [10] 

2/97 (2) [12] 

0/6 (0) [13] 

0/29 (0) [51] 

0/36 (0) [84] 

1% 

BMM 0/23 (0) [12]  0% 

ISM 

0/10 (0) [10] 

0/3 (0) [13] 

0/27 (0) [84]        

2/70 (3) [12] 

0/28 (0) [51] 
1% 

SSM 

0/2 (0) [10]  

0/3 (0) [13] 

0/9 (0) [84]  

0/4 (0) [12] 

0/1 (0) [51] 
0% 

AdvSM 

4/27 (15) [10] 

0/10 (0) [12] 

0/14 (0) [13] 

0/35 (0) [51] 

2/16 (13) [68] 

6% 

ASM 
0/1 (0) [10]       

0/9 (0) [13]      

0/7 (0) [12] 

0/9 (0) [51] 
0% 

SM-AHN 

4/23 (17) [10]       

0/5 (0) [13]  

2/16 (13) [68]      

0/3 (0) [12] 

0/23 (0) [51] 
9% 

MCL 0/3 (0) [10]  0/2 (0) [51] 0% 

NRAS 

Non-AdvSM 

0/12 (0) [10] 

0/6 (0) [13] 

0/44 (0) [29] 

0/1 (0) [50] 

0/23 (0) [51] 

0/36 (0) [84] 

1/298 (0.3) [97] 

0.2% 

BMM    

ISM 

0/10 (0) [10] 

0/44 (0) [29] 

0/22 (0) [51]  

0/3 (0) [13] 

0/1 (0) [50] 

0/27 (0) [84] 

0% 

SSM 
0/2 (0) [10] 

0/1 (0) [51]  

0/3 (0) [13] 

0/9 (0) [84] 
0% 

AdvSM 

2/27 (7) [10] 

0/14 (0) [13] 

3/105 (3) [29] 

1/25 (4) [50] 

1/25 (4) [51] 

2/16 (13) [68] 

3/173 (2) [97] 

3% 

ASM 

0/1 (0) [10] 

0/25 (0) [29]       

0/7 (0) [51]  

0/9 (0) [13] 

0/2 (0) [50] 

 

0% 

SM-AHN 

2/23 (9) [10] 

3/80 (4) [29]         

1/16 (6) [51]         

0/5 (0) [13] 

1/21 (5) [50] 

2/16 (13) [68] 

6% 

MCL 
0/3 (0) [10]        

0/2 (0) [50]  

1/1 (100) [29] 

0/2 (0) [51] 
13% 

RUNX1 

Non-AdvSM 

0/12 (0) [10] 

1/309 (0.3) [12] 

2/10 (20) [13] 

0/44 (0) [29] 

0/26 (0) [68] 

0/6 (0) [85] 

1/530 (0.2) [97] 

0.4% 

BMM 1/90 (1) [12]  1% 

ISM 

0/10 (0) [10]        

0/3 (0) [13]         

0/26 (0) [68]       

0/211 (0) [12] 

0/44 (0) [29] 

0/4 (0) [85] 

0% 

SSM 
0/2 (0) [10] 

2/7 (29) [13]         

0/8 (0) [12] 

0/2 (0) [85] 
11% 

AdvSM 

9/27 (33) [10] 

0/13 (0) [12] 

7/24 (29) [13] 

5/106 (5) [29] 

66/329 (20) [32] 

15/83 (18) [68] 

1/13 (8) [85] 

38/210 (18) [97] 

18% 

ASM 

1/1 (100) [10]        

2/11 (18) [13]       

1/3 (33) [68]         

0/9 (0) [12] 

0/25 (0) [29] 

0/1 (0) [85] 

8% 

SM-AHN 

8/23 (35) [10]     

5/13 (39) [13]      

14/72 (19) [68]    

0/4 (0) [12] 

5/80 (6) [29] 

1/12 (8) [85] 

16% 

MCL 
0/3 (0) [10]    

0/8 (0) [68] 
0/1 (0) [29] 0% 

Overall frequencies represent the weighted average of the percentage of patients with at least one 

mutation in that gene. out of the total number of patients studied within the different cohorts, for 

each SM subgroup. Abbreviations: AdvSM: advanced systemic mastocytosis (SM); ASM: aggressive 

SM; BMM: bone marrow mastocytosis; ISM: indolent SM; MCL: mast cell leukaemia; Non-AdvSM: 

non-advanced SM; SM-AHN: SM with an associated haematological neoplasm; SSM: smouldering 

SM. 
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The CBL (Casitas B-lineage lymphoma proto-oncogene) gene is located on chromo-

some 11 and encodes for a protein involved in the functional regulation (via competitive 

blockade) of tyrosine kinase (TK) receptors; in addition, the CBL product also acts in ubiq-

uitination-mediated protein degradation in the proteasome [105,106]. Overall, mutations 

affecting the CBL gene in myeloid malignancies show a predominance of deletions involv-

ing the exon 8 of this gene [107] at frequencies that vary from 15% of patients diagnosed 

with juvenile myelomonocytic leukaemia, to 13% of CMML (mostly the CBL Y371 muta-

tion) [108,109], 10% of AML and 8% of atypical chronic myeloid leukaemia cases [109–

