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Simple Summary: Cancer therapy by specifically redirected T cells has revolutionized the field of
oncology. However, the repertoire of targetable antigens is small. Here, we use the FDA-approved
drug decitabine to upregulate the surface antigen CSPG4 on CSPG4-negative ovarian carcinoma cells.
By optimizing decitabine dosing, we converted more than 50% of treated ovarian carcinoma cells
to CSPG4-positive cells. Importantly, CSPG4 is a very well-established target antigen in melanoma,
and we could previously demonstrate that T cells engineered to target CSPG4 could reliably kill
CSPG4-positive melanoma cells. Using CSPG4-specific T cells, we demonstrate CSPG4-directed
killing of decitabine-treated ovarian carcinoma cells, thereby adding CSPG4 to the repertoire of target
antigens for ovarian cancer.

Abstract: The addition of CAR-T cells to the armamentarium of immunotherapy revigorated the field
of oncology by inducing long-lasting remissions in patients with relapsing/refractory hematological
malignancies. Nevertheless, in the lion’s share of patients diagnosed with solid tumors, CAR-T-cell
therapy so far failed to demonstrate satisfactory anti-tumor activity. A crucial cause of resistance
against the antigen-specific attack of CAR-T cells is predicated on the primary or secondary absence
of suitable target antigens. Thus, the necessity to create a broad repertoire of different target antigens
is vital. We aimed to evaluate the potential of the well-established melanoma antigen chondroitin
sulfate proteoglycan 4 (CSPG4) as an inducible antigen in ovarian cancer cells, using CSPG4-negative
SKOV-3 ovarian cancer cells as a model. Based on the hypomethylating activity of the FDA-approved
drug decitabine, we refined a protocol to upregulate CSPG4 in the majority of decitabine-treated
SKOV-3 cells. CSPG4-specific CAR-T cells generated by mRNA-electroporation showed CSPG4-
directed cytokine secretion and cytotoxicity towards decitabine-treated SKOV-3. Another ovarian
cancer cell line (Caov-3) and the neoplastic cell line 293T behaved similar. In aggregate, we generated
proof-of-concept data paving the way for the further exploration of CSPG4 as an inducible antigen
for CAR-T cells in ovarian cancer.

Keywords: oncology; immunotherapy; antigen; SKOV-3; CAR-T cells; CSPG4; decitabine; ovarian cancer

1. Introduction

During the last decade, the advent of CAR-T-cell therapy has ignited enthusiasm in the
field of oncology. Using T cells genetically engineered to target tumor cells by a chimeric
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antigen receptor (CAR), long-lasting complete remissions were achieved in patients with
relapsing or refractory hematological malignancies [1]. To date, FDA-approved CAR-T-cell
products exist for various lymphoma entities, multiple myeloma, and acute lymphoblastic
leukemia [2]. Nevertheless, in patients with solid tumors CAR-T-cell therapy has shown
limited efficacy so far [3].

The scarcity of suitable target antigens poses a crucial obstacle to the success of CAR-
T cells in the realm of solid tumors [4]. Many target antigens on solid tumors are also
broadly expressed by healthy cells, thereby harboring the risk of serious on-target/off-
tumor toxicities [5]. Moreover, a crucial mechanism of resistance mounted by tumor cells
against the antigen-specific attack by CAR-T cells is based on the loss or downregulation of
target antigens [6]. In this situation, a targetable antigen selectively expressed by cancer
cells in sufficiently high levels is needed.

Chondroitin sulfate proteoglycan 4 (CSPG4), formerly called melanoma-associated
chondroitin sulfate proteoglycan (MCSP) or high-molecular-weight melanoma-associated
antigen (HMW-MAA), has attracted attention as a target structure for CAR-T-cell therapy
in recent years due to a number of reasons [7], including the expression on a broad variety
of malignancies, such as melanoma, glioblastoma, leukemia, and breast cancer [7]. In addi-
tion, CSPG4 expression was found on cancer-associated vasculature, which would render
the tumor microenvironment sensitive to CSPG4-directed CAR-T cells [8]. Importantly,
accumulating evidence implicates a role of CSPG4 in tumor evolution by providing growth
signals and by counteracting apoptotic stimuli [9]. Moreover, CSPG4 promotes invasion
and metastasis formation through interactions with the extracellular matrix and tyrosine
kinase signaling [10]. In sum, CSPG4 fosters crucial steps in tumor progression, thereby
possibly conferring growth advantages on CSPG4-positive tumor cells. Due to its involve-
ment in tumor progression, CSPG4 is assumed to be less sensitive to antigen-shutdown in
response to targeting via CSPG4-specific CAR-T cells.

