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Simple Summary: In this study, we aimed to build a machine-learning predictive model for the iden-
tification of triple negative breast cancer, the most aggressive subtype, using quantitative parameters
and radiomics features extracted from tumor lesions on hybrid PET/MRI. The good performance
of the model supports the hypothesis that hybrid PET/MRI can provide quantitative data able to
non-invasively detect tumor biological characteristics using artificial intelligence software and further
encourages the conduction of additional studies for this purpose.

Abstract: Purpose: To investigate whether a machine learning (ML)-based radiomics model applied
to 18F-FDG PET/MRI is effective in molecular subtyping of breast cancer (BC) and specifically
in discriminating triple negative (TN) from other molecular subtypes of BC. Methods: Eighty-six
patients with 98 BC lesions (Luminal A = 10, Luminal B = 51, HER2+ = 12, TN = 25) were included
and underwent simultaneous 18F-FDG PET/MRI of the breast. A 3D segmentation of BC lesion was
performed on T2w, DCE, DWI and PET images. Quantitative diffusion and metabolic parameters
were calculated and radiomics features extracted. Data were selected using the LASSO regression
and used by a fine gaussian support vector machine (SVM) classifier with a 5-fold cross validation
for identification of TNBC lesions. Results: Eight radiomics models were built based on different
combinations of quantitative parameters and/or radiomic features. The best performance (AUROC
0.887, accuracy 82.8%, sensitivity 79.7%, specificity 86%, PPV 85.3%, NPV 80.8%) was found for
the model combining first order, neighborhood gray level dependence matrix and size zone matrix-
based radiomics features extracted from ADC and PET images. Conclusion: A ML-based radiomics
model applied to 18F-FDG PET/MRI is able to non-invasively discriminate TNBC lesions from other
BC molecular subtypes with high accuracy. In a future perspective, a “virtual biopsy” might be
performed with radiomics signatures.

Keywords: 18F-FDG PET/MRI; breast cancer; machine learning; artificial intelligence

1. Introduction

Breast cancer (BC) is a heterogeneous disease with a multifactorial etiology (e.g.,
hormone, genetics-related) affecting the capability of cells to repair DNA damages [1–3]. In
the course of cancer development, cells progressively accumulate mutations, and acquire
new cancer hallmark capabilities, i.e., sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replicative immortality, inducing/accessing
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vasculature, activating invasion and metastasis, reprogramming cellular metabolism, and
avoiding immune destruction [4,5]. Depending on the expression of molecular biomarkers,
including estrogen receptor (ER), progesterone receptor (PgR), and human epidermal
growth factor receptor 2 (HER2), BC can be categorized into different subtypes [6]. The
knowledge of such molecular features led to the development of targeted treatments and
improved outcomes [7]. An exception is the triple negative (TN) BC, which does not
express any of these molecular biomarkers. TN is the most aggressive BC subtype, with a
propensity for tissue invasion and distant metastases [8], and has the poorest prognosis as
no targeted treatment is currently available [9].

The assessment of molecular subtypes is, therefore, the “sine qua non” for treatment
planning of BC. In patients with TNBC, it is especially important as they usually require
upfront systemic treatment before surgery. Currently, the assessment of molecular subtypes
is performed through invasive tissue sampling using invasive core needle biopsy, an
approach inherently limited by sampling bias and providing only a snapshot of the biology
of the entire tumor. Indeed, molecular biomarkers are likely to differ within the tumor, a
phenomenon known as intratumor heterogeneity [10]. The development of a non-invasive,
pre-operative approach for the molecular characterization of BC in its entirety that can
inform whether a tumor really has no actionable treatment targets, i.e., is TNBC entirely, is
still an unmet clinical need.