111]. Similarly, CBL mutations are found in a variable percentage of SM patients 

[10,11,29,46,68,80,81], where they are predominantly located at exon 8 (frequently also at 

codon Y371) (Table 2), their frequency ranging from <1% in Non-AdvSM patients to >10% 

of AdvSM cases [10,29,80,81,90], including >25% of SM-AHN patients in some cohorts 

[10,90] (average of 15%) (Table 3). In contrast to other myeloid neoplasms in which the 

impact of CBL mutations remains unclear [106,109,110,112], their presence in SM has been 

associated with poorer outcomes [90]. 

The JAK2 (Janus Kinase 2) gene is located on human chromosome 9 and encodes a 

protein that acts as an intracellular (non-receptor) TK that is associated with various cell 

surface receptors for transducing activating signals through relevant pathways such as 

the mitogen-activated protein kinase (MAPK) and signal transducer and activator of tran-

scription (STATs) pathways [98,113,114]. The most common JAK2 activating mutation, the 

JAK2 V617F mutation, has been reported in several diagnostic subtypes of MPN [115], 

which can explain its high incidence (about 11%) in SM-AHN patients [29,50,51,81,88] as 

compared to other diagnostic subtypes of SM [10,12,29,51,88] (Tables 3 and S3). A recent 

study in SM-AHN patients showed that KIT D816V and JAK2 V617F mutations probably 

arise in two independent clones in most patients, in which the presence of JAK2 mutations 

appears to have a low prognostic impact [116]. 

The KRAS (Kirsten Rat Sarcoma Viral Oncogene Homolog) and NRAS (Neuroblas-

toma RAS Viral Oncogene Homolog) genes are both located on chromosome 12, and they 

encode proteins involved in signalling pathways associated with growth factor membrane 

receptors through their interaction with membrane GTPases. A large number of somatic 

mutations involving the KRAS/NRAS genes have been identified, mostly associated with 

solid tumours such as lung cancer, pancreatic cancer and colorectal cancer, among other 

prevalent tumours [117,118]; in some of these tumours such as metastatic colorectal can-

cer, KRAS and NRAS mutations have also been associated with a poorer prognosis [119]. 

In myeloid neoplasms, NRAS mutations have been associated with the development of 

AML (7–13%) secondary to different subtypes of MPN; however, it remains unclear 

whether these mutations directly promote progression to leukaemia [111]. With regards 

to SM, KRAS and/or NRAS mutations have been sporadically reported in ISM [12,97] and 

MCL cases [10,29], while they are more frequently found among SM-AHN patients, par-

ticularly in cases associated with poor-prognosis myeloid neoplasms (i.e., AML) 

[10,29,46,50,51,68,84] (Tables 3 and S3); in this setting, some authors have suggested that 

these mutations might have an adverse prognostic impact [120]. 

RUNX1 (Runt-Related Transcription Factor 1) is a gene located on human chromo-

some 21 that encodes a functional protein that acts as a transcription factor involved in 

the development of HSC [121]. The most frequent RUNX1 mutations have been associated 

with progression from MPN to AML [122], which could explain the high frequency of 

these mutations (up to 37%) among patients with secondary AML [105,111]. In line with 

these findings, the presence of RUNX1 mutations in patients with MDS is associated with 

resistance to specific chemotherapeutic drugs and shortened survival [123,124]. In SM, 

RUNX1 mutations are preferentially located at exons 4 and 5 of the gene [10–

13,29,32,68,97,125] (Table 2), with a frequency that ranges from <1% of Non-AdvSM pa-

tients to up to 18% of AdvSM cases, the highest frequency being detected in SM-AHN 

patients [10,13] (Table 3). From a prognostic point of view, RUNX1-mutated cases have 
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been associated with an adverse outcome, both among Non-AdvSM and AdvSM patients 

[11–13,97,126]. 

4.2. Mutations in Genes Involved in Epigenetic Regulatory Mechanisms 

Although the specific role of each individual epigenetic alteration detected in SM re-

mains unknown [127–130], recurrent mutations in genes involved in epigenetic modifica-

tions of DNA (i.e., ASXL1, CILK1, DNMT3A, EZH2, IDH1, IDH2, KAT6B, NPM1, SETBP1 

and TET2 genes) have been recurrently identified (Tables 2, S1 and S2); among these, mu-

tations involving the ASXL1, DNMT3A, EZH2 and TET2 genes are the most commonly 

reported ones (Table 4). 

Table 4. Frequency of mutations in genes involved in epigenetic regulatory mechanisms found to 

be recurrently altered in systemic mastocytosis. 