In melanoma cells, which usually show a uniform expression of CSPG4, Luo et al.
demonstrated that CSPG4 expression may be impeded by intense methylation of its promo-
tor [11]. Making use of decitabine (5-aza-2′-deoxycytidine), which is a well-characterized
demethylating substance, a dose-dependent upregulation of CSPG4 on several melanoma
cell lines was observed [11]. Meanwhile, decitabine has been approved by the FDA to treat
myeloid malignancies. Just recently, Leik et al. harnessed the demethylating activity of
azacitidine, a close structurally relative of decitabine, to increase the antigen-density of
CD70 on malignant myeloid cells in order to facilitate targeting by CD70-specific CAR-T
cells [12]. However, de novo upregulation of a tumor antigen on previously negative
malignant cells using a demethylating agent followed by antigen-specific targeting has
never been reported.

Here we use decitabine to induce expression of CSPG4 on SKOV-3 ovarian carcinoma
cells. Metastasized ovarian cancer is a hard-to-treat cancer entity associated with a dismal
prognosis if refractory to frontline chemotherapy [13]. Hence, an expansion of the treatment
armamentarium is needed. Over the past years, CSPG4-CAR-T cells generated via mRNA-
electroporation were well characterized by us and others as a therapeutic option to treat
melanoma [14–17].

The goal of the current study was to employ CSPG4-CAR-T cells generated by mRNA-
electroporation to target CSPG4-negative SKOV-3 ovarian carcinoma cells upon decitabine-
mediated up-regulation of CSPG4. In addition, we wish to raise awareness for CSPG4 as a
potentially inducible antigen in solid tumors.

2. Materials and Methods
2.1. Cells and Reagents

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood ob-
tained from healthy donors upon informed consent and approval by the institutional
review board using density centrifugation on Lymphoprep (Axis-Shield, Oslo, Norway).
Following extraction, PBMCs were cryopreserved and stored at −80 ◦C until experi-
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mental use. T cells were cultured in RPMI 1640 + GlutaMAX (Gibco, ThermoFisher),
100 IU/mL penicillin + 100 µg/mL streptomycin (Pan-Biotech, Aidenbach, Germany),
2 mM HEPES (PAA, GE healthcare), and 10% (v/v) heat-inactivated fetal calf serum (Pan-
Biotech, Aidenbach, Germany).

Target cell lines encompassed 293T cells (human embryonic kidney cells that express
the SV40 large T antigen) and SKOV-3 human ovarian cancer cells (ATCC HTB77; American
Type Culture Collection, Manassas, VA). Caov-3 ovarian cancer cells were a kind gift from
the chair of immunology at the Leibniz-institute for immunotherapy. The cells were main-
tained in DMEM + GlutaMAX (Gibco, ThermoFisher), 100 IU/mL penicillin + 100 µg/mL
streptomycin (Pan-Biotech, Aidenbach, Germany), and 10% (v/v) heat-inactivated fetal calf
serum (Sigma-Aldrich, St. Louis, MO, USA).

2.2. Treatment with Decitabine

Decitabine (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in phosphate-buffered
saline (PBS), and aliquots were stored at−80 ◦C until experimental use. For all experiments,
freshly thawed aliquots were used. After thawing, the remaining decitabine was discarded.
For dose response and time course experiments, SKOV-3 cells were seeded at 5 × 105 cells
in 24 wells filled with 1 mL of supplemented DMEM medium. Decitabine was added at
the indicated concentrations. PBMC and CAR T-cells were seeded at 1 × 106 per ml and
decitabine was added at 1 µM daily for 6 days. In case of daily decitabine addition, the
medium was changed completely every day.

2.3. T-Cell Expansion

Peripheral blood mononuclear cells were thawed and directly activated with 0.1 µg/mL
anti-CD3 antibody OKT3 (Orthoclone OKT3; Jannsen-Cilag, Neuss, Germany). The ensuing
T-cell expansion was previously reported in detail [18]. Interleukin-2 (Proleukin; Novartis,
Nuremberg, Germany) was supplemented on days 0, 2, 3, 5, and 7. After 10 days, T cells
were subjected to mRNA-electroporation.

2.4. Flow Cytometry

CSPG4 expression on 293T and SKOV-3 cells was detected using an anti-human CSPG4
antibody (BD Biosciences, Franklin Lakes, NJ, USA, clone: 9.2.27). IgG2a isotype-staining
served as control. For live/dead staining the eFluor780 viability dye (ThermoFisher)
was used. Surface expression of the CAR was analyzed via flow cytometry 24 h after
electroporation. The CAR was stained with the goat-F(ab’)2 anti-human IgG antibody
(Southern Biotech, Birmingham, AL, USA) directed against the extracellular IgG1 CH2CH3
(Fc-spacer) CAR domain. Immunofluorescence was measured using a BD FACSLyric (BD
Biosciences, Heidelberg, Germany) equipped with FACSuite software (BD Biosciences).
Data were analyzed using FlowJo software version 10.7.1 Express 5 (BD Biosciences).