Developments have led to sophisticated imaging techniques that can depict the
functional properties of breast tumors and their underlying biology. Currently, 18F-
fluorodeoxyglucose positron emission tomography (18F-FDG PET) as well as magnetic res-
onance imaging (MRI) diffusion-weighted imaging (DWI), and dynamic contrast-enhanced
(DCE) techniques are the gold standard for the in vivo assessment of tumor metabolism
(18F-FDG PET), cellularity (DWI) and neoangiogenesis (DCE) [11–13]. For the assessment
of TNBC in particular, both 18F-FDG PET and MRI have shown high sensitivity [14,15].
More recently, simultaneous 18F-FDG PET/MRI has been shown to be promising for the
accurate and non-invasive biological characterization of BC [16].

Initial studies have demonstrated the potential of radiomics analysis coupled with
machine learning (ML) based on either PET or MRI (both DCE and DWI) for the comprehen-
sive assessment of tumor phenotypes and for the development of predictive models [17–19].
Most recently, the value for artificial intelligence (AI)—enhanced simultaneous 18F-FDG
PET/MRI for BC phenotyping, specifically for hormone receptor-positive (luminal) BC
identification has been demonstrated [20]; nevertheless, its potential for the identification
of TNBC remains unclear.

We hypothesized that AI-enhanced simultaneous 18F-FDG PET/MRI can identify
the radiomic signature of TNBC. Therefore, we aimed to build an ML-based predictive
model using both quantitative imaging parameters and radiomic features extracted from
simultaneous 18F-FDG PET/MRI to distinguish TNBC from other molecular BC subtypes.

2. Materials and Methods
2.1. Patient Sample

This prospective single-institution study was approved by the institutional review
board, and written informed consent was obtained from all participants. All patients
underwent simultaneous multiparametric 18F-FDG PET/MRI of the breast between June
2016 and June 2020. Inclusion criteria were: >18 years-old subjects; histologically verified
BC lesions; and not pregnant or breastfeeding. Exclusion criteria were: patients with
standard contraindications for performing MRI examinations (e.g., metal implants, metallic
foreign bodies, renal failure with eGFR < 30 mL/min); patients for whom histological proof
of malignancy was not available; patients with malignant lesions other than BC; tumor
recurrence; incomplete 18F-FDG PET/MRI examinations; and patients with PET, DCE, or
DWI images that were not suitable for subsequent multiparametric and radiomics analyses.
Patients included in this study have been investigated in a previous study with different
purpose and results [21].
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2.2. 18F-FDG PET/MRI Acquisition Protocol

Simultaneous 18F-FDG PET/MRI was performed as previously described [21], us-
ing a Biograph mMR system (Siemens Healthineers, Erlangen, Germany), which is a
hybrid system combining an MRI-compatible PET detector with a 3.0 Tesla MRI scanner.
During PET data acquisition, T2-weighted, diffusion tensor imaging (DTI) single-shot
spin-echo-prepared echo-planar imaging (EPI) sequence and high temporal resolution
DCE-MRI sequences were acquired. Details of 18F-FDG PET/MRI protocol are reported in
Supplementary Materials S1 [22–25].

2.3. Image Analysis
Quantitative Parameters

A board-certified breast radiologist and a nuclear medicine physician with 7 and 11 years
of experience, respectively, independently evaluated all PET/MR images, using a previ-
ously described method that proved to be highly reproducible [21].

MR images were analyzed for both DWI and perfusion-weighted imaging (PWI)
quantitative parameters using a free, open-source software (Horos v.3.3.5, distributed
under the LGPL license at Horosproject.org, sponsored by Nimble Co LLC d/b/a Purview
in Annapolis, MD, USA). In detail, 2D circle ROIs were placed on apparent diffusion
coefficient (ADC) maps for ADCmean calculation of tumor lesion and contralateral breast
parenchyma. Thereafter, 2D ROIs were drawn over tumor lesions on first post-contrast DCE
images and then pasted on perfusion maps DCE maps for the extraction of quantitative
perfusion parameters, including mean transit time (MTT), plasma flow (PF), and volume
distribution (VD), according to previous evidence [26]. Details of DWI and DCE image
analysis are reported in Supplementary Materials S2.

