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Simple Summary: Actional mutations and PD-L1 expression are of paramount importance for the 
precision treatment of lung cancer. Radiogenomics is a promising field that integrated radiologic 
images and genomic data through artificial intelligence technology. This approach enables non-in-
vasive assessment of genes, but the vast majority of studies are limited to single gene mutation pre-
diction. Our study aimed to propose a multi-label multi-task deep learning (MMDL) system to pre-
dict molecular status based on routinely acquired computed tomography (CT) images using deep 
learning and radiomics. A dataset of CT images from 1096 non-small cell lung cancer (NSCLC) pa-
tients with molecular tests was curated to train, validate and test. The MMDL model achieved su-
perior performance on the classification task of simultaneous identification of eight genes or even 
ten molecules. This system has the potential to be an auxiliary support tool to advance precision 
oncology. 

Abstract: Purpose: Personalized treatments such as targeted therapy and immunotherapy have rev-
olutionized the predominantly therapeutic paradigm for non-small cell lung cancer (NSCLC). How-
ever, these treatment decisions require the determination of targetable genomic and molecular al-
terations through invasive genetic or immunohistochemistry (IHC) tests. Numerous previous stud-
ies have demonstrated that artificial intelligence can accurately predict the single-gene status of tu-
mors based on radiologic imaging, but few studies have achieved the simultaneous evaluation of 
multiple genes to reflect more realistic clinical scenarios. Methods: We proposed a multi-label multi-
task deep learning (MMDL) system for non-invasively predicting actionable NSCLC mutations and 
PD-L1 expression utilizing routinely acquired computed tomography (CT) images. This radioge-
nomic system integrated transformer-based deep learning features and radiomic features of CT vol-
umes from 1096 NSCLC patients based on next-generation sequencing (NGS) and IHC tests. Re-
sults: For each task cohort, we randomly split the corresponding dataset into training (80%), valida-
tion (10%), and testing (10%) subsets. The area under the receiver operating characteristic curves 
(AUCs) of the MMDL system achieved 0.862 (95% confidence interval (CI), 0.758–0.969) for discrim-
ination of a panel of 8 mutated genes, including EGFR, ALK, ERBB2, BRAF, MET, ROS1, RET and 
KRAS, 0.856 (95% CI, 0.663–0.948) for identification of a 10-molecular status panel (previous 8 genes 
plus TP53 and PD-L1); and 0.868 (95% CI, 0.641–0.972) for classifying EGFR / PD-L1 subtype, re-
spectively. Conclusions: To the best of our knowledge, this study is the first deep learning system 
to simultaneously analyze 10 molecular expressions, which might be utilized as an assistive tool in 
conjunction with or in lieu of ancillary testing to support precision treatment options. 
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1. Introduction 
Lung cancer is the malignancy tumor with the highest mortality worldwide driven 

by multiple genetic mutations, approximately 85% of which is non-small cell lung cancer 
(NSCLC) [1,2]. Personalized treatments of patients with NSCLC, such as targeted therapy 
and immunotherapy, have shifted the paradigm that relies on the exact molecular profile 
[3]. The National Comprehensive Cancer Network (NCCN) guidelines recommend that 
the statuses of several genomic alterations should be identified for appropriate drug se-
lection, including epidermal growth factor receptor (EGFR), anaplastic lymphoma recep-
tor tyrosine kinase (ALK), erb-b2 receptor tyrosine kinase 2 (ERBB2), V-Raf murine sar-
coma viral oncogene homolog B1 (BRAF), mesenchymal-epithelial transition factor 
(MET), c-ROS proto-oncogene 1 (ROS1), rearranged during transfection (RET), and 
Kirsten rat sarcoma viral oncogene (KRAS) [4,5]. In addition, the mutation of tumor pro-
tein p53 (TP53) and tumor proportion score (TPS) of programmed death ligand-1 (PD-L1) 
are also closely related to lung cancer treatment decisions [6–9]. 

Traditionally, the detection of the above molecular alterations relied on quantitative 
polymerase chain reaction (qPCR), next-generation sequencing (NGS), or immunohisto-
chemistry (IHC) [10,11]. Unfortunately, the majority of clinical institutions only perform 
sequential molecular testing on a single gene. While the NGS-based assays capable of de-
tecting multiple genes are prohibitively expensive. The IHC requires a time-consuming 
visual inspection of histopathology slides by experienced pathologists. Moreover, these 
approaches depend on invasive biopsy or surgery to obtain tumor tissues [12,13]. The re-
sults are affected by insufficient tumor quantity or quality, as well as sample heterogene-
ity, hindering the widespread clinical application. Therefore, there is an urgent demand 
for a non-invasive and efficient genetic testing method. 

