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Simple Summary: The introduction of immunotherapy into the treatment options for Hodgkin’s
lymphoma has improved survival in patients with recurrence of their cancer. These agents help the
body’s immune system respond and clear cancer cells. Currently, these agents are only approved
in patients who have had their cancer return multiple times or have progressed through multiple
therapies. However, the evaluation of these agents as part of therapy in the upfront setting or
second line setting has been conducted. This study will review these clinical studies and provide
insights into the future directions of immunotherapy use by physicians in treatment of patients with
Hodgkin’s lymphoma.

Abstract: Classical Hodgkin’s lymphoma is a highly curable disease, but 10–25% of patients with
higher-risk disease relapse. The introduction of checkpoint inhibitors (CPIs) targeting PD-1 have
changed the landscape of treatment for patients with relapsed/refractory disease to multiple lines of
therapy. The depth of response to CPI as a monotherapy is highest in the first relapse as salvage ther-
apy based on outcomes reported in several phase II studies. With earlier use of CPI and brentuximab
vedotin, the optimal sequencing of therapy is evolving. In this review, we will summarize clinical
investigation of anti-PD-1 mAb in earlier line settings to provide insights on utilizing these agents
as chemotherapy- and radiation-sparing approaches, increasing depth of response, and as part of
combination regimens.

Keywords: checkpoint inhibitors; immunotherapy; Hodgkin lymphoma

1. Introduction

Classical Hodgkin’s lymphoma (cHL) accounts for roughly 11% of all lymphomas in
the United States [1] and is defined by its distinct pathologic features consistent with Reed
Sternberg cells in a background of inflammatory cells, which enable the evasion of immune-
mediated antitumor mechanisms [2–4]. Although the majority of patients with cHL can be
cured with standard chemoradiation, patients who are unresponsive to initial treatment
or who are not candidates for curative regimens have poor outcomes [5–7]. Immune
checkpoint inhibitors (CPIs) enable the reconstitution of the immune response to target
malignant cells, offering an alternative mechanism of action from traditional cytotoxic
chemotherapy and have thus transformed the treatment landscape for relapsed/refractory
(R/R) cHL.

Approximately 10–25% of patients with advanced or early-stage unfavorable risk
disease have disease relapse [8,9]. The standard of care on relapse consists of salvage
chemotherapy followed by autologous stem cell transplant (ASCT). This approach cures
only about 50% of patients and is associated with significant risk for treatment-related toxic-
ity and secondary malignancy [10,11]. Older patients and those with medical comorbidities
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who are not candidates for intensive therapy remain at a particularly high risk for relapse
and inferior survival [12]. With modern frontline treatment regimens, patients over the
age of 60 years had a ~15% worse 3-year progression-free survival (PFS) compared with
younger patients [13].

Although the addition of the anti-CD30 monoclonal antibody drug conjugate bren-
tuximab vedotin (BV) to the cHL treatment armamentarium has improved outcomes, the
rate of relapse in patients treated with BV-containing frontline therapy is still 18% at 5 year
follow-up [14]. In the high-risk R/R population who received BV as maintenance therapy
after ASCT, 41% of patients have progression of their disease [15]. In the multiple-relapse
setting, these responses are not durable, with only 38% of patients treated with BV main-
taining their complete response (CR) at 5 year follow-up [16,17]. Immunotherapy with CPI
treatment has demonstrated remarkable efficacy in patients with relapse after multiple lines
of therapy and primary refractory disease and in patients who are not candidates for inten-
sive salvage treatment (Table 1). This has led to the investigation of these agents in earlier
lines of treatment to improve survival rates while also reducing treatment-related toxicity.
Herein, we will review the clinical trial data on anti-PD1 mAb in the upfront and R/R set-
tings over the past 5 years. We will also discuss considerations for sequencing, combination
regimens, and the roles of chemotherapy- and/or radiation-sparing approaches.

Table 1. Phase II and III Studies Evaluating Anti-PD1 mAb Therapies in Hodgkin’s Lymphoma.