PET images were analyzed for the quantification of tumor uptake using the Hermes
Hybrid Viewer (Hermes Medical Solutions, Stockholm, Sweden). Maximum, mean, and
minimum standardized uptake values (SUVmax, SUVmean, and SUVmin) were calculated
by placing a 3D volume of interest (VOI) with a fixed threshold at the level of tumor
lesions; care was taken to exclude surrounding background parenchymal uptake. The
same approach was used for the extraction of SUVmean of the ipsilateral and contralateral
normal appearing breast parenchyma, away from the nipple and areola.

2.4. Radiomics Analysis
2.4.1. Tumor Segmentation

Whole BC lesions were segmented on T2-weighted, DCE, DWI, and PET images
using a dedicated software (ITK-SNAP v. 3.6.0, itksnap.org, University of Pennsylvania,
Philadelphia, PA, USA; University of Utah, Salt Lake City, UT, USA). DCE (first post-
contrast timepoint), DWI, and PET images were annotated using a semi-automated method
selecting a lower boundary of signal intensity, while a slice-by-slice approach was used for
segmenting BC lesions on T2-weighted images. In all cases, VOIs were placed within the
margins of the lesions and care was taken to exclude macroscopic necrosis as well as cystic
and hemorrhagic areas or biopsy markers. Figure 1 illustrates ROI placement on DWI, PWI
and PET images, as well as the BC lesion segmentation process.
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Figure 1. Examples of 2D ROI placement for the extraction of quantitative parameters (mean transit
time; plasma flow; volume distribution; ADC mean; and SUVmax, mean, and minimum) (A–C), and
whole tumor segmentation for radiomics features (first, second, and higher order) extraction (D–G) from
primary BC tumor lesions on DCE (A,E), DWI (B,F), PET (C,G), and T2-weighted (D) images.

2.4.2. Radiomic Feature Extraction

Prior to the extraction of radiomic features, data for all images were reduced to 16 grey
levels. The Computational Environment for Radiological Research (CERR), compatible
with the Image Biomarker Standardization Initiative (IBSI), platform was used to extract
radiomic features [27] from DCE, T2-weighted, ADC and PET images. For the extraction of
ADC-derived radiomic features, BC segmentation was first performed on DWI images to
better define tumor margins and leverage their intrinsic high contrast, and ROIs on DWI
images were subsequently pasted onto ADC maps for the calculation of radiomic features.
For non-isotropic images (T2-weighted images and ADC maps), feature extraction was
performed in a slice-by-slice 2D fashion and successively clustered over the whole lesion
(BTW3 as defined by IBSI) [28]. Due to the large class imbalance present, adaptive synthetic
sampling was utilized to remove this effect. A total of 101 features were computed per
image; all features are detailed in Supplementary Materials S3.

2.4.3. Radiomic Feature Selection and Machine Learning

As our study dataset consisted of a limited number of cases relative to a high number
of extracted features, radiomic feature selection was performed using Least Absolute
Shrinkage and Selection Operator (LASSO) regression [29], and subsequently, the five
most important features were selected for each radiomic model to avoid overfitting. With
insufficient cases to fine tune the LASSO hyperparameter (Lambda, a pragmatic approach
was taken, wherein the algorithm employed automatically selected the largest value of
Lambda that resulted in a nonnull model. Thereafter, a fine Gaussian support vector
machine (SVM) was employed for radiomic model building using MATLAB 2017b (The
MathWorks Inc., Natick, MA, USA). SVM is a widely used supervised ML method that



Cancers 2022, 14, 3944 5 of 12

has demonstrated good performance in small datasets and also provides memory efficient
models that are able to solve both linear and non-linear issues [30]. Briefly, SVM works by
identifying a hyperplane that best segregates two classes (e.g., TNBC vs. other BC subtypes).
The choice of the best hyperplane is made based on how many cases are correctly classified
and with which margins. The higher the margin, the higher the robustness of the model
reducing the possibility of misclassification. Due to the limited number of cases in our
study dataset, it was not possible to define a training and a validation set. Therefore,
five-fold cross validation was employed, wherein five groups of data were generated, so
that each model was trained on the first four groups and tested on the remaining one,
providing reliable information on model generalizability. Data were initially standardized
(z-score calculation with mean 0 and standard deviation 1) to prevent dependence on
any individual parameter, especially those parameters containing high values. The whole
process was repeated 1000 times, for each of the 8 datasets, to provide final accuracy metrics.
Different models were built using various combinations of DCE, T2-weighted, ADC, and
PET-derived radiomic features as well as quantitative PET/MRI parameters, to evaluate
their ability to accurately distinguish TNBC from other BC subtypes.