Radiogenomic is a promising field that integrates radiologic images and genomic 
data through artificial intelligence (AI) technology. Initially, researchers observed a rela-
tionship between gene expression and quantitative imaging features. For instance, ALK 
rearrangement is associated with large pleural effusion, and EGFR mutations have been 
linked to irregular nodules [14–17]. Due to the development of computing power, high-
throughput features are able to be captured from computed tomography (CT) images and 
handle complex tasks. Deep learning, a particular machine learning approach, has been 
widely applied in medical diagnosis tasks including skin cancer detection, COVID-19 di-
agnosis, and lung cancer screening [18–24]. Similarly, deep learning has been also utilized 
to build genetic prediction models based on image features. A deep learning model using 
whole-lung CT imaging has been constructed to evaluate EGFR status with an area under 
the receiver operating characteristic curve (AUC) of 0.748 to 0.813 in six testing cohorts 
[25]. However, previous studies have mostly assessed a single gene or two genes, ignoring 
the clinical need to assess multiple genes [26,27]. Other researchers extracted 1672 radio-
mic features from three-dimensional CT patches to simultaneously determine the pres-
ence of EGFR, KRAS, ERBB2, and TP53 mutations, but the approach was developed with 
a small sample size of chest images from 134 NSCLC patients [28]. Hence, large-scale sam-
ples and multiple-molecules analyses are warranted for research. 

Here, we proposed a radiogenomics-based multi-label multi-task deep learning 
(MMDL) system to analyze 8-panel, 10-panel, and subtype expression simultaneously in 
a large-scale population (Figure 1). After experimenting with various technologies, a hy-
brid model that integrated radiomics and deep learning features achieved excellent per-
formance that was readily aligned to clinical scenarios. 



Cancers 2022, 14, 4823 3 of 18 
 

 

 

 



Cancers 2022, 14, 4823 4 of 18 
 

 

Figure 1. Overall workflow of the MMDL system. (A) Data assembly included the original CT image 
data, molecular status, subtypes, and clinical records. (B) Data partition: for model development 
and validation, the acquired data set was further partitioned into target binary expression (positive 
expression of at least one molecule and all negative molecular expression ), multiple molecular sta-
tus prediction tasks (8-panel or 10-panel), and subtype prediction tasks (19-DEL, L858R, other mu-
tation and wild type for EGFR; TPS cut-off of 50%: low PD-L1+ and high PD-L1+ for PD-L1 positive 
expression, and PD-L1- represents the negative expression of PD-L1). (C) The DenseNet backbone-
based U-Shaped deep learning segmentation architecture performed tumor mask annotation. (D) A 
novel MMDL hybrid architecture fused the extracted radiomics features and deep learning features 
for our multi-task prediction. 

2. Methods 
2.1. Study Population 

The data for all NSCLC patients who visited West China Hospital of Sichuan Univer-
sity from April 2018 to June 2020 were collected in this study (Figure 2). Complete anon-
ymization of data was performed before inclusion. Patients who met the following inclu-
sion criteria were enrolled in this study: (1) histologically diagnosed with NSCLC; (2) had 
molecular tests including Amplification Refractory Mutation System-Polymerase Chain 
Reaction (ARMS-PCR) or NGS to confirm the status of EGFR, ALK, ERBB2, BRAF, MET, 
ROS1, RET, KRAS (8-panel), and TP53; PD-L1 expression status was detected using the 
SP142 antibody in IHC assays performed on the Ventana Benchmark platform; and (3) 
had a preoperative CT examination performed within 1 month before diagnosis.  

Patients were excluded from the study based on the following criteria: (1) low-quality 
CT images with image artifacts (due to metal objects) or motion artifacts (including 
breathing); (2) indistinguishable tumor contour that was unsuitable for CT segmentation 
due to nearby obstructive pneumonia and atelectasis; and (3) preoperative treatment had 
been received. Finally, on the basis of the aforementioned criteria, 1096 patients were iden-
tified with a diagnosis of NSCLC and definite multiple molecular expression status (pos-
itive and negative type); 932 patients were chosen to form the 8-panel cohort; 637 patients 
were chosen to form a 10-panel cohort (8 genes plus TP53 and PD-L1) for further predic-
tion, and 206 patients were collected for subtype prediction. 

2.2. Imaging Acquisition and Preprocessing 
We retrieved DICOM files of the CT scan from the Picture Archiving and Communi-

cation System (PACS). All scans had a reconstructed slice thickness ranging from 1 mm 
to 5 mm, a voltage of 120 kV, a current of 200–350 mA, and a matrix size of 512 × 512. CT 
scans typically store raw voxel intensities in Hounsfield units (HU), and the raw voxel 
value was normalized to 0 to 255 with a windowing based on the lung window. 