Gene 
SM Diagnostic 

Subgroup 

Mutated Cases/To-

tal Cases (%) 

Overall Fre-

quency 

WHO  

Subtype 

Mutated Cases/ 

Total Cases (%) 

Overall  

Frequency 

ASXL1 

Non-AdvSM 

0/12 (0) [10] 

6/309 (2) [12] 

0/10 (0) [13] 

0/44 (0) [29] 

0/1 (0) [50] 

0/26 (0) [68] 

1/15 (7) [80] 

0/6 (0) [85] 

6/530 (1) [97] 

1% 

BMM 1/90 (1) [12]  1% 

ISM 

0/10 (0) [10] 

0/3 (0) [13]      

0/1 (0) [50] 

1/15 (7) [80]  

6/530 (1) [97]         

4/211 (2) [12] 

0/44 (0) [29]  

0/26 (0) [68]  

0/4 (0) [85]  

1% 

SSM 
0/2 (0) [10]         

0/7 (0) [13]  

1/8 (13) [12]     

0/2 (0) [85] 
5% 

AdvSM 

8/27 (30) [10] 

2/13 (15) [12] 

2/24 (8) [13] 

25/106 (24) [29] 

66/229 (29) [32] 

12/25 (48) [50] 

21/83 (25) [68] 

2/10 (20) [80] 

6/43 (14) [81] 

5/13 (39) [85] 

5/19 (26) [90] 

35/210 (17) [97] 

24% 

ASM 

0/1 (0) [10]  

1/11 (9) [13]           

0/2 (0) [50]             

0/2 (0) [80]  

1/6 (17) [90] 

1/9 (11) [12] 

4/25 (16) [29]         

0/3 (0) [68]     

0/1 (0) [85] 

9% 

SM-AHN 

8/23 (35) [10]         

1/13 (8) [13] 

4/21 (19) [50]        

6/43 (14) [81]        

4/13 (31) [90] 

1/4 (25) [12]  

21/80 (26) [29]      

21/72 (29) [68]     

5/12 (42) [85]   

25% 

MCL 
0/3 (0) [10]  

0/2 (0) [50]  

0/1 (0) [29]   

0/8 (0) [68]  
0% 

DNMT3A 

Non-AdvSM 

14/309 (5) [12] 

0/10 (0) [13] 

2/44 (5) [29] 

0/26 (0) [68] 

2/15 (13) [80] 

20/530 (4) [97] 

4% 

BMM 2/90 (2) [12]  2% 

ISM 

10/211 (0.5) 

[12]     2/44 

(5) [29] 2/15 

(13) [80]       

0/3 (0) [13]   

0/26 (0) [68]      
5% 

SSM 2/8 (25) [12]  0/7 (0) [13]  13% 

AdvSM 

4/13 (31) [12] 

3/24 (13) [13] 

7/106 (7) [29] 

1/83 (1) [68] 

1/10 (10) [80] 

2/19 (11) [90] 

9/210 (4) [97] 

6% 

ASM 

3/9 (33) [12]  

0/25 (0) [29]            

0/2 (0) [80]  

3/11 (27) [13] 

0/3 (0) [68]              

0/6 (0) [90]  

11% 

SM-AHN 

1/4 (25) [12]  

7/80 (9) [29]           

1/8 (13) [80]  

0/13 (0) [13] 

1/72 (1) [68]  

2/13 (15) [90]         

6% 

MCL 0/1 (0) [29]  0/8 (0) [68] 0% 

EZH2 Non-AdvSM 

0/12 (0) [10] 

0/309 (0) [12] 

1/10 (10) [13] 

0/44 (0) [29] 

0/26 (0) [68] 

0.2% 

BMM 0/90 (0) [12]  0% 

ISM 

0/10 (0) [10] 

0/3 (0) [13]  

0/26 (0) [68] 

0/4 (0) [85] 

0/211 (0) [12]         

0/44 (0) [29]  

0/15 (0) [80]  

0% 
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0/15 (0) [80] 

0/6 (0) [85] 
SSM 

0/2 (0) [10] 1/7 

(14) [13]  

0/8 (0) [12]      

0/2 (0) [85] 
5% 

AdvSM 

2/27 (7) [10] 

0/13 (0) [12] 

4/24 (17) [13] 

3/106 (3) [29] 

17/305 (6) [32] 

2/83 (2) [68] 

0/10 (0) [80] 

2/13 (15) [85] 

5% 

ASM 

0/1 (0) [10]  

2/11 (18) [13]        

0/3 (0) [68] 0/1 

(0) [85] 

0/9 (0) [12] 

1/25 (4) [29]  

0/2 (0) [80]  

6% 

SM-AHN 

2/23 (9) [10] 

2/13 (15) [13]       

2/72 (3) [68]         

2/12 (17) [85] 

0/4 (0) [12]  

2/80 (3) [29]         

0/8 (0) [80]  

5% 

MCL 
0/3 (0) [10] 0/8 

(0) [68] 
0/1 (0) [29]  0% 

TET2 

Non-AdvSM 

0/12 (0) [10] 

7/309 (2) [12] 