2.5. Reference Standard

Malignant tumor samples from core biopsy and/or surgical specimen were analyzed
to define tumor histology, grade, and immunohistochemical status including ER, PgR,
Ki-67 expression, and overexpression and/or amplification of HER2 of each breast cancer
lesion. The St. Gallen surrogate molecular subtype definitions were used to classify breast
lesions [31].

2.6. Statistical Analysis

The Kolmogorov–Smirnov test was performed to assess whether data were normally
distributed. Accordingly, the Mann–Whitney test or independent t-test were performed to
assess differences in terms of lesion size, quantitative parameters and radiomics parameters
between TN and non-TN breast cancer subtypes. McNemar’s test was used to assess
differences in terms of diagnostic performance among the different radiomics models.
p values ≤ 0.05 were considered statistically significant. Confidence intervals for diagnostic
metrics were calculated using a bootstrapping approach. Statistical analysis was conducted
using SPSS, Version 25.0. 2017 (IBM Corp, Armonk, NY, USA).

3. Results
3.1. Patient Sample

According to the inclusion and exclusion criteria, 144 patients were initially enrolled
in the study. Of these, 86 female patients (mean age 52 ± 13 years) were included in the
final study sample, with 98 histologically proven BC lesions (mean size: 28.31 ± 16.8 mm),
comprising 25 TN, 10 Luminal A, 51 Luminal B, and 12 HER2+ lesions. In detail, there were
eight patients with two BC lesions in the same breast and four patients with bilateral BC
lesions. The majority (80%, 79/98) of histological types was represented by ductal invasive
carcinoma. The flowchart of patient inclusion is illustrated in Figure 2, while histological
details of included BC lesions are reported in Supplementary Materials S4.

TN lesions showed significantly higher SUVmax (9.5 vs. 4.9), SUVmean (5.7 vs. 3.4),
and SUVmin (3.1 vs. 2) compared with lesions of other BC subtypes (p < 0.001). No
differences were observed in terms of lesion size and remaining quantitative parameters
between TN and non-TN lesions. Mean values of tumor size and quantitative parameters
are reported in Supplementary Materials S5. The single best performing quantitative
parameter was SUVmax with an AUROC of 0.83 (95% CI: 0.76–0.90).
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Figure 2. Flowchart of patient selection. * Low quality images, DCE images for which maps calculation
was not feasible, small breast cancer lesions.

3.2. Feature Selection and Machine Learning Analysis

Eight radiomic models (Models 1–8) were developed for TNBC identification, using
the following combinations of quantitative parameters and radiomic features: quantita-
tive parameters alone (Model 1); radiomic features extracted from ADC (Model 2), DCE
(Model 3), PET (Model 4) and T2-weighted (Model 5) images; combinations of radiomic
features extracted from different 18F-FDG PET/MR images, namely DCE-MRI and ADC
(Model 6), and DCE-MRI, ADC, and PET (Model 7); and quantitative parameters com-
bined with radiomic features (Model 8). Quantitative parameters and/or radiomic features
selected for each model are reported in Table 1.

Table 1. Details of the developed radiomics model, including finally selected quantitative parameters
and/or radiomic features.

Radiomic Model PET/MR Images Selected Features/Quantitative Parameters

Quantitative parameters DCE, ADC, PET parameters (Model 1) SUVmax, PF, ADCmean contralateral breast,
ADCmean tumor lesion, MTT

Radiomic features extracted from
single 18F-FDG PET/MR images

ADCr(Model 2)

cluster shade (GLCM)
strength (NGTDM)

Hdlge, hgce (NGLDM)
hglze (SZM)

DCE(Model 3)
kurtosis, coefficient of dispersion (FO)

strength (NGTDM)
joint maximum (GLCM)

PET(Model 4)

glv, lglze (SZM)
complexity (NGTDM)

inverse difference moment (GLCM)
rlv (RLM)

T2-w(Model 5)

coefficient of variation (FO)
entropy (NGLDM)

run emphasis (RLM)
gln (SZM)
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Table 1. Cont.