To train the radiomics and deep learning models, we needed to acquire the delinea-
tion of the mutation-related nodules in advance. Given that manually segmenting the con-
tours of chest abnormalities according to the original records might be time-consuming, 
it was vital to leverage automated contour extraction approaches to produce large-scale 
annotated molecular datasets. Automated AI segmentation models can be employed to 
automatically delineate all the lung nodules in a CT scan. However, sometimes there 
might be more than one nodule in a CT scan. In this instance, clinicians were needed to 
identify the targeted nodule manually. Therefore, the whole mask generation process re-
quired a two-phase procedure. 
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Figure 2. Illustration of cohort construction. Between April 2018 and June 2020, this study included a primary cohort of 1331 consecutive patients 
with NSCLC who visited West China Hospital of Sichuan University for model development and validation. Patients whose specimens underwent 
histological staining or were used for molecular testing (8-panel, 10-panel and subtype) were used to evaluate the performance of our models on 
binary classification of molecular status (positive and negative), prediction of multiple molecular alterations and classification of subtype. ‘+’ indicates 
positive type while ‘-’ means negative type. 
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First, we adopted an off-the-shelf DenseNet as model backbone to automatically seg-
ment all nodule areas in the chest CT images [29]. The lesion segmentation model em-
ployed a feature pyramid block to form the U-shaped architecture, which is widely used 
to build segmentation models [30]. Then, radiologists with at least 5 years of expertise in 
thoracic diseases diagnosis could quickly review the final segmentation results and local-
ize the targeted nodules according to previous inspection reports to form the final da-
tasets.  

As a further pre-processing step, nodule regions of interests (ROIs) and mask ROIs 
were first cropped based on the confirmed nodule mask and then normalized to a size of 
64×64×64 using third-order spline interpolation for further analysis. The training set was 
then balanced using data augmentation techniques such as horizontal flipping, random 
rotation, random blurring, and reweighting. 

2.3. Radiomics Approach 
To automatically extract radiomics features from CT scans, the radiomics approach 

employed an open-source Python package called Pyradiomics (version 3.0.1). To ensure 
data point validity, a total of 1052 radiomics features were extracted from each ROI; we 
considered only the 9 largest metastatic sites in each lesion, which are comprised of 19 
first-order features, 16 shape features (3D), 10 shape features (2D), 24 Gray Level Co-oc-
currence Matrix (GLCM) features, 16 Gray Level Size Zone Matrix (GLSZM) features, 16 
Gray Level Run Length Matrix (GLRLM) features, 5 Neighbouring Gray Tone Difference 
Matrix (NGTDM) features, and 14 Gray Level Dependence Matrix (GLDM) features. 
These features were also subdivided according to the image types (original image, LoG 
filter image and eight wavelet decomposition images). 

Due to the high dimensionality of the radiomics feature space, we analyzed the sim-
ilarity of each feature pair to eliminate irrelevant or highly correlated features to improve 
the generalization ability and optimize the model. As a result, we started by removing 
features with a training-set variance less than 0.8. Next, we standardized all of the radi-
omics features by scaling each feature to a certain range in order to keep features with a 
2-norm value. The K-best feature selection method was then used for the normalized ra-
diomics features, and the remaining features were applied to the least absolute shrinkage 
and selection operator (LASSO) penalized Cox proportional hazards regression method. 
The customized signature was then created by combining all critical features in a 
weighted linear fashion, and the personalized signature score was calculated for each le-
sion. 

2.4. Convolutional Neural Network-Based Deep Learning 
The convolutional neural network (CNN)-based design relied on the ResNet-3D as a 

backbone with a lesion mask-guided attention mechanism to focus on lesion regions, en-
hancing lesion response while suppressing others [31]. We applied the lesion mask-
guided attention to mine the lesion-mask enhanced feature and pay more attention to the 
interaction between lesions and surrounding tissues, thereby increasing the model's rep-
resentation capacity (Figure 3A, mask-guided attention). First, the standardized lesion-
ROI and associated mask were separated into two images, which were then fed into the 
convolutional layer to obtain deep features of the lesion and surrounding tissues. Second, 
the similarity between the lesion and tissue pixels was determined, and the similarity was 
then normalized to obtain the weight of each point, which was then multiplied by the 
features of the corresponding point mapping. This method took into account the detailed 
information of the focus region, its distribution position in the whole image, and the con-
current reliance of other neighboring areas. The greater the similarity degree and effect on 
the point, the more other points are connected to this point. This mask-guide mechanism 
was employed at the beginning of the backbone. Then, several identity blocks were used 
to allow information to flow more smoothly from one layer to the next layer (Figure 3A, 
identity block). Finally, global average pooling was used to replace the model's top layers, 
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after which a fully connected layer of 512 nodes (dimensions of the deep learning features) 
with rectified linear unit (ReLU) activation functions and a fully completely connected 
layer with 8 or 10 nodes (8-panel and 10-panel) were created with the Softmax activation 
function. 