0/10 (0) [13] 

0/1 (0) [50] 

2/29 (7) [51] 

1/26 (4) [68] 

1/15 (7) [80] 

0/6 (0) [85] 

2/13 (15) [88] 

3% 

BMM 2/90 (2) [12]  2% 

ISM 

0/10 (0) [10]      

0/3 (0) [13]        

1/28 (4) [51]      

1/15 (7) [80]       

2/13 (15) [88]       

5/211 (2) [12]        

0/1 (0) [50]  

1/26 (4) [68]  

0/4 (0) [85]   

3% 

SSM 

0/2 (0) [10] 0/7 

(0) [13]  

0/2 (0) [85] 

0/8 (0) [12]  

1/1 (100) [51] 
5% 

AdvSM 

15/27 (56) [10] 

2/13 (15) [12] 

3/24 (13) [13] 

137/329 (42) [32] 

12/25 (48) [50] 

12/35 (34) [51] 

33/83 (40) [68] 

5/10 (50) [80] 

12/32 (38) [81] 

6/13 (46) [85] 

10/29 (35) [88] 

5/19 (26) [90] 

39% 

ASM 

0/1 (0) [10]  

0/11 (0) [13] 

3/9 (33) [51] 

0/2 (0) [80] 2/5 

(40) [88]  

1/9 (11) [12] 

2/2 (100) [50] 

0/3 (0) [68] 

0/1 (0) [85]   

1/6 (17) [90]     

21% 

SM-AHN 

15/23 (65) [10]        

3/13 (23) [13]         

9/23 (39) [51]        

5/8 (63) [80] 

6/12 (50) [85]        

4/13 (31) [90] 

1/4 (25) [12]   

9/21 (43) [50] 

33/72 (46) [68]      

12/32 (38) [81]        

8/23 (35) [88]        

43% 

MCL 

0/3 (0) [10]        

0/3 (0) [51]         

0/1 (0) [88]  

1/2 (50) [50]      

0/8 (0) [68]       
6% 

Overall frequencies represent the weighted average of the percentage of patients with at least one 

mutation in that gene out of the total number of patients studied in the different cohorts for each 

SM subgroup. Abbreviations: AdvSM: advanced systemic mastocytosis (SM); ASM: aggressive SM; 

BMM: bone marrow mastocytosis; ISM: indolent SM; MCL: mast cell leukaemia; Non-AdvSM: non-

advanced SM; SM-AHN: SM with an associated haematological neoplasm; SSM: smouldering SM. 

The ASXL1 (ASXL transcriptional regulator 1) gene encodes for a protein that inter-

acts with the retinoic acid receptor involved in chromatin remodelling, although its pre-

cise function remains largely unknown [131]. The most frequent ASXL1 mutations found 

in myeloid neoplasms are located at exon 12 [132], with an overall incidence that ranges 

from <7% of patients with essential thrombocytopenia (ET) or polycythaemia vera (PV), 

to almost 40% of primary myelofibrosis cases [133]. ASXL1 is also the second most fre-

quently mutated gene in MDS and CMML, and it is altered in up to 30% of AML patients 

[132,134]. Most reported ASXL1 mutations in SM are also located at exon 12 

[12,13,29,32,80,81] (Table 2) with a highly variable frequency that ranges from 1% of BMM 

cases to >20% of AdvSM patients, particularly of SM-AHN cases (Table 4). Similarly to 

other myeloid neoplasms [124,133,135], ASXL1 mutations have been also (recurrently) as-

sociated with a worse prognosis in SM [11,29,68,80,81,85]. 

The DNMT3A (DNA Methyltransferase 3 Alpha) gene located on chromosome 2, en-

codes for an enzyme responsible for the methylation of CpG islands, which is critical in 

various physiological processes during embryogenesis and/or in the inactivation of the X 
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chromosome [136]. The most frequently described mutation in the DNMT3A gene occurs 

at codon R882 [137], being present in 8–13% of MDS, 26% of AML secondary to MDS and 

2% of CMML patients [137,138]. In general, the presence of DNMT3A mutations in pa-

tients with myeloid malignancies has been associated with a higher number of blasts in 

BM and greater leukocyte counts in blood [124,134] in the absence of a clear prognostic 

impact [134,137–139]. Although DNMT3A mutations have been described at relatively 

similarly low frequencies in Non-AdvSM and AdvSM (4% vs. 6%, respectively) (Table 4), 

their presence has been associated with a significantly poorer prognosis in some patient 

cohorts [12,80]. 