Study Phase Key Inclusion Agent n ORR (CR) PFS (Median
Follow Up) OS

mDOR
(Median

Follow Up)

Multiple R/R Disease: anti-PD-1 mAb monotherapy

Younes 2016 [18]
Armand 2018 [19]
Ansell 2021 [20]

II Post ASCT +/− BV Nivo 243 71% (21%) 37% (24 m)
18% (60 m)

87%
(24 m)
71%

(60 m)

18 m (58 m)

Chen 2017 [21]
Chen 2019 [22]

Armand 2021 [23]
II

Post ASCT +/− BV or
R/R to first line salvage

therapy
Pembro 210 71% (28%) 44% (60 m) 71%

(60 m) 7 m (60 m)

Zinzani 2020 [24] II

Primary
Refractory

Disease
subgroup

Pembro 71 82% (35%) 32% (24 m) 94%
(24 m) 17 m (28 m)

Kuruvilla 2021 [25] III Post or ineligible for
ASCT Pembro vs. BV 304 N/A 54% vs. 36

(12 m) N/A N/A

Song 2020 [26]
Song 2022 [27] II Post or ineligible for

ASCT Tislelizumab 70 87% (67%) 41% (36 m) 85%
(36 m) 32 m (10 m)

Nie 2019 [28]
Liu 2021 [29] II Post 2+ prior LOT Camrelizumab 19 90% (32%) 67% (24 m) 63%

(24 m) NR

Song 2019 [30] II Post ASCT Camrelizumab 75 76.0% (28%) 81% (6 m)
67% (12 m) NR NR

Multiple R/R Disease: anti-PD-1 mAb combination therapies

Diefenbach 2020
[31] I/II

R/R after 1+ prior LOT Ipi/BV 21 76% (57%) 61% (12 m) NR N/A

Nivo/BV 18 89% (61%) 70% (12 m) NR NR

Ipi/Nivo/BV 22 82% (73%) 80% (12 m) NR NR

Lepik 2020 [32] II R/R to Nivo
monotherapy Nivo + Benda 30 87% (57%) 23% (25 m) 97%

(24 m)
7 m

(25 m)

Nie 2019 [28]
Liu 2021 [29] II

R/R in anti-PD-1 mAb
naïve pts

Camrelizumab
+ Decitabine 42 95% (71%) 79% (6 m)

89% (12 m)
63%

(24 m) NR

R/R in anti-PD-1
resistant pts

Camrelizumab
+ Decitabine 25 52% (28%) 79% (6 m)

59% (12 m) N/A 16 m (35 m)

First Salvage prior to Transplant

Advani 2021 [33] I/II R/R in first
salvage therapy Nivo+ BV 91 85% (67%) 77% (36 m) 93%

(36 m) N/A

Moskowitz 2021
[34] II R/R prior to ASCT Pembro +

GVD 38 100% (95%) N/A N/A N/A
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Table 1. Cont.

Study Phase Key Inclusion Agent n ORR (CR) PFS (Median
Follow Up) OS

mDOR
(Median

Follow Up)

Mei 2022 [35] II R/R bridge to ASCT Nivo +/− ICE 9 100% (89%) 72% (24 m) 94%
(24 m) N/A

Bryan 2021 [36] II R/R prior to ASCT Pembro + ICE 42 N/A 88% (24 m) 95%
(24 m) N/A

Maintenance after ASCT

Armand 2019 [37] II R/R after ASCT Pembro 30 N/A 82% (18 m) 100%
(18 m) N/A

Frontline

Cheson 2020 [38] II
60+ years old and

ineligible for
chemotherapy

Nivo + BV 46 61% (48%) N/A N/A N/A

Brockelmann 2020
[39] II Early stage

unfavorable
Nivo + AVD

(C and S) 109 96% (87%)

S: 95%
(24 m)

C: 100%
(24 m)

S: 100%
(24 m)

C: 100%
(24 m)

N/A

Ramchandren 2019
[40] II Advanced stage Nivo + AVD

(S) 51 84% (67%) 92% (9 m) 98% (9 m) N/A

Allen 2021 [41] II
Early stage

unfavorable and
advanced stage

Pembro +
AVD (S) 30 100% (No CR) NR NR N/A

AVD: Adriamycin, vinblastine, dacabazine; C: combination; CR: complete response rate assessed by positron
emission tomography (PET); GVD: gemcitabine, vinorelbine, doxorubicin (liposomal); ICE: ifosfamide, carboplatin,
etoposide; Ipi: ipilimumab; LOT: line of therapy; mDOR: median duration of response; N/A: data not available;
NR: not reached; Nivo: nivolumab; ORR: overall response rate assessed by PET; PFS: progression-free survival;
Pembro: pembrolizumab; S: sequential; m: month.