2.5. mRNA-Electroporation

A second-generation CAR (CSPG4HL-CD28/CD3ζ-CAR) directed against CSPG4
(chondroitin sulfate proteoglycan 4) was expressed in T cells. The structure of this chimeric
antigen receptor was previously published in detail [17]. RNA-transfection was performed
as reported elsewhere [19]. T cells were either mock-electroporated (no RNA) or transfected
with 15 µg of RNA encoding the CSPG4-specific CAR employing a Gene Pulser Xcell
(Bio-Rad, Hercules, CA, USA) at 500 V (square wave pulse) for 5 ms. After transfection,
T cells were cultured in supplemented RPMI medium. In vitro transcription of RNA was
carried out as previously described in detail [15].

2.6. Cytokine Secretion

Target cells comprising CSPG4-negative 293T cells and SKOV-3 cells with and without
decitabine pre-treatment were seeded in 96-well round-bottom plates (25 × 103 cells per
well) overnight, before addition of mock-T cells or CSPG4-specific CAR-T cells (24 h after
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electroporation) at 1 × 105 cells per well in 200µL total volume. Supernatants were har-
vested after 48 h of co-culture. Subsequently, IFNγ in culture supernatants was detected
by ELISA using a solid-phase anti-IFNγ capture antibody (1 µg/mL) together with the
biotinylated anti-IFNγ detection antibody (0.5 µg/mL) (BD Biosciences). Finally, visual-
ization of the reaction product was performed with a peroxidase–streptavidin conjugate
(1:10,000) and ABTS (Roche Diagnostics, Indianapolis, IN, USA).

2.7. Cytotoxicity Assay

Target cells comprising CSPG4-negative 293T cells, SKOV-3 cells with and without
decitabine treatment, and Caov-3 cells with and without decitabine treatment were seeded
in 96-well round-bottom plates (5 × 103 cells per well) overnight before addition of mock-T
cells or CSPG4-specific CAR-T cells (24 h after electroporation) at the indicated effector
to target ratios. For some experiments, mock-T cells and CAR-T cells were incubated
directly after electroporation with decitabine at 1 µM for 20 h and throughout subsequent
co-incubation with SKOV-3 cells with and without decitabine treatment. After 48 h of
co-culture, specific cytotoxicity was determined via an XTT-based colorimetric assay em-
ploying the Cell Proliferation Kit II (Roche, Mannheim, Germany). Viable tumor cells in
triplicate experimental wells were counted according to the following formula: viability (%)
= [OD (experimental wells—corresponding number of T cells)]/[OD(tumor cells without
T cells − medium)] × 100, where OD is optical density. Cytotoxicity (%) was defined
as 100—viability (%). The viability of target cells was determined as the mean values of
twelve wells containing only target cells subtracted by the mean background level of wells
containing medium only.

2.8. Statistical Analysis

Statistical analysis was executed using GraphPad Prism, Version 9 (GraphPad Soft-
ware, San Diego, CA, USA); p values were calculated by Student’s t-test, * indicates p ≤ 0.05,
** indicates p ≤ 0.01, and *** indicates p ≤ 0.001.

3. Results
3.1. Decitabine Mediates Dose-Dependent Upregulation of CSPG4 on SKOV-3 Ovarian Cancer
Cells

SKOV-3 ovarian cancer cells are broadly considered CSPG4-negative [20]. In order to
verify the absence of CSPG4 on SKOV-3 cells, we utilized the 9.2.27 anti-CSPG4 antibody,
which binds to a broad spectrum of isoforms with diverse glycosylation patterns. In
accordance with previous reports, no CSPG4-expression was detected on SKOV-3 cells by
flow cytometry (Figure 1a). Seeking to render SKOV-3 cells sensitive to CSPG4-targeting
therapies, we treated SKOV-3 cells with escalating doses of decitabine. Importantly, the
decitabine dosing range is predicated on mean decitabine blood levels attained with
clinically applied decitabine infusion regimens [21]. After a single application of increasing
doses of decitabine, a dose-dependent upregulation of CSPG4 was confirmed by flow
cytometry 5 days later (Figure 1b,c). A dose of 0.5 µM induced a significant upregulation
of CSPG4 as compared to the PBS control (Figure 1c). With decitabine concentrations of
6 µM or 8 µM, more than one-third of SKOV-3 cells could be converted to CSPG4-positive
cells (Figure 1d).