 
Figure 3. Overall framework of the proposed CNN-based and transformer-based network. Both 
proposed networks took two patches as inputs: the standardized lesion-ROI and associated mask-
ROI combined two-channel volume. Before the first stage of each backbone, a mask-guide mecha-
nism was employed to boost the model’s representation capacity. (A) The ResNet-3D network was 
developed by applying a ResNet3D-18 feature extractor to each 3D volume and employing multiple 
binary cross-entropy loss functions. (B) The Transformer network relied on the 3D-Swin-trans-
former as the backbone. The 3D-Swin-transformer merged image patches to build hierarchical fea-
ture maps. Two Successive Swin Transformer Blocks performed cyclic shift of local windows for 
shifted-window-based self-attention computation and the multi-head self-attention Module com-
putes self-attention within each local 3D window. 

2.5. Transformer-Based Deep Learning 
The main architecture of the 3D-Swin-transformer comprised four stages, with each 

level reducing the resolution of the input feature map and expanding the receptive field 
layer by layer, similar to the CNN. The model mainly consisted of three components (Fig-
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ure 3B): (1) patch embedding: for the input 3D ROI, linear embedding changes the dimen-
sions of the input vector to preset tokens that can be processed by the Transformer; (2) 
patch merging: the function of this module was to perform down-sampling before the 
start of each stage, which was used to reduce the resolution and adjust the number of 
channels to form a hierarchical design; the 3D-Swin-transformer could generate hierar-
chical feature maps at various resolutions by patch merging layers, making it suitable as 
a general-purpose backbone for pixel-level operations; and (3) window attention: this cal-
culated the relationships between each patch in an ROI and all the patches in the ROI, and 
to a certain extent, the relationship between these patches reflected the relevance and im-
portance of the different patches in the ROI. The attentional mechanism, of which the self-
attention was the core of the coding unit, and the most significant component of the pro-
posed transformer-based paradigm at each transformer block. The window-based multi-
head self-attention and shifted-window-based multi-head self-attention were succes-
sively applied in each Swin-transformer block to further extract global interactions be-
tween adjacent window patches (Figure 3B, two successive Swin transformer blocks). No-
tably, to emphasize the nodule areas when extracting the deep features, we also adopted 
the two-channel input for the transformer model to achieve lesion mask-guided feature 
extraction. 

2.6. Multi-Label Multi-Task Deep Learning (MMDL) System 
For each task, the multi-label multi-task deep learning (MMDL) system achieved 

multi-label prediction by using multiple binary classifiers to analyze whether patients 
have positive expression of molecules such as EGFR, ALK, ERBB2, etc. In order to achieve 
the multiple tasks, the model employed full connectivity to allow for self-adaptation 
based on a combination of deep learning and radiomics features (Figure 1D). Due to these 
related features originate in various dimension spaces, how to integrate these features to 
develop joint models was currently not addressed. In this study, we first used different 
approaches (radiomics-based and transformer-based) to extract the radiomics features 
and deep-learning features. In order to investigate a better feature fusion, we computed 
the correlation heatmap of radiomics and deep learning features to visualize the relative 
contributions of features on molecular status prediction. As a result, the reference distri-
bution was the correlation distribution across all features from the patient case. The 
XGboost approach was then used to select the key features identified as the most signifi-
cant contributors, which were followed by a new buffer layer, to an embedding feature 
space, making superior use of the individual feature strength [32]. Finally, various fea-
tures were embedded to complete multiple tasks such as gene mutation analysis, molec-
ular expression analysis, and subtype identification. 

2.7. Statistical Analysis 
The performances of the models were assessed according to AUC, specificity, and 

sensitivity with a 95% CI. To generate averages and standard deviations for each set of 
cross-validation trials, performance indicators were averaged over k folds. Moreover, the 
cut-point was determined by maximizing the sum of sensitivity and specificity, which was 
similar to selecting a point on the receiver operating characteristic curve (ROC). For each 
genetic mutation, DeLong's test was used to assess the diagnostic performance of the ra-
diomics model, deep learning model, and combined model. All of the statistical tests were 
two-sided, with p < 0.05 denoting statistical significance. 

For feature selection, model creation, and performance evaluation, the scikit-learn 
package (Python v3.8, Scikit-learn v0.24, https://scikit-learn.org, accessed on 1 September 
2022) was utilized. Pyradiomics software (version 3.0.1) was used for feature extraction. 
The PyTorch (version 1.5.1) and torchvision (version 0.7.1) packages were utilized to ex-
tract deep learning features. 

  



Cancers 2022, 14, 4823 9 of 18 
 

 