2. Immune Checkpoints and the Tumor Microenvironment (TME) in cHL

The interaction of the programmed death receptor ligands 1 and 2 (PDL1/CD274
and PDL2/CD273) on tumor cells with PD-1 receptors on T cells leads to reduced T-
cell activation and proliferation, thus enabling tumors to evade immune response (see
Figure 1) [42]. The amplification of PDL1 and PDL2 on tumor cells, coded on chromosome
9p24.1, is mediated by PIM serine/threonine kinases on tumor cells via the constitutive
activation of the NFkB and JAK-STAT signaling pathways [43].

Anti-PD-1 monoclonal antibody (mAb) therapies reconstitute the immune surveillance
of malignant cells, enabling a rapid reduction in Reed-Sternberg cells and PDL1+ inflam-
matory cells as well as a durable PD-1 blockade that persists even after treatment cessation
based on patient samples during and after treatment [44]. A rise in CD4+ T cell receptors,
dendritic cells, and mature, highly differentiated NK cells is seen in peripheral blood after
anti-PD1 mAb treatment, correlating with earlier and more robust clinical response [44–47].

PDL-1 expression is a well-defined marker of response to anti-PD-1 mAb across
multiple cancer subtypes. In addition to this, 9p24.1 copy number amplification and the
expression of major histocompatibility complex class II are associated with improved
response to CPI in cHL [48]. In the frontline setting, these biomarkers did not demonstrate
an association with early response rates with anti-PD-1 mAb-based therapy [49]. Emerging
data on the role of metabolic disorders and patient demographic factors such as sex, age,
and gender on effector T cell activity and PD-1 expression suggest that these factors may
also contribute to CPI efficacy [50]. The further investigation of these tumoral biomarkers
and the effects of extra-tumoral risk factors on TME may help guide treatment decision-
making in the future.

Lastly, other immune checkpoints have been identified as potential targets in the
TME of cHL, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte-
activation gene-3 (LAG-3), and T-cell immunoglobulin and mucin-domain containing 3
(TIM-3) [51,52]. The CD68 ligand that binds CTLA-4 is commonly expressed on HRS cells,
and this expression persists after treatment with PD-1 blockade. This has therefore served
as the rationale for targeting this protein with the monoclonal antibody ipilimumab to
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overcome anti-PD-1 mAb resistance [51]. Although LAG-3 and TIM-3 are not as frequently
expressed on HRS cells, these proteins are commonly seen within the TME surrounding
HRS cells [52]. However, ongoing investigation is needed to identify the clinical utility of
targeting these alternative immune checkpoints.
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of B7 to CTLA-4 with an anti-CTLA-4 antibody allows T cells to be activated and to kill tumor cells. 
Other immune checkpoint proteins such as PD-1 on the surfaces of T cells and PD-L1 on tumor cells 
can also prevent T cells from killing tumor cells. Immune checkpoint blockade via monoclonal an-
tibodies (anti-PD-L1 or anti-PD-1) can lead T cells to kill tumor cells. Abbreviations: MHC: major 

Figure 1. Checkpoint inhibitor immunotherapy in Hodgkin’s lymphoma. Inactive T cells are activated
through their TCR by encountering antigenic peptides presented by the MHC complex on the surfaces
of APCs or tumor cells (Reed-Sternberg cells). In addition to TCR-MHC engagement, a co-stimulatory
signal via B7 protein is required for target-cell lysis and effector cell responses. B7 protein on activated
APCs can pair with either a CD28 on the surface of a T-cell to produce a costimulatory signal to
enhance the activity of TCR-MHC signal and T-cell activation, or it can pair with CTLA-4 to produce
an inhibitory signal to keep the T cell in the inactive state. Blocking the binding of B7 to CTLA-4
with an anti-CTLA-4 antibody allows T cells to be activated and to kill tumor cells. Other immune
checkpoint proteins such as PD-1 on the surfaces of T cells and PD-L1 on tumor cells can also prevent
T cells from killing tumor cells. Immune checkpoint blockade via monoclonal antibodies (anti-PD-L1
or anti-PD-1) can lead T cells to kill tumor cells. Abbreviations: MHC: major histocompatibility
complex; APC: antigen-presenting cells; TCR: T-cell receptor; CTLA-4: cytotoxic T-lymphocyte
associated antigen 4; PD-1: programmed death 1; PD-L1: programmed death-ligand 1.