The EZH2 (Enhancer of Zeste 2 polycomb repressive complex 2 subunit) gene en-

codes a protein of the PRC2 complex involved in proliferation, differentiation, ageing and 

maintenance of the chromatin structure through methylation, acting as both a tumour 

suppressor gene and an oncogene [105]. The EZH2 gene is coded in chromosome 7, and 

its mutations have been described in both myeloid and lymphoid malignancies, as well as 

in solid tumours, where they have been recurrently associated with more advanced tu-

mour stages and metastatic disease [140]. In myeloid neoplasms, EZH2 mutations have 

been described in patients with PV (3%), myelofibrosis (13%), CMML (6%), AML (6%) and 

MDS (10%) [105,134,139,141,142]; in MDS they have been associated with a worse prog-

nosis [124,142]. In SM, EZH2 mutations have been reported almost exclusively within 

AdvSM patients [10,13,29,32,85], particularly among ASM and SM-AHN cases (Table 4). 

The TET2 (Ten–eleven translocation methylcytosine dioxygenase 2) gene is located 

on chromosome 4 and encodes for a protein that catalyses the conversion of 5-methylcy-

tosine (5-mc) to 5-hydroxymethylcytosine (5-hmc) in the DNA [143]. It is believed that 5-

hmc may initiate DNA demethylation by preventing binding to the CpG islands of DNA 

methyltransferases characteristic of these sequences [144]. To date, TET2 mutations have 

been described in every exon of the gene, and sometimes mutations involving both alleles 

coexist in the same cell [13,145]. TET2 mutations are considered to be early events in the 

development of haematological malignancies such as MPN, MDS, CMML and different 

subtypes of leukaemia and lymphoma, as well as in SM [145]. Overall, TET2 mutations 

have been described in about 14% of MPN, 23% of MDS (in which they usually occur 

together with mutations in SF3B1, U2AF1, ASXL1, SRSF2 and/or DNMT3A and also a nor-

mal karyotype [124]) and 30% of CMML patients (often associated with mutations in the 

SRSF2 and U2AF1 genes) [10,91,124,134,146]. In SM, TET2 is the most frequently mutated 

gene other than KIT. In these later patients, TET2 mutations have been reported along the 

entire gene sequence but more frequently at exons 3, 9 and 11 (Table 2). As found also in 

MDS, the coexistence of TET2 and SRSF2 gene mutations has also been reported in SM 

[10,85]. Of note, in vitro studies suggest that in a significant proportion of patients with 

SM-AHN, TET2 mutations may precede the KIT D816V mutation [85], similarly to what 

would also occur with ASXL1 and SRSF2 mutations. However, despite TET2 mutations 

being significantly more frequently detected in AdvSM vs. Non-AdvSM patients (39% vs. 

3% of the cases, respectively) [10,12,13,32,50,51,68,80,81,85,88,90] (Table 4), and their being 

associated with the presence of C-findings [51], they do not seem to have any prognostic 

impact in SM [10–13,29,68,80,81,97,139]. 

4.3. Mutations in Genes Involved in Alternative mRNA Splicing 

The presence of mutations in genes associated with the spliceosome, responsible for 

alternative RNA processing, has been linked to different diagnostic subtypes of haemato-

poietic malignancies (e.g., MDS) and some solid tumours (e.g., ocular uveal melanoma or 

pulmonary fibrosis) [86,147]. These include mutations in the SF3B1, SRSF2 and U2AF1 

genes, from which mutations in the former two genes have been described in SM at rela-

tively high frequencies in SM (Table 5) and/or (i.e., SRSF2) in association with poorer out-

comes [11,96]. 
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Table 5. Frequency of mutations in genes involved in alternative mRNA splicing recurrently found 

in systemic mastocytosis. 

Gene 
SM Prognostic 

Subgroup 

Mutated Cases/ 

Total Cases (%) 

Overall  

Frequency 

WHO  

Subtype 

Mutated Cases/ 

Total Cases (%) 

Overall  

Frequency 

SF3B1 

Non-AdvSM 

2/309 (0.6) [12] 

0/10 (0) [13] 

0/44 (0) [29] 

0/26 (0) [68] 

0/6 (0) [85] 

0.5% 

BMM 1/90 (1) [12]  1% 

ISM 

1/211 (0.5) [12] 

0/44 (0) [29] 

10/4 (0) [85] 

0/3 (0) [13] 

0/26 (0) [68] 
0.3% 

SSM 
0/8 (0) [12] 

0/2 (0) [85] 
0/7 (0) [13]  0% 

AdvSM 

0/13 (0) [12] 

3/24 (13) [13] 

9/106 (9) [29] 

18/305 (6) [32] 

2/83 (2) [68] 

1/13 (8) [85] 

7% 

ASM 

0/9 (0) [12] 

1/25 (4) [29]  

0/1 (0) [85]  

2/11 (18) 

[13] 

0/3 (0) [68] 

6% 

SM-AHN 

0/4 (0) [12] 

7/80 (9) [29]       

1/12 (8) [85] 

1/13 (8) [13] 

2/72 (3) [68]  
6% 

MCL 1/1 (100) [29]        0/8 (0) [68] 13% 

SRSF2 

Non-AdvSM 

0/12 (0) [10] 

0/309 (0) [12] 

0/10 (0) [13] 

0/44 (0) [29] 

0/1 (0) [50] 

0/26 (0) [68] 

0/6 (0) [85] 