Taken together, a single application of decitabine could induce expression of CSPG4 in
SKOV-3 ovarian cancer cells implying a display of a potential target by CSPG4-
directed approaches.
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Figure 1. Decitabine-mediated dose-dependent upregulation of CSPG4 on SKOV-3 ovarian cancer
cells. (a) CSPG4-staining of SKOV-3 ovarian cancer cells using a PE-labeled anti-CSPG4 antibody
and a corresponding isotype control. One representative donor out of three experiments is depicted.
(b) Schematic showing the experimental layout for the decitabine-mediated CSPG4 upregulation.
(c,d) CSPG4 staining of SKOV-3 ovarian cancer cells 5 days after addition of decitabine at the indicated
concentrations. (c) Data represent geometric means ± SEM of three runs, p values were calculated
by Student’s t-test, * indicates p ≤ 0.05. (d) Contour plots of one representative run out of three
independent experiments are depicted.

3.2. Daily Application of Decitabine Mediates Superior Upregulation of CSPG4 on SKOV-3
Ovarian Cancer Cells

We next aimed at refining decitabine-mediated CSPG4-expression to optimize the
potential targetability of SKOV-3 cells with CSPG4-CAR-T cells. Decitabine, is clinically
administered as daily intravenous infusion for 5 consecutive days for the treatment of
myeloid malignancies [22]. We adopted this regimen and compared CSPG4-upregulation
mediated by daily decitabine treatment over 5 days with decitabine administered as a single
shot (Figure 2a). Flow cytometry after 5 days, once again, revealed dose-dependent CSPG4
upregulation upon single-shot decitabine stimulation (Figure 2b). Moreover, using daily
application of decitabine greater CSPG4 upregulation was observed, with statistical signifi-
cance reached for 0.5 µM, 1 µM, and 2 µM (Figure 2b). Contrary to single-shot application,
the highest CSPG4 upregulation with daily decitabine application was mediated with 1 µM,
and lower upregulation was observed with higher concentrations (Figure 2b,c). Correspond-
ingly, daily decitabine application conferred higher percentages of CSPG4-positive cells
culminating at around 50% CSPG4-positve cells in response to daily application of 1 µM
decitabine (Figure 2c). Hence, this concentration was employed in all ensuing experiments.

In sum, we could refine decitabine-mediated CSPG4 upregulation by decitabine dose-
titration and comparing single-shot versus daily application.
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Figure 2. Daily application of decitabine results in greater CSPG4 induction in SKOV-3 ovarian cancer
cells than single-shot application. (a) Schematic showing the experimental layout for the decitabine-
mediated CSPG4 upregulation. SKOV-3 cells were either treated daily or once with decitabine
at the indicated concentrations. For daily treatment, the culture medium was exchanged every
day when adding the drug. CSPG4 upregulation was determined after 5 days. (b) Data represent
geometric means ± SEM of three runs, p values were calculated by Student’s t-test, * indicates
p ≤ 0.05, ** indicates p ≤ 0.01, and ns indicates not significant. (c) Contour plots of one representative
run out of three independent experiments are depicted.