3. Checkpoint Inhibitors in Multiple Relapsed/Refractory Disease

For patients with R/R disease after multiple lines of therapy including ASCT +/− BV,
anti-PD-1 mAb monotherapy has an overall response rate (ORR) of ~70% with a median PFS
of 14–15 months. Although only 20–30% of responders have CR in this setting, those who
do achieve CR have a prolonged remission with a median duration of response (mDOR) of
37 months with nivolumab; additionally, mDOR was not reached with pembrolizumab at
5 year follow-up [23,53]. In a study of anti-PD-1 mAb tislelizumab in patients with relapse
after ASCT or 2 systemic regimens in a Chinese population, 67% of patients achieved
CR, and ~50% of patients had ongoing response at 30 month follow-up, confirming the
correlation of depth of response to duration of response with this class of agents [27].
Novel combination regimens of immunotherapy combined with other targeted therapies
have deepened response rates in the multiple-relapse setting. The combinations of BV
with the checkpoint inhibitors nivolumab and ipilimumab achieved CRs of 61% and 57%,
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respectively. Although the combination of all three agents achieved the highest CR of 73%,
the inclusion of ipilimumab resulted in higher toxicity than BV + Nivo in this phase I/II
study. The rates of grade 3–4 adverse events were reported at 43% and 50%, respectively, in
the BV-Ipi and triplet combination arms but only 16% in the BV-Nivo group. [31]. Therefore,
anti-PD-1 mAb based therapies are preferred.

In early clinical investigation, the addition of hypomethylating agent to anti-PD-1
mAb improved CR from 32 to 71% in patients with R/R cHL to at least 2 prior lines of
therapy, with 100% of patients still responding to combination therapy at 6 month follow-
up. Investigational regimens evaluating nivolumab in combination with JAK2 inhibitor,
and BTK inhibitor are also underway (Table 2). Additionally, retreatment with anti PD-1
mAb has been described in a small number of patients with multiply relapsed disease,
demonstrating ORRs of 70–100% and CRs of 33–73% [54–57]. Phase II investigation of
combination BV + Nivo in patients with prior treatment of either agent is underway and
may provide more insight into the roles of sequencing and retreatment as these agents are
introduced to patients in earlier lines of therapy (Table 2).

Table 2. Phase II/III Pipeline Studies Evaluating Anti-PD1 mAb Therapies in Hodgkin’s Lymphoma.

ClinicalTrial.Gov
Identifier Phase Regimen

Frontline Setting Regimens

NCT04866654 II ABVD +/− PET adapted RT + Nivo in early stage nonbulky disease

NCT03233347 II A-AVD with PET adapted BV + Nivo; followed by Nivo maintenance in
early-stage nonbulky disease

NCT03712202 II ABVD with PET adapted BV/Nivo or ABVD in PET negative interim scan;
A-AVD+ Nivo in PET positive interim scan in early-stage disease

NCT03907488 III A-AVD vs. Nivo-AVD in stage III/IV disease

NCT03033914 I/II A(B)VD +/− PET adapted Nivo-AVD in stage III/IV disease

NCT03580408 II Nivo +/− Vinblastine in patients aged > 60 years and unfit for standard
chemotherapy in any stage disease

Relapsed/Refractory setting: Combination with Chemotherapy Regimens

NCT03739619 I/II Nivo−Bendamustine + Gemcitabine

NCT04091490 II Nivo−DHAP

Relapsed/Refractory setting: Combination with Radiation Regimens

NCT03480334 II Nivo + RT in R/R cHL

NCT03495713 II Nivo + low dose RT in R/R cHL

Relapsed/Refractory setting: Chemotherapy Sparing Regimens

NCT04624984 II PD-1 inhibitor vs. PD-1 inhibitor + GVD as first salvage

NCT03337919 II Nivo monotherapy in disease refractory to 1st/2nd line salvage prior to ASCT