3. Results 
3.1. Patient Characteristics 

We established a Cancer Shared Database (CSD), covering radiology images and mo-
lecular information of 1096 patients diagnosed with NSCLC at West China Hospital of 
Sichuan University (Figure 1A). The CSD was divided into four cohorts according to the 
different prediction tasks (Figure 1B): a binary expression cohort (positive expression of 
at least one molecule and all negative molecular expression, n = 1096, 58.26 ± 10.69 years 
old), an 8-panel cohort (8 gene mutations analysis, n = 932, 58.11 ± 10.64 years old), a 10-
panel cohort (10 molecular status analysis, n = 637, 58.26 ± 11.03 years old), and a subtype 
identification cohort (EGFR subtypes and PD-L1 expression, n = 206) (Table S1). The NGS 
test identified 585 (62.8%), 99 (10.6%), 82 (8.8%), 43 (4.6%), 74 (7.9%), 43 (4.6%), 46 (4.9%), 
and 140 (15.0%) patients who had EGFR, ALK, ERBB2, BRAF, MET, ROS1, RET, and KRAS 
mutations (8-panel), respectively (Figure 2). Among the EGFR-mutant patients, 50 (44.2%) 
harbored an exon 19-DEL, 44 (38.9%) displayed an exon 21 L858R, and finally 19 (16.8%) 
cases showed a rare EGFR mutation. Among PD-L1 positive expression patients, 40 pa-
tients had high PD-L1 expression (TPS ≥ 50%), whereas 48 patients had low PD-L1 expres-
sion (TPS ≥ 1% and <50%). 93 patients harbored wild-type EGFR, and 118 patients had 
negative expression of PD-L1. 

In the image preprocessing process, the DenseNet model with feature pyramid net-
works was utilized to automatically segment all lesion areas in chest CT images (Figure 
1C). Then radiologists with at least 5 years of expertise in thoracic tumor diagnosis quickly 
reviewed the segmentation results to form the training and validation datasets. After-
ward, the cropped nodule ROIs were standardized to the same size for model construc-
tion. Furthermore, we explored various AI approaches and an improved combination of 
methods to evaluate the association between the features extracted using a standard radi-
omics pipeline and those extracted using the deep learning pipeline (CNN-based or trans-
former-based). Finally, the MMDL system which integrated 512 deep learning features 
and 20 highest-performing radiomics features was established to achieve the simultane-
ous prediction of multiple molecular statuses (Figure 1D). For each task cohort, we ran-
domly split the dataset into training (80%), validation (10%), and testing (10%) subsets. 

3.2. The Performance of the Radiomics Model 
Radiomics, a classic machine learning method, initially identified 1052 relevant fea-

tures from the ROI of each patient. According to Bonferroni correction, 512 radiomics fea-
tures were chosen and then reduced to 20 possible predictors using LASSO regression. 
The target molecular expression classification resulted in AUCs of 0.818 (95% CI, 0.773–
0.871), and 0.807 (95% CI, 0.738–0.884) in the validation cohort and testing cohort, respec-
tively, with a sensitivity and specificity of 0.680 (95% CI, 0.629–0.739) and 0.840 (95% CI, 
0.758–0.912) for the validation cohort and 0.856 (95% CI, 0.805–0.904) and 0.722 (95% CI, 
0.607–0.853) for the testing cohort (Table 1). Regarding the 8-panel classification task, the 
AUCs of the radiomics model (Figure S1) for discriminating EGFR, ALK, ERBB2, BRAF, 
MET, ROS1, RET and KRAS were 0.796 (95% CI, 0.783–0.857), 0.867 (95% CI, 0.746–0.971), 
0.757 (95% CI, 0.654–0.876), 0.680 (95% CI, 0.489–0.911), 0.915 (95% CI, 0.838–0.985), 0.822 
(95% CI, 0.683–0.961), 0.816 (95% CI, 0.669–0.936) and 0.818 (95% CI, 0.716–0.920), respec-
tively. The accuracy of the predictive model for the 8-panel was 95.1% in the validation 
dataset and 92.8% in the testing dataset, suggesting that this model was not prone to mak-
ing errors and implicitly learned the relationship among these categories. Similar results 
were also obtained in terms of the 10-panel cohort and the subtype cohort. 

  



Cancers 2022, 14, 4823 10 of 18 
 

 

Table 1. Predictive performance of radiomics model. 

Prediction Task Dataset 
Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
Accuracy 
(95%CI) 

AUC 
(95%CI) 

Binary 
Validation 0.680 (0.629–0.739) 0.840 (0.758–0.912) 0.836 (0.803–0.881) 0.818 (0.773–0.871) 

Testing 0.856 (0.805–0.904) 0.722 (0.607–0.853) 0.829 (0.789–0.874) 0.807 (0.738–0.884) 

8-panel 
Validation 0.814 (0.625–0.980) 0.833 (0.802–0.868) 0.951 (0.933–0.971) 0.831 (0.702–0.949) 

Testing 0.691 (0.504–0.888) 0.882 (0.839–0.921) 0.928 (0.894–0.959) 0.809 (0.692–0.927) 

10-panel 
Validation 0.796 (0.656–0.933) 0.852 (0.810–0.896) 0.901 (0.869–0.933) 0.847 (0.762–0.936) 

Testing 0.705 (0.496–0.918) 0.880 (0.836–0.918) 0.876 (0.836–0.915) 0.821 (0.703–0.936) 

Subtype 
Validation 0.820 (0.640–0.961) 0.769 (0.642–0.887) 0.754 (0.646–0.861) 0.771 (0.606–0.900) 