3.3. Kinetics of Decitabine-Mediated CSPG4-Upregulation on SKOV-3 Ovarian Cancer Cells

Next, we sought to identify the time point showing the highest CSPG4 upregulation
after decitabine addition. To this end, SKOV-3 ovarian cancer cells were treated daily
with 1 µM decitabine for 14 days, and CSPG4 expression was monitored daily by flow
cytometry (Figure 3a). Significant CSPG4 expression was observed from the first day of
decitabine treatment onwards until day 14 (Figure 3b). The highest CSPG4 expression
was documented five to six days after the onset of decitabine treatment, followed by a
steady but slow decline towards day nine (Figure 3b). At the point of highest CSPG4
expression on days five to eight, approximately 60% of all SKOV-3 cells upregulated CSPG4
(Figure 3c). After fourteen days of decitabine treatment, the percentage of CSPG4-positive
SKOV-3 cells dropped to approximately 45% (Figure 3c,d). Control SKOV-3 cells, which
were not exposed to decitabine, but were treated with PBS, did not show any tangible
CSPG4 expression at any point in time (Figure 3b). Seeking to validate this dosing regimen
for CSPG4 upregulation in other cell lines, we used Caov-3 ovarian cancer cells previously
reported to be CSPG4-negative [23], and 293T cells. While Caov-3 cells exhibited a very
low CSPG4 baseline expression, untreated 293T cells did not show CSPG4 expression at all
(Supplementary Figure S1a,d). However, after treatment with decitabine at 1 µM for 6 days
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CSPG4 could be significantly upregulated both in Caov-3 cells (about 40% CSPG4-positive
cells) (Supplementary Figure S1b,c) and in 293T cells (about 50% of CSPG4-positive cells)
(Supplementary Figure S1e,f). This corroborates the basic concept of decitabine-mediated
CSPG4 upregulation in neoplastic cells, with special emphasis on ovarian cancer cells with
minimal CSPG4 expression.
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Figure 3. Time course of decitabine-mediated upregulation in SKOV-3 ovarian cancer cells.
(a) Schematic showing the experimental layout for the time course experiment. SKOV-3 cells were
treated daily with 1 µM of decitabine. CSPG4 staining was executed daily for 14 days. Control
(Ctrl.) SKOV-3 cells were treated in the same way except for PBS addition instead of decitabine.
(b) Data represent geometric means ± SEM of three runs, p values were calculated by Student’s t-test,
** indicates p ≤ 0.01 and *** indicates p ≤ 0.001. (c) Bar graph showing percentage of CSPG4-positive
cells over time. Data represent geometric means ± SEM of three runs. (d) Contour plots showing
CSPG4 staining on day 14 of SKOV-3 cells treated with PBS (Ctrl.) or 1 µM of decitabine daily. One
representative experiment out of three runs.

Collectively, daily addition of decitabine for 6 days converts more than half of treated
SKOV-3 cells to CSPG4-positive cells, which may render those cancer cells potentially
sensitive to CSPG4-directed therapies, such as CSPG4-specific CAR-T cells.

3.4. Decitabine-Mediated Upregulation of CSPG4 on SKOV-3 Ovarian Cancer Cells Mediates
Recognition by CSPG4-Specific CAR-T Cells

SKOV-3 cells were treated daily with 1 µM decitabine for 6 days before co-culture with
CSPG4-CAR-T cells (Figure 4a). A second-generation CD28-co-stimulated CAR was used
(Figure 4b), the antigen-binding domain of which was derived from the 9.2.27 antibody
used to stain CSPG4 throughout this study. T cells redirected to CSPG4 were generated
by mRNA-electroporation of CAR-encoding RNA, following expansion of bulk T cells
using OKT3 and IL-2. Mock (electroporation without RNA) T cells served as controls.
Uniform expression of the CSPG4-CAR was confirmed 24 h after electroporation by flow
cytometry (Figure 4c). Thereafter, CAR-T cells and mock-T cells were incubated with 293T
cells, which do not express CSPG4, (Supplementary Figure S1d), SKOV-3 cells treated
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with decitabine, and SKOV-3 cells treated with PBS. After 48 h of co-culture, IFNγ in the
supernatant was quantified by via ELISA. CSPG4-CAR-T cells exhibited significant IFNγ-
production in response to decitabine-treated CSPG4-positive SKOV-3 cells (Figure 4d). In
contrast, PBS-treated CSPG4-negative SKOV-3 cells, and CSPG4-negative 293T cells did not
induce IFNγ-production in CSPG4-CAR-T cells (Figure 4d). Mock-CAR-T cells serving as
negative control did not evince IFNγ-production in response to the target cells (Figure 4d).
Corresponding results were obtained regarding cytotoxicity of CSPG4-CAR-T cells towards
293T cells and SKOV-3 cells either treated with PBS or decitabine (Figure 4e). Across
various effector to target ratios, CSPG4-CAR-T cells displayed significant cytotoxicity
towards decitabine-treated SKOV-3 cells, while 293T cells and PBS-treated SKOV-3 cells
were not killed (Figure 4e). Mock-T cells did not display any cytotoxicity towards any target
cell line (Figure 4e). Finally, we assayed CSPG4 upregulation on PBMCs and CAR-T cells
to estimate the risk for off-target toxicity to blood cells as well as the potential of fratricide
among CSPG4-specific CAR-T cells. Neither PBMCs nor CAR-T cells showed CSPG4
upregulation in response to treatment with decitabine rendering CSPG4-directed targeting
of PBMCs and CAR-T cells unlikely (Supplementary Figure S2a,b). Moreover, we confirmed
that CSPG4-CAR-T cells retain their cytolytic capacity towards decitabine-treated SKOV-3
ovarian cancer cells in the presence of 1 µM decitabine enabling a simultaneous application
of CAR-T cells together with decitabine in the clinical setting (Supplementary Figure S2c).