NCT04938232 II Ipi +/− Nivo in R/R cHL

NCT04561206 II BV + Nivo as 2nd line tx in patients not candidates for ASCT

Relapsed/Refractory setting: Combination with Other Targeted Therapy Regimens

NCT01896999 I/II Nivo + BV +/− Ipi in R/R cHL

NCT05137886 II Tislelizumab + Decitabine

NCT03681561 I/II Nivo + Ruxolitinib in R/R cHL

NCT02940301 II Nivo + Ibrutinib in R/R cHL

NCT03057795 II BV + Nivo consolidation post ASCT

NCT05039073 II BV + Nivo combination in patients previously treated with BV or CPI
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4. Immunotherapy as First Salvage and Bridge to ASCT

Treatment with standard chemotherapy options in first relapse followed by ASCT
leads to long-term cure in only half of patients, with reported 6 year event-free survival and
overall survival (OS) of 45% and 55%, respectively [58]. Standard cytotoxic chemotherapy
salvage achieved an ORR of ~70–90% and a CR of ~20–30% [59–63]. In patients who fail to
respond to initial salvage chemotherapy, the outcomes after ASCT are particularly dismal.
At 10 year follow-up, the PFS and OS are only 7–23% and 11–17%, respectively [60,61]
Achieving complete metabolic response (CMR) to salvage therapy prior to ASCT is asso-
ciated with superior outcomes and has served as a rationale for incorporating targeted
therapies into first salvage lines of therapy. While the addition of BV into first-line sal-
vage regimens has improved CR to 70–80% [62,64–66], single-agent BV induces CRs of
only 27–43% when assessed as monotherapy or as part of PET-adapted bridging therapy
ASCT [67,68].

On the other hand, the investigation of anti-PD-1 mAb in the first relapse in several
phase II studies has demonstrated increased depth of response both as a single agent and
as combination therapy (Table 1) [33–35]. Combination BV and Nivo demonstrated ORR of
82–85% and CR of 59–67% [32,69,70] At 3 year follow-up after combination achieved a PFS
of 77%, and in patients who responded to induction and proceeded to ASCT, PFS improved
to 91% [33]. In a small phase II PET-adapted study evaluating nivolumab monotherapy
followed by escalation to nivolumab with ifosfamide, carboplatin, and etoposide (ICE)
in patients with positive interim PET scans, 71% of patients achieved CR to the single
agent nivolumab and were eligible to proceed directly to ASCT, sparing 26 of the total
42 evaluable patients from requiring cytotoxic treatments prior to ASCT. A total of 9 of
the 42 patients required escalation of their treatment to N-ICE, and of these, 89% achieved
CR [35]. This approach demonstrated overall 2 year PFS and OS of 72% and 95%, respec-
tively (Table 1) [35]. Larger studies are underway to evaluate nivolumab monotherapy as
salvage prior to ASCT (Table 2).

Other small studies evaluating combination of immunotherapy with standard regi-
mens as bridge to ASCT, including pembrolizumab combined with ICE or gemcitabine,
vinorelbine, and pegylated liposomal doxorubicin (GVD), showed similarly high CR rates
of 86–95% [36]. The active investigation of other anti-PD-1 mAb combination regimens via
a PET-adapted approach using anti-PD1 mAb with GVD are underway to assess efficacy
with less toxic or chemotherapy-sparing therapies (Table 2).

5. Immunotherapy in Primary Refractory Disease

Historical data in patients with R/R disease within 1 year of frontline therapy who are
treated with standard salvage chemotherapy followed by ASCT demonstrated a 10 year
freedom from second failure (FF2F) and OS of 34 and 43%, respectively [9]. The incorpora-
tion of CPI has significantly improved outcomes in this population. In a subgroup analysis
of R/R patients treated with pembrolizumab, patients with primary refractory disease
achieved a CR of 35% with mDOR of 17 months at a median of 28 month follow-up, achiev-
ing 2 year PFS and OS of 32% and 94%, respectively. In a phase II study of pembrolizumab
with chemotherapy (GVD) as initial salvage therapy as a bridge to ASCT, 79% of patients
had either primary refractory disease or relapse within 1 year. All patients responded to
this combination treatment with a remarkable CR of 95%, and 36 of the 39 patients enrolled
proceeded to ASCT. All remained in remission at 13.5 month follow-up [34].