Testing 0.741 (0.443–0.968) 0.793 (0.654–0.914) 0.783 (0.682–0.894) 0.732 (0.536–0.925) 

3.3. The Performance of the Deep Learning Models 
The performance of deep learning models was generally superior to those of the ra-

diomics model, regardless of whether the CNN-based model or transformer-based model 
was used (Table 2). The transformer-based design relied on the 3D-Swin-transformer as 
the backbone along with a lesion mask-guided feature extraction scheme [33]. The model 
first employed the patch partition operation to separate the standardized lesion-ROI and 
related mask combined two-channel volume into tiny patches, which were then fed into 
the shifted window transformer block, to model the long-range decencies among and 
within those tiny patches. The quantitative performance was shown in Table 2 and the 
detailed diagnostic measures of all CNN-based and transformer-based models were 
shown in Figures S2 and S3, indicating that the transformer-based model gained better 
performance than the CNN-based model with a significant difference (AUC = 0.847, 95% 
CI, 0.763–0.942 versus AUC = 0.825, 95% CI, 0.682–0.891 in the target molecular testing 
cohort, p < 0.0001). A similar improvement over the CNN-based model was also observed 
in the other cohorts, supporting the idea that the transformer-based features can be se-
lected for deep learning prediction models that can automatically extract better deep fea-
tures of the ROI to predict the molecular expression. 

Table 2. Predictive performance of deep learning models. 

Deep Learning 
Algorithm 

Prediction 
Task Dataset Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
Accuracy 
(95%CI) 

AUC 
(95%CI) 

CNN-Based 

Binary 
Validation 0.919 (0.879–0.955) 0.724 (0.621–0.857) 0.884 (0.854–0.933) 0.836 (0.777–0.911) 

Testing 0.960 (0.924–0.982) 0.611 (0.464–0.743) 0.611 (0.464–0.743) 0.825 (0.682–0.891) 

8-panel 
Validation 0.767 (0.636–0.883) 0.906 (0.879–0.933) 0.943 (0.922–0.963) 0.869 (0.745–0.926) 

Testing 0.721 (0.588–0.864) 0.932 (0.907–0.954) 0.946 (0.926–0.966) 0.839 (0.757–0.931) 

10-panel 
Validation 0.743 (0.592–0.902) 0.932 (0.905–0.956) 0.937 (0.914–0.960) 0.848 (0.732–0.921) 

Testing 0.706 (0.563–0.844) 0.906 (0.877–0.933) 0.924 (0.900–0.948) 0.829 (0.724–0.888) 

Subtype 
Validation 0.858 (0.692–0.973) 0.830 (0.700–0.939) 0.840 (0.742–0.923) 0.839 (0.673–0.933) 

Testing 0.881 (0.765–0.972) 0.764 (0.622–0.885) 0.786 (0.684–0.884) 0.810 (0.648–0.915) 

Transformer-Based 

Binary 
Validation 0.967 (0.943–0.984) 0.710 (0.579–0.840) 0.930 (0.906–0.953) 0.857 (0.782–0.931) 

Testing 0.979 (0.964–0.995) 0.632 (0.467–0.826) 0.944 (0.920–0.967) 0.847 (0.763–0.942) 

8-panel 
Validation 0.758 (0.598–0.917) 0.962 (0.940–0.978) 0.950 (0.927–0.973) 0.872 (0.774–0.969) 

Testing 0.746 (0.573–0.926) 0.970 (0.951–0.987) 0.956 (0.936–0.978) 0.863 (0.752–0.968) 

10-panel 
Validation 0.785 (0.597–0.947) 0.918 (0.886–0.948) 0.941 (0.913–0.965) 0.864 (0.743–0.935) 

Testing 0.733 (0.559–0.910) 0.925 (0.898–0.949) 0.941 (0.914–0.967) 0.842 (0.690–0.917) 

Subtype 
Validation 0.749 (0.553–0.958) 0.941 (0.886–0.988) 0.883 (0.814–0.957) 0.855 (0.701–0.912) 

Testing 0.760 (0.592–0.924) 0.932 (0.877–0.975) 0.862 (0.796–0.936) 0.843 (0.718–0.924) 
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3.4. Performance of the Proposed MMDL Hybrid Model 
In all sessions, the MMDL hybrid model based on the integration radiomics and deep 

