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Simple Summary: Pathology is a cornerstone in cancer diagnostics, and digital pathology and artifi-
cial intelligence-driven image analysis could potentially save time and enhance diagnostic accuracy.
For clinical implementation of artificial intelligence, a major question is whether the computer models
maintain high performance when applied to new settings. We tested the generalizability of a highly
accurate deep learning model for breast cancer metastasis detection in sentinel lymph nodes from,
firstly, unseen sentinel node data and, secondly, data with a small change in surgical indication, in this
case lymph nodes from axillary dissections. Model performance dropped in both settings, particularly
on axillary dissection nodes. Retraining of the model was needed to mitigate the performance drop.
The study highlights the generalization challenge of clinical implementation of AI models, and the
possibility that retraining might be necessary.

Abstract: Poor generalizability is a major barrier to clinical implementation of artificial intelligence in
digital pathology. The aim of this study was to test the generalizability of a pretrained deep learning
model to a new diagnostic setting and to a small change in surgical indication. A deep learning model
for breast cancer metastases detection in sentinel lymph nodes, trained on CAMELYON multicenter
data, was used as a base model, and achieved an AUC of 0.969 (95% CI 0.926–0.998) and FROC of
0.838 (95% CI 0.757–0.913) on CAMELYON16 test data. On local sentinel node data, the base model
performance dropped to AUC 0.929 (95% CI 0.800–0.998) and FROC 0.744 (95% CI 0.566–0.912). On
data with a change in surgical indication (axillary dissections) the base model performance indicated
an even larger drop with a FROC of 0.503 (95%CI 0.201–0.911). The model was retrained with addition
of local data, resulting in about a 4% increase for both AUC and FROC for sentinel nodes, and an
increase of 11% in AUC and 49% in FROC for axillary nodes. Pathologist qualitative evaluation of
the retrained model s output showed no missed positive slides. False positives, false negatives and
one previously undetected micro-metastasis were observed. The study highlights the generalization
challenge even when using a multicenter trained model, and that a small change in indication can
considerably impact the model s performance.

Keywords: digital pathology; artificial intelligence; computational pathology; deep learning;
generalization; lymph node metastases; breast cancer
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1. Introduction

Histopathology is a cornerstone in cancer care and is essential for diagnosing, grading,
and staging of tumors. Today, pathology services are challenged by a growing shortage of
pathologists while at the same time the number and complexity of cases is increasing [1–3].
New aids are urgently needed to support pathologists in their diagnostic work, enabling
benefits for the cancer patient with shorter time to diagnosis and better targeted treatment.
In the last five years, histopathology is increasingly using digitized tissue slides and
computer screens as a replacement for the conventional light microscope. Digitization
of tissue sections results in so-called whole-slide images (WSI), which open the door for
the application of artificial intelligence (AI) and machine learning techniques. Specifically,
convolutional neural networks (CNN; a form of deep learning) have been shown to be
able to automate tasks in histopathology at a level comparable to that of experienced
pathologists [4]. AI has successfully been used to detect and grade prostate cancer, breast
cancer, colorectal cancer, and many other malignancies [5–7].

An important diagnostic task is identifying metastases of breast cancer in lymph nodes
in the axilla of breast cancer patients. Breast cancer is one of the most common and is the
most prevalent cancer globally [8]. The number of lymph nodes with metastases and the size
of metastases are important parameters in the globally accepted World Health Organization
Tumor-Node-Metastasis (TNM) classification system for tumors, which defines cancer
staging and lays the ground for treatment strategy and prognosis [9]. Currently, often
the sentinel node procedure is applied for initial surgical lymph node resection. In this
procedure, the first lymph node(s) (located in the armpit, also called the axilla) that drain
the tumor area are identified by injecting a tracer close to the tumor, to evaluate if the
cancer has spread from the breast. In case of positive sentinel nodes, or in case of advanced
stages of breast cancer, a different surgical procedure is performed, so called axillary
lymph node dissection. When performing an axillary node dissection procedure, the
surgeon will remove as many lymph nodes as possible from the axilla. The aim for the
pathologist is to detect the malignant cells in the lymph nodes by microscopic inspection
of a number of tissue sections per lymph node and classify the lymph nodes as positive
or negative [9–11]. This is a time-consuming and perception-wise challenging task, as
potentially small metastases may be overlooked in the large area of normal tissue.