6. Immunotherapy as Maintenance after ASCT

Lastly, CPI has also been explored as consolidation therapy after ASCT similar to BV,
as investigated in the phase III ATHERA study [15,37]. In the ATHERA study, high-risk
patients, defined as primary refractory or relapse/progression of disease within 12 months
of frontline therapy or extra-nodal involvement at relapse, were included. Extended follow-
up of BV maintenance demonstrated a 5-year PFS of 59% vs 41% with placebo [37]. Phase
II evaluation of pembrolizumab after ASCT demonstrated an estimated 18 month PFS of
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82% overall, and among patients in the subgroup who met the criteria for high-risk disease
per the ATHERA protocol, PFS was 85% [15,37].

In the absence of long-term follow-up and head-to-head comparison, the PFS with
post-ASCT consolidative pembrolizumab compares favorably with that of BV. However, as
BV has moved to the upfront setting as the standard of care for advanced-stage cHL and
nivolumab is being used in earlier lines of therapy, the role of maintenance BV or anti-PD-1
mAb is less clear. Ongoing phase II investigation of the combination of BV and nivolumab
in patients with relapse who previously received either agent may provide insight into the
roles of sequencing and retreatment with these agents as consolidation post ASCT (Table 2).

7. Immunotherapy in Frontline Treatment

Frontline chemotherapy with doxorubicin, vinblastine, and dacarbazine with bleomycin
(ABVD) or BV (A-AVD) with and without radiation (RT) achieve high cure rates. However,
these therapies are associated with significant toxicity such as bleomycin- and/or radiation-
associated lung toxicity, anthracycline-associated cardiotoxicity, infections, and secondary
malignancy [7,11,71,72] Whereas the reduction or elimination of bleomycin as part of a
PET-adapted ABVD regimen or the A-AVD regimen has reduced rates of pulmonary toxic-
ity and the use of G-CSF has decreased the risk of infectious complications [13,73,74] older
and medically frail patients remain at high risk for complications [72,75,76]. An analysis of
patients treated with ABVD from the German Hodgkin Study Group demonstrated that
68% of older patients suffered from major toxicities, with a treatment-related mortality of
5% [77].

Although anti-PD-1 mAb is associated with unique immune-related adverse events
(irAEs), the majority are mild and can be well managed with observation or immuno-
suppression based on severity. Grade 3–4 irAE with anti-PD-1 mAb is reported at rate
of 12–28% in patients with cHL which is similar to rates described in patients with solid
tumors [22,40,78] In a meta-analysis of patients with cancer treated with anti-PD-1 mAb, the
rate of treatment-related mortality was 0.36% [79]. This has therefore led to investigation of
anti-PD-1 mAb in the frontline setting.

Unlike in the second-line salvage setting, single-agent anti-PD-1 mAb and mAb in
combination with BV failed to improve response rates in the frontline setting compared
with standard therapy [39,41]. However, 37–51% of patients did achieve CR to single-
agent PDL-1 mAb when given nivolumab or pembrolizumab initially as part of sequential
therapy followed by AVD, identifying a population that may be spared from cytotoxic
treatment [39,41]. In the NIVAHL study, patients received N-AVD as concomitant therapy
or sequential treatment with nivolumab followed by AVD, both as part of combined
modality treatment for early-stage unfavorable disease. Combination N-AVD induced a
CR of 87% compared with 51% after the initial course of nivolumab. Although this study
failed to meet its efficacy benchmark in the concomitant cohort, the 1 year PFS rates were
100% and 98% in the concomitant and sequential therapy arms, respectively [39].

In a study evaluating pembrolizumab with AVD as a radiation-sparing (RT) approach
in early unfavorable or advanced-stage disease, all patients received sequential therapy.
Specifically, 37% had CR to initial pembrolizumab monotherapy, and all patients achieved
CR after 2 additional cycles of AVD. At the median follow-up of 22 months, all patients
had sustained response, and none were treated with RT. Of the 30 total patients, 12 had
bulky disease [41].