learning features achieved the best discriminative performance (Table 3, Figure 4). The 
AUCs of the hybrid model in the validation and testing sets yielded 0.894 (95% CI, 0.837–
0.954) and 0.877 (95% CI, 0.794–0.961) for binary prediction, 0.896 (95% CI, 0.802–0.983) 
and 0.862 (95% CI, 0.758–0.969) for 8-panel identification, 0.891 (95% CI, 0.756–0.952) and 
0.856 (95% CI, 0.663–0.948) for 10-pannel molecular status assessment, and 0.879 (95% CI, 
0.761–0.962) and 0.868 (95% CI, 0.641–0.972) for EGFR and PD-L1 subtype classification, 
respectively. In the eight-gene prediction task, the AUC of each specific gene ranged from 
0.793 to 0.903. For the ten-molecules evaluation task, the prediction performance for the 
original eight genes fluctuated, but TP53 and PD-L1 could be successfully predicted with 
AUCs of 0.876 (95% CI, 0.810–0.928) and 0.912 (95% CI, 0.645–1.000), respectively. Moreo-
ver, the model showed a relatively stable sensitivity and specificity of 0.990(0.979–1.000) 
and 0.722(0.550–0.905) for target alterations, 0.759 (95% CI, 0.591–0.933) and 0.948 (95% CI, 
0.922–0.973) for discriminating the 8-panel cohort, 0.797 (95% CI, 0.623–0.947) and 0.953 
(95% CI, 0.929–0.975) for the 10-panel cohort, and 0.850 (95% CI, 0.642–0.977) and 0.902(95% 
CI, 0.794–0.976) for the subtype cohort, respectively. 

Table 3. Predictive performance of MMDL hybrid model. 

Prediction Task Dataset Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Accuracy 
(95%CI) 

AUC 
(95%CI) 

Binary Validation 0.918 (0.891–0.952) 0.774 (0.667–0.903) 0.930 (0.906–0.958) 0.894 (0.837–0.954) 
 Testing 0.990 (0.979–1.000) 0.722 (0.550–0.905) 0.962 (0.939–0.986) 0.877 (0.794–0.961) 

8-panel Validation 0.829 (0.669–0.986) 0.927 (0.900–0.955) 0.956 (0.934–0.978) 0.896 (0.802–0.983) 
 Testing 0.759 (0.591–0.933) 0.948 (0.922–0.973) 0.954 (0.933–0.977) 0.862 (0.758–0.969) 

10-panel Validation 0.827 (0.678–0.945) 0.914 (0.881–0.947) 0.948 (0.923–0.972) 0.891 (0.756–0.952) 
 Testing 0.797 (0.623–0.947) 0.953 (0.929–0.975) 0.953 (0.928–0.976) 0.856 (0.663–0.948) 

Subtype Validation 0.870 (0.689–0.987) 0.858 (0.761–0.952) 0.842 (0.748–0.921) 0.879 (0.761–0.962) 
 Testing 0.850 (0.642–0.977) 0.902 (0.794–0.976) 0.876 (0.778–0.951) 0.868 (0.641–0.972) 
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Figure 4. MMDL hybrid model performances in the prediction of multiple molecular alterations. 
(A,B) The ROC curves for predicting target molecular status (positive and negative) in the validation 
set and testing set, respectively. (C,D) The ROC curves for predicting multiple mutations in the 8-
panel cohort in the validation set and testing set, respectively. (E,F) The ROC curves for predicting 
multiple alterations in the 10-panel cohort in the validation set and testing set, respectively. (G,H) 
The ROC curves for predicting molecular expression in the subtype cohort in the validation set and 
testing set, respectively, EGFR_W and PD-L1- represent wild type of EGFR and negative expression 
of PD-L1. PD-L1+ was separated into PD-L1+ Low and PD-L1+ High according to the TPS cutoff of 
50%. 

Compared to that of single-feature models, the performance of the fusion model was 
improved. For example, compared with the transformer-based deep learning model, the 
hybrid model significantly improved the AUC of discriminating TP53 mutation from 
0.834 (95% CI, 0.757–0.891) to 0.876 (95% CI, 0.810–0.928). In addition to genotype mining, 
the hybrid model also had excellent potential for subtype analysis (AUC = 0.868, 95% CI, 
0.641–0.972) compared with that of the deep learning model (AUC = 0.843, 95% CI, 0.718–
0.924) and the radiomics model (AUC = 0.732, 95% CI, 0.536–0.925), indicating that the 
presence of a mutation correlates with both semantic information (deep learning features) 
and the texture information (radiomics features). 

3.5. Correlation Analysis between Radiomics and Deep Learning Features 
To further illustrate the association between deep learning and radiomics features in 

predicting multiple molecular alterations and mutation status, we utilized a variety of 
methodologies to develop a better fusion expression of tumor characteristics. Within each 
feature bank, we employed 20 radiomics and 512 transformer-based features to produce 
a heatmap that depicted the correlation between the two feature sets. In Figure S4A, each 
dot represented a correlation coefficient, and the red color meant a coefficient of zero, 
whereas the white and black dots reflect positive and negative correlations, respectively. 
The heatmap demonstrated a strong linear relationship between important features (radi-
omics vs. deep learning features). Figure S4B depicted the predictive performance of ra-
diomics and deep learning features for positive and negative patients, with practically all 
CT volume characteristics demonstrating a strong ability to differentiate between the two 
groups. 