It was previously shown that deep learning can be used to automatically detect metas-
tases in lymph nodes, potentially saving pathologists’ time and increase diagnostic accuracy.
The results from the CAMELYON16 challenge show that deep learning models achieve
performance comparable with a pathologist interpreting slides, even if the pathologist
is unconstrainted in time [12,13]. Moreover, it was shown that pathologists aided by AI
possessed increased accuracy while reading time was reduced [14].

However, a remaining challenge that impedes clinical implementation of AI is that
AI models can be brittle and drop in performance when applied to new unseen data. The
models need to be robust and maintain high performance when introduced to data from
new settings and variations to be able to add clinical value [15].

Aim

The aim of this study was to simulate the first step of clinical implementation of an
already multicenter pretrained deep learning model. The model was developed by the
computational pathology group at Radboud University Medical Center (UMC), Nijmegen,
the Netherlands, and was developed to detect areas of breast cancer metastases in sentinel
lymph nodes [16]. In this study, we assessed the generalization potential of the existing
model in two steps: first, the pretrained model was tested with new, unseen sentinel node
data in a new clinical setting. Secondly, the model’s generalization potential was studied
for a different but similar indication. In this case the model was trained on sentinel lymph
nodes and tested on sections from axillary lymph node dissections. We decided to exclude
slides with findings of only isolated tumor cells (ITC) because the model was not trained
for detecting ITC, and the clinical implications of the presence of only ITC is debated. The
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study highlights the generalization challenge in computational pathology image analysis,
both for slides with the same type of tissue but also for slides with a small change in surgical
indication. Our results showed that such a change can have a large impact on the model s
performance. Still, with a model that was trained on data from multiple centers and with
applied extensive data augmentation, retraining was needed. Further studies are required
to explore strategies to overcome the generalization challenge and evaluate which model
performance is needed to achieve clinical value.

2. Materials and Methods
2.1. Datasets

WSI used in this study were collected from two sources. The “AIDA Axillary lymph
nodes in breast cancer cases” dataset (AIDA BRLN) from Linköping, Sweden, was used
as a local data source. The other source was the CAMELYON datasets from Nijmegen,
the Netherlands, that was originally used to train the model that was evaluated in this
study. Both datasets are described in more detail below. Negative and positive slides were
included. No slides containing only isolated tumor cells were included.

2.1.1. Local Linköping Data

The AIDA BRLN dataset is published at the AIDA Dataset Register and consists of
396 full lymph node cases, totaling 4462 digitized histopathological slides [17]. All lymph
nodes were removed from the axilla of breast cancer patients that were admitted, pro-
cessed, and scanned for clinical use at the Department of Clinical Pathology at Linköping
University Hospital, Sweden. AIDA BRLN contains slides from both sentinel node and
axillary dissection procedures. The primary tumor is either invasive carcinoma of no
special type (NST, also known as invasive ductal carcinoma) or invasive lobular carcinoma
(ILC). All slides were stained with hematoxylin-eosin (H&E) and sentinel node cases also
include cytokeratin immunohistochemical stained slides (AE1/AE3, Agilent Technologies,
Santa Clara, CA, USA). Slides were scanned at a resolution of 0.46 or 0.5 microns per pixel
(a small number of slides scanned with a higher magnification). The scanners used were
Aperio ScanScope AT (Leica Biosystems, Wetzlar, Germany), Hamamatsu NanoZoomer
XR, Hamamatsu NanoZoomer S360 and Hamamatsu NanoZoomer S60 (all Hamamatsu
Photonics, Hamamatsu city, Japan). All WSI in AIDA BRLN were anonymized and ex-
ported to a research picture archiving and communicating system (PACS) (IDS7, Sectra AB,
Linköping, Sweden).