7/530 (1) [97] 

0.7% 

BMM 0/90 (0) [12]  0% 

ISM 

0/10 (0) [10]       

0/3 (0) [13]        

0/1 (0) [50]        

0/4 (0) [85] 

0/211 (0) 

[12]      

0/44 (0) [29]        

0/26 (0) [68] 

0% 

SSM 
0/2 (0) [10] 

0/7 (0) [13]        

0/8 (0) [12]  

0/2 (0) [85]      
0% 

AdvSM 

14/27 (52) [10] 

2/13 (15) [12] 

3/24 (13) [13] 

1/106 (1) [29] 

120/329 (37) [32] 

8/25 (32) [50] 

31/83 (37) [68] 

4/13 (31) [85] 

79/210 (38) [97] 

32% 

ASM 

0/1 (0) [10]  

0/11 (0) [13] 

1/2 (50) [50]         

0/1 (0) [85] 

1/9 (11) [12] 

0/25 (0) [29] 

0/3 (0) [68]      

4% 

SM-AHN 

13/23 (57) [10]     

3/13 (23) [13]      

7/21 (33) [50]      

4/12 (33) [85] 

1/4 (25) [12] 

1/80 (1) [29] 

31/72 (43) 

[68]      

27% 

MCL 
1/3 (33) [10]           

0/2 (0) [50]  

0/1 (0) [29]  

0/8 (0) [68] 
7% 

Overall frequencies represent the weighted average of the percentage of patients with at least one 

mutation in that gene out of the total number of patients studied within the different cohorts for 

each subgroup of SM. Abbreviations: AdvSM: advanced systemic mastocytosis (SM); ASM: aggres-

sive SM; BMM: bone marrow mastocytosis; ISM: indolent SM; MCL: mast cell leukaemia; Non-

AdvSM: non-advanced SM; SM-AHN: SM with an associated haematological neoplasm; SSM: 

smouldering SM. 

The SRSF2 (serine and arginine rich splicing factor 2) gene encodes for a protein that 

is critical for alternative mRNA processing at the post-transcriptional level [148], which 

also acts as an important regulator of DNA stability, being a key player in the DNA acet-

ylation/phosphorylation network [149]. The most frequent somatic mutations of SRSF2 

found in SM patients are located at codon P95 [10,12,13,32,87] (Table 2). Among patients 

with other myeloid haematological neoplasms, SRSF2 mutations are particularly frequent 

(28–30%) among CMML cases [150] and, to a less extent, MDS (11%) and AML (6%) pa-

tients [124,134,150]. Recent studies in SM patients show the presence of SRSF2 mutations 

in a variable percentage of cases ranging from <1% of Non-AdvSM cases to around one 

third of AdvSM patients (Table 5), being one of the most frequently mutated genes in SM, 

particularly in SM-AHN cases [10–13,29,32,46,50,68,80,87,97]. In contrast to other haema-

tological neoplasms [134,151–153], the presence of SRSF2 mutations has been consistently 
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associated with an adverse prognosis in patients with SM [13,97], particularly among 

AdvSM cases [11,46,68]. 

The SF3B1 (splicing factor 3b subunit 1) gene is located in chromosome 2, and it en-

codes for the largest subunit of the SF3B complex, a core component of the U2 small nu-

clear ribonucleoprotein of the U2-dependent spliceosome [154]. SF3B1 is the most com-

monly mutated splicing factor gene in MDS patients [155], in whom it is associated with 

a more favourable outcome [156]. In contrast to SRSF2, SF3B1 mutations have been less 

frequently described in SM [12,13,29,32,83,86], with only the K666 codon found to be mu-

tated in more than two patient series. Actually, SF3B1 mutations are detected in <7% of 

AdvSM patients (most frequently in SM-MDS cases [13,68,85]) (Table S3), while they are 

rarely found in Non-AdvSM patients [10,12,29,68] (Table 5). Likewise, U2AF1 mutations 

are also relatively rare in SM, with a higher incidence in AdvSM [10,29,50] vs. Non-

AdvSM cases (6% vs. 1%, respectively) (Table S2); these mutations are mostly located at 

codons S34 [29,157,158] and Q157 [29] of the U2AF1 gene (Table S1). 

5. Prognostic Impact of Acquired Gene Mutations in Systemic Mastocytosis 

Acquisition of the KIT D816V mutation in HSC during haematopoiesis leads to mul-

tilineage involvement by the KIT mutation [77], which is associated with a poor prognosis 

of Non-AdvSM cases due to an increased risk of progression to AdvSM [5,77]. Despite the 

relatively early onset of the KIT D816V mutation throughout life, in at least a fraction of 

(i.e., multilineal) SM patients [159], the most common clinical manifestations of the disease 