To generalize our findings, we examined the susceptibility of both 293T cells and
Caov-3 cells for antigen-specific killing at various effector to target ratios by CSPG4-CAR-T
cells after decitabine treatment (Supplementary Figure S3a,b). While both 293T cells and
Caov-3 cells without decitabine treatment did not evoke cytotoxicity from CSPG4-CAR-T
cells, a substantial and significant cytotoxicity was observed at all effector to target ratios,
when the targets had been treated with decitabine (Supplementary Figure S3a,b). Hence,
the use of decitabine to render tumor cells susceptible to killing by CSPG4-CAR-T cells is
not exclusively restricted to SKOV-3 cells, but works also in other ovarian cancer cells, such
as Caov-3, and neoplastic cells such as 293T.

In sum, decitabine-mediated upregulation of CSPG4 on SKOV-3 ovarian cancer cells
enables antigen-specific targeting using CSPG4-CAR-T cells resulting in effective CSPG4-
directed target cell killing even in the presence of decitabine.
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Figure 4. Decitabine-mediated upregulation in SKOV-3 ovarian cancer cells enables antigen-specific
targeting via CSPG4-CAR-T cells. (a) Schematic showing the experimental layout for the experiments
involving CSPG4-CAR-T cells. CSPG4-CAR-T cells were generated via RNA electroporation after
10 days of OKT3/IL-2 driven expansion. SKOV-3 cells were treated daily either with 1 µM of
decitabine or PBS for 6 days prior before co-culture with CAR-T cells. (b) Construction plan for
the second-generation CD28-co-stimulated CSPG4-specific CAR. (c) Expression of the CSPG4-CAR
was confirmed 24 h after electroporation using a Phycoerythrin (PE)-labeled goat anti-human IgG
antibody. Mock (electroporation without RNA)-T cells were used as controls. One representative
donor out of three independent experiments is shown. (d) Interferon gamma secretion by CSPG4-
CAR-T cells and mock-T cells in response to 293T cells (CSPG4-negative), SKOV-3 cells either treated
with decitabine or with PBS T cells were co-cultured with target cells 24 h after electroporation at
a 4:1 ratio for 48 h before supernatants were recovered and IFNγ was quantified via ELISA. Data
represent means ± SEM of three donors, p values were calculated by Student’s t-test, *** indicates
p ≤ 0.001, and ns indicates not significant. (e) Cytotoxicity of CSPG4-CAR-T cells and mock-T cells
upon a 48 h co-culture with 293T cells, and SKOV-3 cells either treated with PBS or decitabine was
assessed at the indicated effector to target ratios via an XTT-based colorimetric assay. Data represent
means ± SEM of three donors, p values were calculated by Student’s t-test, *** indicates p ≤ 0.001,
** indicates p ≤ 0.01, and ns indicates not significant.

4. Discussion

In the present work, we explored the potential of CSPG4 as an inducible secondary
target antigen for CAR-T-cell therapy of solid tumors using SKOV-3 ovarian cancer cells
as targets. First, we demonstrated dose-dependent decitabine-mediated upregulation of
CSPG4 on SKOV-3 ovarian cancer cells. Next, we refined the process of decitabine-mediated
CSPG4-upregulation by dose-titration and kinetics analyses to convert more than 50% of
treated SKOV-3 cells to CSPG4-positive targets. Finally, bulk T cells were equipped with
a CSPG4-specific CAR, and antigen-specific targetability of decitabine-treated SKOV-3
ovarian cancer cells by CSPG4-specific CAR-T cells was demonstrated. To corroborate our
findings, key experiments were successfully repeated with another ovarian cancer cell line
and a neoplastic cell line. This is the first study to show targeting of CSPG4 on tumor cells
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after decitabine-mediated upregulation raising the hypothesis for CSPG4 as an inducible
secondary antigen on solid tumors with special emphasis on ovarian cancer.

Originally, decitabine-mediated upregulation was reported in melanoma cell lines
more than a decade ago [11]. Seeking to investigate whether promotor methylation reg-
ulates the level of CSPG4 expression in melanoma cells, Luo et al. found dense CpG-
methylation in close proximity to the CSPG4 promotor, which corresponded with silencing
of CSPG4 expression in those tumor cells [11]. Upon treatment with decitabine-dosing
very similar to that used in the present study, CSPG4 upregulation was demonstrated in
tumor cells that lost CSPG4 expression [11]. In accordance with the results in our study
involving ovarian cancer cells, CSPG4-positivity could be induced in more than 50% of
decitabine-treated melanoma cells [11]. However, the targetability of decitabine-induced
CSPG4 on tumor cells has never been shown so far. The first report exploiting upregu-
lation of target antigens for subsequent CAR-T-cell therapy was recently published. The
investigators used azacitidine, a hypomethylating agent related to decitabine, to enhance
the antigen-density of CD70 on malignant myeloid cells, which could then be successfully
targeted by CD27-based CAR-T cells in vitro and in vivo [12]. Contrary to the present
study, the target antigen CD70 was a priori uniformly expressed on the surface of leukemic
blasts and not de novo induced on previously negative cells [12].