Radiomic Model PET/MR Images Selected Features/Quantitative Parameters

Combinations of radiomic features

ADCr, DCE(Model 6)

auto correlation, cluster shade (GLCM, DCE)
szhgle (SZM, DCE)

sre (RLM, ADC)
strength (NGTDM, DCE)

ADCr, DCE, PET(Model 7)

zln (SZM, ADC)
glv (SZM, PET)

dcnNorm (NGLDM, PET)
coefficient of variation, entropy (FO, PET)

Integrated model of radiomic features
and quantitative parameters

ADCr, DCE, PET + quantitative
parameters(Model 8)

SUVmax
complexity (NGTDM, PET)

inverse difference moment (GLCM, PET)
minimum (FO, T2)
kurtosis (FO, DCE)

Note: ADCr = radiomic features extracted from ADC maps; ADCmean = apparent diffusion coefficient mean of
breast lesions; PF = plasma flow; MTT = mean transit time; DCE = radiomic features extracted from dynamic
contrast-enhanced images; PET = radiomic features extracted from positron emission tomography images;
T2-w = radiomic features extracted from T2-weighted images; SUV = standard uptake value; FO = first order
parameter; GLCM = gray level cooccurrence matrix-based parameter; NGLDM = neighborhood gray level
dependence matrix-based parameter; NGTDM = neighborhood gray tone difference matrix-based parameter;
RLM = run length matrix-based parameter; SZM = size zone matrix-based parameter; glv = gray level variance;
hgce = high gray level count emphasis; lzlgle = large zone low gray level emphasis; rln = run length non-
uniformity; szlgle = small zone low gray level emphasis; zln = zone size non-uniformity. A full description of
radiomics feature is reported in Supplementary Materials S3.

Across all models, the area under the receiver operating curve (AUC) ranged from
0.725 (Model 5, 95% CI: 0.679–0.765) to 0.887 (Model 7, 95% CI: 0.847–0.916). Model 7
showed the best performance in discriminating TNBC from other BC subtypes, with a
diagnostic accuracy of 82.8% (95% CI: 78.2–87.1%), sensitivity of 79.7% (95% CI: 71.6–86.5%),
and specificity of 86.0% (95% CI: 80.8–90.4%). In detail, Model 7 included size zone matrix-
based features extracted from ADC and PET images as well as first-order and neighborhood
gray level dependence matrix-based features extracted from PET images. Of note, Model 1,
based on quantitative parameters extracted from both primary lesions (SUVmax, PF, MTT,
ADCmean) and contralateral breast tissue (ADCmean), achieved the second-best AUC of
0.884 (95% CI: 0.867–0.898), followed by Model 8, combining quantitative parameters and
radiomic features, which showed an AUC of 0.871 (95% CI: 0.849–0.889).

Among the models built using radiomic features extracted from individual 18F-FDG
PET/MR images, the best performing one was Model 2, based on features extracted from
ADC maps, which yielded an AUC of 0.826 (95% CI: 0.758–0.984). On the other hand, the
worst performing one was Model 5, based on features extracted from T2-weighted images,
which yielded an AUC of 0.725 (95% CI: 0.679–0.765). Accuracy metrics of all radiomic
model are reported in Table 2.

A statistically significant difference in terms of diagnostic performance was found
using McNemar’s test between the best performing model (Model 7) and the worst per-
forming one (Model 5) (p = 0.005). No differences were observed between Model 7 and the
remaining radiomic models. Comparisons in terms of diagnostic performance among all
models are reported in Supplementary Materials S6, while univariable results for the image
features and quantitative parameters are presented in Supplementary Materials S7.
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Table 2. Diagnostic accuracy of the eight developed radiomic models.