(e.g., urticaria pigmentosa and/or anaphylaxis) usually emerge at the third or fourth dec-

ades of life in the majority of SM cases [9,159,160]. Thus, from the constitutive activation 

of KIT in HSC until the development of an advanced form of SM, progressive expansion 

and accumulation of mutated cells is required to occur, probably in association with the 

acquisition of secondary genetic lesions, an increased capacity to maintain them (e.g., ac-

tivation/repression of anti-/pro-apoptotic mechanisms) [79] and/or the cooperation with a 

specific genetic background [161]. Studies performed in murine models and in patients 

with SM have shown that the coexistence of the KIT D816V mutation and mutation(s) in 

genes other than KIT are probably necessary for the progression and transformation from 

pauci-symptomatic Non-AdvSM to advanced forms of the disease [10,51,159,162]. How-

ever, neither a specific mutation (or mutation profile) nor a specific genetic background 

shared by all AdvSM patients have been identified so far [10,11,13,51,80,81,85,87,88,137]. 

Instead, the number of mutated genes (other than KIT) significantly increases from ISM 

to ASM [13,46] and other subtypes of AdvSM [10,29,163]. Of note, the acquisition of these 

additional (somatic) mutations in ISM patients who present with the multilineage KIT 

D816V mutation is usually associated with progression of the disease to, e.g., SSM and/or 

ASM [12,32]. In fact, demonstration of multilineage involvement of haematopoiesis by the 

KIT D816V mutation has been shown to be an independent prognostic factor for predict-

ing progression of ISM [5]. In line with these findings, most AdvSM cases carry the mul-

tilineage KIT D816V mutation associated with involvement of CD34+ HSC, except for a 

minor fraction of SM-AHN patients that have the KIT D816V mutation restricted to the 

MC compartment in BM. Interestingly, in these latter cases, the SM and AHN components 

of the disease appear to derive from independent clones that coexist in the same individ-

ual [36]. Despite the prognostic relevance of the multilineage KIT mutation, access to BM 

cell purification techniques required to investigate the presence of the KIT mutation in 

different myeloid and lymphoid compartments of BM cells is still restricted to a limited 

number of diagnostic laboratories, which has hampered the use of the multilineage KIT 

mutation as a predictor for the progression of ISM to SSM and AdvSM in routine diag-

nostics [7,32,120]. In line with this, the use of high sensitivity (quantitative) methods for 

the identification of the KIT D816V mutation [164–166] has proven in recent years to be of 

great utility to identify ISM patients that present the multilineage KIT as those that display 

a high KIT D816V variant allele frequency (VAF) in unfractionated BM (i.e., VAF ≥ 1–2%) 

[12,167] and/or blood (VAF ≥ 6%). [78] In fact, these later ISM cases also carry a 
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significantly higher probability of undergoing disease progression associated with a sig-

nificantly shortened life expectancy [167]. These findings support the use of a high KIT 

D816V VAF (as assessed by allele-specific qPCR) as a surrogate marker of multilineage 

involvement of haematopoiesis by the KIT D816V mutation [168]. 

In parallel, several studies on the general adult population have shown that the pres-

ence of mutations in genes that are considered to be initiators (or “drivers”) of clonal ex-

pansions of HSC [169,170], while exceptional among individuals <40 years of age [170], 

progressively increases from the fifth decade of life onwards [171,172], being recognized 

as age-related clonal haematopoiesis (ARCH). Of note, ARCH is characterized by the pres-

ence of somatic mutations in genes that are also frequently mutated in SM (e.g., ASXL1, 

DNMT3A, EZH2, RUNX1, SF3B1, SRSF2 and TET2) and other myeloid neoplasms 

[92,173,174]. Some of these ARCH-related genetic mutations that are frequently reported 

in AdvSM cases have been confirmed to be directly associated with the development of 

haematopoietic neoplasms and are considered clonal haematopoiesis of oncogenic poten-

tial (CHOP) mutations [175] (e.g., SRSF2 [11], ASXL1 [11], DNMT3A [80], RUNX1 [11], 

EZH2 [13], CBL [90]). These findings may contribute to explain the higher prevalence of 

myeloid neoplasms among older individuals and would be in agreement with the obser-

vation that age ≥60 years at diagnosis of SM predicts an increased risk of (primary and 

secondary) AdvSM [7,32,120]. Therefore, acquisition of ARCH-related gene mutations is 

currently considered to be closely associated with (a higher risk for) more advanced forms 

of SM. Among AdvSM patients, mutations in most of these genes (e.g., ASXL1, CBL, JAK2, 

KRAS, NRAS, RUNX1, SRSF2 and TET2) have been reported to be more frequently asso-

ciated with SM-AHN than ASM, with only a few exceptions that involve genes that show 

similarly mutated frequencies in both subtypes of SM (i.e., DNMT3A, EZH2 and SF3B1) 

(Tables 4 and 5). Moreover, for most of these mutated genes (e.g., ASLXL1, DNMT3A, 

EZH2, IKZF1, RUNX1, SF3B1, SRSF2 and TET2) [12], a high VAF is usually detected in 

the BM of AdvSM patients, which might also reflect the presence of multilineage involve-

ment of haematopoiesis by these mutations, similarly to what has been described above 

for KIT D816V [9,13,74]. In these multi-mutated SM patients, the exact sequence of acqui-

sition of genetic mutations remains unclear; thus, in some patients, the KIT D816V appears 

to be the first acquired mutation [13], while another subgroup of SM cases carries the KIT 

D816V mutation and mutations in genes other than KIT in different cell clones [13,36,85], 

and in a third subgroup of SM patients, the KIT mutation appears to be a secondary event. 