However, because these related features originated in separate feature dimension 
spaces, the usual feature selection approach could not be simply applied. As a result, we 
applied the SHapley Additive exPlanation (SHAP)-based XGboost method to complete 
the multivariable logistic regression and calculate the influence of a given variable on a 
given feature in contrast to the prediction (Figure 5A) [34]. Furthermore, 19 deep learning 
and 5 radiomics key features were significantly associated with more than one molecule, 
indicating the potential of fusion features in predicting molecular co-alteration status. 
(Figure 5B). 
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Figure 5. Visualization of the identified radiomics and deep learning features. (A) Multivariable logistic regression to identify radiomics and deep 
learning features associated with NSCLC patients. Abbreviations: DL, deep learning. (B) The correlations between selected features and ten molecules. 
The width of the link indicated the relative strength. 
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4. Discussion 
Radiogenomic approaches aggregate radiology and genomics data based on the hy-

pothesis that radiomic features reflect macroscopic and molecular properties of tissues. 
Such tests in routine imaging could offer the ability to capture features from a full 3D 
volume of the tumor, avoiding sampling errors due to intra-tumor heterogeneity. In this 
research, a hybrid deep learning model named MMDL was developed to evaluate action-
able mutations and PD-L1 expression non-invasively based on CT images of 1096 patients 
with lung cancer. This approach combined 512 transformer-based deep learning features 
and approximately 20 radiomic features to predict 10 molecular states with AUC perfor-
mance above 0.799 (Figure 4C). 

To the best of our knowledge, this is the first study to predict mutations in 8 action-
able genes or even 10 molecules based on CT images. The predictive performance of the 
MMDL model was excellent in identifying distant molecular and subtype status, which 
has potential for clinical application. It could aid in the assessment of patients’ molecular 
status non-invasively and assist clinicians in making diagnosis and treatment decisions. 
However, the predictive performance varied among different molecules. For example, the 
best AUC of the MMDL model in the 8-panel task was 0.903 (95% CI, 0.786–1.000) for ALK 
and the worst AUC was 0.793 (95% CI, 0.686–0.936) for BRAF. This may have been related 
to different gene frequencies and training sample sizes (82 patients with ALK mutation; 
34 patients with BRAF mutation). The same situation occurred in the prediction of genetic 
mutations using pathological images. Some investigators developed a CNN model based 
on Inception v3 architecture for the automatic analysis of tumor slides using publicly 
available whole-slide images available in the TCGA [35]. They found that six mutated 
genes which were mutated in at least 10% of the available tumors, including STK11, EGFR, 
FAT1, SETBP1, KRAS, and TP53, could be predicted from pathology images with AUCs 
ranging from 0.733 to 0.856, but their model was not able to detect genes with lower inci-
dence, such as ALK. This suggested the urgent need for a publicly shared database to en-
able construction of more accurate artificial intelligence models. 

In order to efficiently extract image features for molecular prediction, we established 
deep learning models based on transformer and CNN architectures, respectively. Trans-
former is a novel deep learning network that avoids recurrence and completely relies on 
the attention mechanism to model the global dependencies of the input and output. This 
model breaks through the limitation that the recurrent neural network (RNN) model can-
not be calculated in parallel, and the number of operations required to calculate the asso-
ciation between two locations does not increase with distance compared to CNN. Further-
more, the MMDL model integrated radiomics and deep learning features to achieve re-
markable prediction results. Different modalities of medical data provide patient diagno-
sis and treatment information from a specific perspective. The characteristics of clinical 
multimodal data provide the basis for the realization of accurate disease diagnosis [36,37]. 
Some researchers conducted Tumor Origin Assessment via Deep Learning (TOAD) to 
predict the origins of 18 common tumor primary/metastases and unknown primary can-
cer origins based on a multiclass, multitask, multiple-instance learning architecture. Com-
pared with that of the single-modal single-task model, the performance of the fusion 
model was 2.0% higher in primary tumor prediction, and 6.8% higher in tumor metastasis 
prediction, and the overall accuracy rate reached 83.4% [38]. Multimodal data fusion is a 
future trend in the development of medical diagnosis and treatment methods. 

There were some limitations in this study. First, all data came from a single medical 
center, so the generalization of the model requires multicenter data for verification. Sec-
ond, the deep learning process was invisible and lack of interpretability. We have ex-
plored feature correlations, but there was still a certain distance to clinical practice. Third, 
this study focused on multiple molecular statuses and lacked patient efficacy and prog-
nostic assessments. Previous studies have confirmed that deep learning features related 
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to molecular status can be used to evaluate efficacy in patients [39], and we will conduct 
more in-depth and detailed research in the future. 

5. Conclusion 
The MMDL system was established and validated to achieve excellent predictive per-

formance for 10 molecular alterations and specific subtypes in NSCLC. Radiogenomic 
model was a combination of routine clinical radiological scans and artificial intelligence 
to detect molecular status non-invasively. It was the potential decision-support tool to 
assist physicians in cancer treatment management. 
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S4: Association between radiomics and deep learning features; Table S1: The clinical characteristic 
of cancer shared dataset. 
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