Model Sensitivity Specificity PPV NPV Accuracy AUROC

1
(Quantitative parameters)

87.2
(82.4–90.5)

77.5
(72.6–82.2)

79.7
(76.2–83.5)

85.7
(81.2–89.2)

82.4
(78.9–85.7)

0.884
0.867–0.898)

2
(ADC)

75.0
(67.6–81.1)

80.6
(75.3–84.9)

79.7
(74.6–84.1)

76.1
(70.7–80.8)

77.7
(72.8–81.6)

0.826
(0.789–0.857)

3
(DCE-derived RF)

70.2
(62.2–77.0)

79.3
(72.6–84.9)

77.5
(72.2–82.6)

72.5
(67.1–77.2)

74.7
(70.1–78.9)

0.771
(0.720–0.814)

4
(PET-derived RF)

68.4
(59.5–77.0)

75.9
(68.5–82.2)

74.2
(68.1–80.0)

70.4
(64.2–76.7)

72.1
(66.6–77.6)

0.789
(0.733–0.841)

5
(T2-derived RF)

69.0
(62.1–74.3)

73.5
(68.5–78.1)

72.5
(68.1–76.5)

70.1
(65.0–74.7)

71.2
(66.7–75.5)

0.725
0.679–0.765)

6
(ADC, DCE-derived RF)

83.7
(79.7–86.5)

67.4
(63.0–71.2)

72.3
(69.7–75.0)

80.3
(75.8–83.6)

75.6
(72.8–78.2)

0.822
(0.797–0.842)

7
(ADC, DCE,

PET-derived RF)

79.7
(71.6–86.5)

86.0
(80.8–90.4)

85.3
(80.9–89.4)

80.8
(75.0–86.3)

82.8
(78.2–87.1)

0.887
0.847–0.916)

8
(Radiomics features +

quantitative parameters)

88.9
(85.1–91.9)

74.4
(69.9–78.1)

77.9
(74.7–81.0)

86.9
(82.5–90.5)

81.7
(78.2–85.0)

0.871
(0.849–0.889)

Note: PPV = positive predictive value; NPV = negative predictive value; AUROC = area under the receiver
operating characteristic curve; RF = radiomics features. Data in parentheses refer to 95% confidence intervals.

4. Discussion

In the present study, we evaluated AI-enhanced simultaneous 18F-FDG PET/MRI
to distinguish TNBC from other molecular BC subtypes. To this end, we built ML-based
predictive models employing radiomic features and/or quantitative parameters extracted
from simultaneous 18F-FDG PET/MRI to non-invasively identify TNBC. Model 7, the
best performing one (AUC of 0.887; 95% CI: 0.847–0.916) specifically included features
extracted from functional images i.e., ADC and PET, supporting the hypothesis that func-
tional data such as tumor cellularity and metabolism may better depict biological tumor
features compared to morphologic sequences. It is worth noting that no significant dif-
ferences in terms of diagnostic performance were found between Model 7 and all other
models except for Model 5 which was based on solely on radiomic features extracted from
T2-weighted images.

Such findings support the expectation that, in the near future, molecular data could be
non-invasively obtained by imaging through the application of artificial intelligence tools.
This issue is particularly relevant if we consider that 18F-FDG PET and MRI are already
indicated for both local and global staging of locally advanced breast cancer as well as for
treatment monitoring. As such, it is permissible to imagine that, with a single imaging
examination, tumor diagnosis, staging, and phenotyping could be obtained non-invasively
at the same time. In this light, “virtual biopsies” could be performed once radiomic pro-
files specific to molecular subtypes have been defined, aiming at providing genetic and
phenotypic alterations which are representative of the whole tumor and comprehensively
describe tumor heterogeneity. Furthermore, the extraction of quantitative imaging data
from the whole tumor could allow the spatio-longitudinal monitoring of biomarker het-
erogeneity changes during treatment and the early identification of clonal dynamics and
genetic modifications related to the occurrence of drug resistance.