In a study of upfront BV and nivolumab in older patients and those unsuitable for
standard chemotherapy, only 64% of patients responded, and this study was closed early
due to failure to meet the primary endpoint [38]. At the median follow-up of 21 months, the
mPFS was 22 months, and mDOR was not reached. Although this study did not improve
standard of care therapy, it demonstrates high activity as a chemotherapy-sparing approach
in those who are not candidates for more intensive therapy. Based on the remarkable
efficacy of anti-PD-1 mAb therapy in chemotherapy-refractory disease, treatment with
immunotherapy in the frontline as part of a PET-adapted approach in patients with sub-
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optimal response to anthracycline-based treatment is under investigation (Table 1). In
early-stage non-bulky disease, PET-adapted treatment with nivolumab-based therapy as
an RT-sparing option or in combination with RT is also underway (Table 2).

8. Future Directions

The optimal sequencing of CPI, brentuximab vedotin, cytotoxic therapy, and ASCT
in the R/R setting remains unclear as targeted agents are now being used in the upfront
and 2nd-line setting. Therefore, the future treatment paradigm of cHL will continue to
evolve based on the multiple active clinical trials summarized in Table 2, particularly
the comparison of upfront N-AVD vs. A-AVD in advanced-stage disease (NCT03907488).
Determining which patients are eligible for retreatment with anti-PD-1 mAb is crucial
and will likely be dependent on the duration of the initial response and the reason for
discontinuation. Novel anti-PD-1-based combination regimens with a hypomethylating
agent, a Bruton’s tyrosine kinase inhibitor, and a JAK2 inhibitor may be effective in heavily
pretreated patients and/or those with prior progression on CPI regimens.

In future trial designs for the treatment of cHL in the upfront setting, efforts to reduce
short- and long-term toxicity rates must be prioritized in addition to malignancy-specific
survival metrics. Although small phase II studies have demonstrated favorable efficacy of
anti-PD-1 mAb with chemotherapy as a RT-sparing approach in early-stage bulky disease,
ongoing studies using a PET-adapted approach are underway. By incorporating anti-PD-1
mAb as treatment escalation in patients with positive interim PET findings after upfront
chemotherapy, patients have the potential of avoiding additional toxic chemotherapy and
radiation (NCT04866654, NCT03233347, NCT03712202).

9. Conclusions

Classic HL is characterized by the dysregulation of TME-enabling pro-tumoral signal-
ing and the evasion of immune surveillance by cancer cells, for which immune checkpoint
inhibitor therapy is an ideal target. The inclusion of anti-PD-L1 mAb into the treatment
armamentarium of cHL has provided patients with R/R disease who are insensitive to
cytotoxic chemotherapy with the potential for long-term remission, particularly in those
achieving deep response to treatment.

Single-agent anti-PD-1 mAb offers a CR of ~20–30% in the multiply relapsed/refractory
setting, ~60–70% in the first relapse setting, and ~40–50% in the frontline setting based on
various phase II studies (Table 1). It can be concluded that although standard chemoradia-
tion can cure most patients in the upfront setting, those who do relapse have disease biology
driven primarily by immune dysregulation and insensitivity to cytotoxic chemotherapy.
This therefore serves as the ideal rationale for PET-adapted approaches in the frontline
setting where patients who fail to have CMR on PET imaging with standard cytotoxic
therapy proceed to anti-PD-1 mAb-based treatment (Table 2). It also serves as rationale for
the utilization of immunotherapy in the 2nd-line salvage setting prior to ASCT as anti-PD-1
mAb utilizes an intact immune system that may be compromised with repeated lines of
cytotoxic chemotherapy.

The specific populations that have the greatest potential for benefit from anti-PD-1
mAb-based therapy are patients deemed poor candidates for standard chemotherapy due
to age or medical comorbidities and those with refractory or early relapsing disease. Based
on the current data, a decision to incorporate immunotherapy must be tailored to individual
patients based on their ASCT eligibility, their underlying comorbidities including those
that put them at increased risk for immune-mediated toxicities related to anti-PD-1 mAb,
and their personalized goals of care.
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