Although we observed solid decitabine-mediated CSPG4-upregulation in over 50%
of ovarian cancer cells, long-lasting remissions are predicated on elimination of the whole
tumor including all antigen-negative cells. Hence, the concept of targeting decitabine-
upregulated CSPG4 has to be placed into a broader context encompassing strategies to
simultaneously engage CSPG4-negative tumor cells. A straightforward approach would
be the combinational targeting of multiple antigens. CAR-T cells targeting the common
tumor antigen ErbB2 could effectively eliminate SKOV-3 cells [24]. Moreover, mesothelin
represents another suitable CAR antigen on ovarian cells. CAR-T cells specific for mesothe-
lin (MSLN) could eradicate murine xenograft models bearing SKOV-3 cells resulting in
long-term remission in mice treated with MSLN-specific CAR-T cells [25]. Recently, Shu
et al. published a bona fide combinational targeting approach tailored to ovarian cancer [26].
It could be demonstrated that by concomitant expression of a CAR targeting the oncofetal
antigen TAG-72 (tumor-associated glycoprotein 72), which is frequently expressed in ovar-
ian cancer, together with a CAR engaging CD47, which is overexpressed in ovarian cancer,
constitutes an effective dual targeting strategy for ovarian cancer [26]. In our previous
work, we developed engineering platforms to introduce a CSPG4-specific CAR together
with an additional immunoreceptor into T cells via mRNA-electroporation [27]. This plat-
form is basically expandable to generate CAR-T cells co-expressing a CSPG4-CAR together
with a CAR specific for one of the antigens mentioned above to simultaneously eradicate
CSPG4-negative ovarian cancer cells. Another effort to eliminate antigen-negative tumor
cells relies on the recruitment of macrophages via the local CAR-activation-induced release
of IL-12 from T cells redirected for universal cytokine killing (TRUCKs) [28]. Using this
approach, the elimination of antigen-negative solid tumor cells could be shown in vitro and
in vivo rendering CSPG4-specific TRUCKs attractive for engaging tumor cells remaining
CSPG4-negative after decitabine treatment [29].

Inadvertent on-target/off-tumor toxicity constitutes a dreaded side-effect in CAR-T-
cell therapy. Investigators from the National Cancer Institute (NCI) found the presence
of CSPG4 mRNA at considerably lower levels in normal tissue [30]. Nevertheless, at the
protein level, the expression of CSPG4 was more confined to cancer cells [31]. Immunohis-
tochemical staining for CSPG4 of up to 30 different healthy tissues, including lung, heart,
brain, skin, and the gastrointestinal tract, revealed CSPG4 expression solely in the small
intestine [31]. Moreover, CSPG4-CAR-T cells co-cultured with primary epithelial cells
derived from lung, kidney, and prostate cells did not exhibit cytotoxicity [32]. In addition,
CSPG4 has been found to be expressed on tumor-associated pericytes, and to a significantly
lower level on normal resting pericytes [33]. Against the backdrop of physiological CSPG4
expression on normal tissues, albeit at a low level, concerns may be stirred that decitabine
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not only increases CSPG4 expression on malignant cells but also amplifies the physiological
CSPG4 expression beyond the level required for CAR activation, potentially increasing the
risk for inadvertent on-target/off-tumor toxicity. Thus, comprehensive information on the
impact of decitabine treatment on CSPG4 expression in healthy tissues is required. Akin to
the NCI investigation mentioned above, mRNA level and protein level analyses on CSPG4
expression after decitabine treatment have to be performed before moving the concept of
targeting decitabine-upregulated CSPG4, established in the present work closer to clinical
translation. Using tissue specimens obtained from blood cancer patients undergoing hy-
pomethylating therapy with decitabine, could be valuable to carry out CSPG4 expression
studies at the RNA and protein levels as outlined above. These tissue specimens could
be taken during active hypomethylating therapy in combination with routine biopsies.
In order to generally mitigate the risk for potential on-target/off-tumor toxicity associ-
ated with targeting CSPG4, our group has developed the generation of CSPG4-specific
CAR-T cells via mRNA-electroporation [17]. Owing to the evanescent expression of CARs
introduced via mRNA-electroporation, toxicity originating from inadvertent on-target/off-
tumor targeting will only last for a few days declining parallel to the CAR expression. Thus,
CAR-T cells generated via mRNA-electroporation could mitigate the risk for inadvertent
on-target/off-tumor targeting when targeting decitabine-upregulated CSPG4. In case of
absent toxicity upon serial mRNA-CSPG4-CAR-T-cell infusions, the subsequent use of
conventional stably transduced CAR-T cells could be conceivable.