Of note, the two later subgroups of patients are usually diagnosed with SM associated 

with another myeloid neoplasm (i.e., SM-AHN) [13,36,85]. 

Altogether, these observations suggest that in patients with Non-AdvSM, the disease 

is mostly driven by the KIT D816V mutation, while the occurrence of additional mutations 

in other genes would be required (prior to or after the KIT mutation) for the development 

of AdvSM. In order to elucidate whether any of these mutated genes confers an adverse 

prognosis, multiple studies have been conducted in SM [11–13,29,32,68,80,90,120,160,176], 

from which a few include medium to large patient cohorts (n ≥ 100) [12,29,32,68,97]. Of 

note, the number of genes screened in these studies is highly variable, ranging from 9 

genes [80] to 410 genes [13], with a few patients being investigated by whole-genome [13] 

or whole-exome [42,177–179] sequencing. Overall, these studies found a total of 30 differ-

ent genes to be mutated in SM (Tables 2 and S1), from which 11 (i.e., ASXL1, CBL, 

DNMT3A, EZH2, JAK2, KRAS, NRAS, RUNX1, SF3B1, SRSF2, TET2) are recurrently mu-

tated genes in several SM cohorts (Tables 3–5). From these later 11 mutated genes, a few 

have (independent) prognostic implications as regards disease progression and/or overall 

patient survival (i.e., SRSF2 [11,32], ASXL1 [11,32], DNMT3A [12], RUNX1 [11,32], EZH2 

[13], CBL [90] and NRAS [120]), particularly when mutation/s are present at high VAF [12]. 

Because of this, the presence of mutations in limited sets of genes has been included in 

several recently proposed risk stratification models for both AdvSM (i.e., 

SRSF2/ASXL1/RUNX1 [11], SRSF2/ASXL1/RUNX1/EZH2 [13], ASXL1/RUNX1/NRAS 

[120]) and Non-AdvSM (e.g., ASXL1/RUNX1/DNMT3A [12]). The recent development of 
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SM-induced pluripotent stem cells (iPSCs) positive for KIT D816V and other concurrent 

mutations [180], which accurately reflect the genetic background of SM patients’ multi-

mutated pathological cells, may become a powerful tool to dissect the impact of these 

mutations on the aetiopathogenic mechanisms involved in disease progression [181]. 

Therefore, molecular characterization of the genetic background of AdvSM patients, in-

cluding NGS as described above, VAF assessment of somatic mutations [125,182] and 

drug screening in patient-derived iPSCs [180,183], may lead to improved molecularly tar-

geted treatment options in a context of personalized precision medicine. 

6. Conclusions 

At present it is well-established that SM is a clonal HSC disease characterized by the 

expansion and accumulation of neoplastic MCs, where the presence of activating KIT mu-

tations (most commonly KIT D816V) is a hallmark of the disease, being present in most 

(>90%) adult patients, at similar frequencies in Non-AdvSM and AdvSM. Despite the KIT 

D816V mutation being currently considered the pathogenic driver of SM, it cannot explain 

by itself the heterogeneous clinical behaviour of this disease. In this regard, the presence 

of multilineage involvement of haematopoiesis by the KIT D816V mutation, particularly 

in the context of a multi-mutated disease in which additional myeloid-neoplasm-associ-

ated genes other than KIT are also mutated, emerges as the altered genetic background 

that might contribute to explain malignant transformation of SM. Because of this, assess-

ment of multilineage involvement of haematopoiesis by the KIT D816V mutation should 

be performed in newly diagnosed SM patients to identify those cases at high risk of pro-

gression to AdvSM. In addition, identification of other pathogenic mutations in genes 

with known prognostic impacts in SM (i.e., SRSF2, ASXL1, DNMT3A, RUNX1, EZH2, CBL 

and NRAS) should also be performed in SM patients with multilineage involvement of 

haematopoiesis by KIT D816V for further identification of patients at higher risk of death 

who may benefit from a closer follow-up and eventually, also, early cytoreductive treat-

ment. Just as nowadays the measurement of allele burden of the KIT D816V mutation has 

become an important predictor of treatment response assessment [182] and survival [125], 

further analysis of the VAF for these later genes might provide a more reliable marker for 

assessing tumour burden as compared to other clinical and/or laboratory parameters, 

which can be also altered by medication or intercurrent processes (e.g., infectious and/or 

allergic diseases) [184–186]. Importantly, all above molecular markers should be used in 

combination with other disease features for accurate risk stratification of SM patients 

[12,32,97,120]. 
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