PET and MRI represent the most promising imaging modalities for this purpose, due
to their ability to non-invasively inform on cancer metabolism, cellularity, and neoangio-
genesis. Such properties are reported to be different between BC subtypes which exhibit
different biological aggressiveness and behavior [32]. TNBC is characterized by higher
glucose metabolism, which is reflected in its higher SUV values compared with other
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BC subtypes as seen in other studies [32,33] as well as in this investigation. However,
quantitative parameters (e.g., DWI-ADC values) alone do not seem to be accurate enough
to discriminate molecular BC subtype; thus, more sophisticated AI-enhanced approaches
are necessary [34].

So far, several attempts have been made to non-invasively define BC molecular subtype
through the use of radiomics and machine learning applied to PET and MRI [17–19].
Previous studies explored the feasibility and usefulness of radiomics applied to PET/CT
or MRI (both DCE and DWI) features for the prediction of molecular subtype [17–20,35].
Only recently have radiomics and AI techniques been applied to simultaneous 18F-FDG
PET/MRI for a comprehensive analysis of molecular subtype, Ki67 expression, nodal
status, and presence of distant metastasis in a population of 124 BC patients [20]. For the
prediction of molecular BC subtypes, Umutlu et al. built two accurate radiomic models
to discriminate Luminal A vs. Luminal B BC (AUC: 0.978, 95% CI: 0.950–1.000) and
Luminal BC vs. other subtypes (AUC: 0.950, 95% CI: 0.922–0.979), based on MRI and
PET-derived radiomics features, respectively. In contrast, our best performing radiomics
model included radiomic features extracted from both MRI and PET images; furthermore,
our model was geared towards specifically identifying TNBC. This choice was driven
by the particularly aggressive biological behavior of TNBC and the different biological
development of TNBC compared with other BC subtypes, supposed to originate from
luminal progenitors and breast epithelial stem cells, respectively, according to a cell-of-
origin hypothesis [36]. However, according to a more recent hypothesis, Luminal and
TNBC could have a common luminal progenitor and the latter, through a dedifferentiation
process, could acquire a basal like phenotype [37]. Furthermore, both types of tumor cells
are supposed to be present in the same BC lesions, even if in different percentages, which
also contributes to both intra- and intertumor heterogeneity [6]. Others have attempted to
diagnose TNBC using radiomic signatures extracted from 300 pre-treatment post-contrast
CT examinations [38]. Five radiomic features were selected, showing AUC values of 0.881
(95% CI: 0.781–0.921) and 0.851 (95% CI: 0.761–0.961) in the training and validation group,
respectively. While this single study yielded comparable results, it has to be noted that CT
is not an imaging modality that is recommended for breast imaging and has no clinical
standing in breast cancer diagnosis and treatment monitoring.

Our study has several limitations to be acknowledged, the first being the relatively
small sample size, as accessibility to simultaneous 18F-FDG PET/MRI was limited due
to high demand from clinical needs. Furthermore, TNBC is relatively rare compared
to other subtypes, thus larger numbers can only be recruited in a multi-centric setting
over a reasonable time period. Due to this limitation, we refrained from using a subset
of cases as a held-out test set. Indeed, a five-fold cross-validation was used, as done in
previous studies involving the preliminary assessment of the applicability of the model
to an unseen population [21,39]. Potentially, fewer parameters for each model might have
been preferable but, considering the 25 cases included in the minority class, this equates
to 5 cases per feature, which was deemed acceptable. A known limitation of LASSO is
that in case of highly correlated features, the selection of features among those that are
correlated can be random, or at least noisy. By employing LASSO in a cross-validated
fashion, this effect is reduced to a certain extent. However, it is noted that rerunning the
LASSO process may well result in different sets of selected features. Furthermore, findings
from this single-institution study have to be further tested and validated on external cohorts
of patients, preferably in the setting of multi-center investigations, which are currently
being planned to overcome the above-mentioned drawbacks.

5. Conclusions

AI-enhanced simultaneous 18F-FDG PET/MRI can non-invasively identify TNBC, the
most aggressive tumor type requiring intensified treatment, with high accuracy. Additional
investigations on larger cohorts of patients are necessary to validate our model and fully
assess its generalizability.
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