Regarding further steps towards a potential clinical translation of targeting decitabine-
upregulated CSPG4 on ovarian cancer cells using CSPG4-specific CAR-T cells, our data
gathered from the SKOV-3 model provide several cues for further in vivo testing. First,
optimal dosing of decitabine is the daily administration at 1 µM. Second, our time course
data reveal the time points of highest CSPG4 expression to be 5 to 8 days after decitabine
treatment followed by a steady decline. Third, CSPG4-CAR-T cells generated via mRNA-
electroporation are capable of antigen-specific killing of decitabine-treated SKOV-3 cells.
Fourth, antigen-specific killing of decitabine-treated SKOV-3 cells by CSPG4-CAR-T cells
is not impaired in the presence of decitabine at 1 µM. Additionally, from our extensive
experience with CAR-T cells generated via mRNA-electroporation, we know that owing to
the transient nature of mRNA-electroporation, CAR expression only lasts for up to 4 (maxi-
mum 5) days [17], which perfectly matches the timeframe of highest CSPG4 expression.
Coalescing all this information into a dosing regimen would require daily administra-
tion of decitabine at 1 µM for 5 days, until the simultaneous single-shot administration
of CSPG4-CAR-T cells generated via mRNA-electroporation, followed by another 5 day
period of decitabine application to maintain high CSPG4 expression during the time of
CAR expression in RNA-CAR-T cells.

A potential limitation of the concept described here, to use decitabine-mediated up-
regulation on ovarian cancer cells to enable targeting by CSPG4-CAR-T cells, is posed by
the tumor promoting properties of CSPG4, which might additionally foster the growth of
decitabine-treated tumor cells [7]. In ovarian cancer, CSPG4 mainly promotes invasion and
metastasis [20]. Moreover, CSPG4 expression may confer selected resistance to chemother-
apy on ovarian cancer cells [20]. The use of CSPG4-CAR-T cells is primarily intended for
metastasized patients, which generally bear a heavy tumor burden with extensive spread to
the body. Limited stages of ovarian cancer are treated with surgery and chemotherapy and
do not require CAR-T cells [13]. Thus, the risk of metastasis promotion by CSPG4 upregu-
lation bears little relevance in patients harboring already multiple metastases. Moreover,
CSPG4-mediated chemoresistance does even favor the use of immunotherapy, especially
CAR-T cells, and no reports on CSPG4-mediated immune-evasion, which could poten-
tially act on pathways known to impair the functionality of CAR-T-cells [34], have been
published. In aggregate, the benefits of generating targetability for CSPG4-CAR-T cells
via decitabine treatment clearly outweighs conceivable CSPG4-mediated tumor progress
promoting actions.
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Collectively, we want to shine light on the therapeutic potential of CSPG4 as an
inducible secondary antigen for CAR-T-cell therapy of ovarian cancer. On account of
our data, we encourage a comprehensive screening of primary ovarian cancer cells for
decitabine-mediated inducibility of CSPG4. Moreover, in vivo analyses on off-tumor CSPG4
expression in response to decitabine treatment will pose an important further investigation
required prior to clinical application.

5. Conclusions

Here, we introduced the potential of CSPG4 as an inducible target antigen for CAR-
T-cell therapy of ovarian cancer cells. We show decitabine-mediated upregulation of
CSPG4 on ovarian cancer cells. Additionally, we validate decitabine-upregulated CSPG4
as bona fide target antigen for CAR-T cells by demonstrating antigen-specific cytotoxicity
as well as antigen-specific cytokine secretion of CSPG4-specific CAR-T cells in response
to decitabine-treated SKOV-3 ovarian carcinoma cells. For the first time, we show de
novo upregulation of CSPG4 in tumor cells with subsequent targeting via CSPG4-specific
CAR-T cells. Building on our proof-of-concept data, targeting decitabine-mediated CSPG4
upregulation via CAR-T cells could be assayed in a variety of different tumor entities.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14205033/s1, Figure S1: Decitabine-mediated CSPG4 upregulation
in Caov-3 cells and 293T cells. Figure S2: CSPG4 expression in PBMC and CAR-T cells after decitabine
treatment. Figure S3: Lytic activity of CSPG4-CAR-T cells against 293T and Caov-3 cells.
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