Three subsets of the available slides in AIDA BRLN were defined and used in this study
and are referred to as LocalSentinel, LocalAxillary, and LocalNegativeAxillary. Further
description of each dataset is listed in Table 1. Ground-truth detailed pixel annotations
were produced for the positive slides by a pathology resident (S.J., 4–5 years in practice)
by manually delineating separate clusters of tumor cells through visual inspection in the
research PACS. When available, cytokeratin immunohistochemical (AE1/AE3) stained
slides were used to aid in producing the annotations, an example is shown in Figure 1. All
collected slides from the AIDA BRLN dataset were also assigned a ground-truth slide-label
as either negative, micro-metastasis or macro-metastasis by a pathologist (S.J.) based on
the TNM classification listed in Table 2. A second round for reviewing the slide labels was
performed by another pathologist specialized in breast pathology (A.B.), and a consensus
diagnosis was discussed in the case of uncertain slides.
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Table 1. Description of datasets used in the study.

Dataset Unique Cases Slides Description

LocalSentinel 161 161

Retrospectively collected lymph node slides from sentinel node
procedures consisting of 107 negative and 54 positive slides. One slide
per unique patient case included. Cytokeratin immunohistochemically

stained sections were available (AE1/AE3) and were used to aid in
production of detailed ground-truth annotations.

(Subset of AIDA BRLN dataset.)

LocalAxillary 48 57

Retrospectively collected lymph node slides from axillary dissection
procedures consisting of 24 negative and 24 positive slides from unique
cases. This dataset was further enriched with nine extra negative slides,
overlapping with other cases, which contained only extra-nodal tissue
and featured examples of fat necrosis and foreign body tissue reactions.

(Subset of AIDA BRLN dataset.)

LocalNegativeAxillary 24 259

Retrospectively collected lymph node cases from axillary dissection
procedures that were signed out as negative during initial clinical

diagnostic assessment. All slides in the cases were included except for
slides (n = 33) already included in LocalSentinel or LocalAxillary to
avoid overlapping slides. One section per block, except in four cases

1–3 additional sections per block were presented in the clinical archive
and included in this set. (Subset of AIDA BRLN dataset.)

CAMELYON16 399 399

Retrospectively collected sentinel lymph node slides from two
hospitals in the Netherlands. Pre-generated data splits by the

CAMELYON organizers were retained in this study. Of the 160 positive
slides, detailed annotations were available for 140 slides, whereas

20 slides were only partially annotated e.g., slides that contained two
consecutive sections of the same tissue or slides that contained

out-of-focus tumor regions, and only the delineated regions containing
tumors were used in these slides during training.

CAMELYON17 200 1000
(344 used)

Retrospectively collected sentinel lymph node slides from five
hospitals in the Netherlands. A total of 1000 slides. Only a subset of

50 positive slides contained detailed annotations, while the remaining
positive slides had been given a slide label according to the TNM
staging system. Of the available 50 annotated positive slides, only

34 slides contained either micro- or macro-metastases and were
included in this study, the remaining 16 slides were labelled as isolated
tumor cells (ITC) and were excluded. 50 randomly selected negative
slides from the CAMELYON17 training set and 260 negative slides in
the CAMELYON17 test set were allocated to training and testing sets,
respectively, in this study. In total 344 slides from CAMELYON17 were

used in this study.

Table 2. Slide-label classification based on the WHO TNM classification system [9].

Type Description Slide Label

Macro-metastasis Tumor > 2 mm Positive
Micro-metastasis Tumor > 0.2 mm and ≤ 2 mm Positive
Isolated tumor cells (ITC) Tumor ≤ 0.2 mm or ≤ 200 tumor cells Negative
No tumor cells No tumor cells Negative
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Figure 1. (a) Example of annotation of metastasis on an H&E slide. (b) Example of corresponding
immunohistochemical stained slide for cytokeratin (CK AE1/AE3).

2.1.2. CAMELYON Data

CAMELYON16 and CAMELYON17 consist of WSI of both positive and negative
lymph node slides from sentinel node procedures and are available on the grand-challenge
platform [12]. Included primary tumors in CAMELYON16 are NST and ILC. No in-
formation regarding primary tumor subtypes was available for CAMELYON17. H&E
slides were scanned at 0.23–0.25 microns per pixel, using a 3DHistech Panoramic Flash II
250 scanner (3DHistech, Budapest, Hungary), a Hamamatsu NanoZoomer-XR C12000-01
scanner (Hamamatsu, Hamamatsu city, Japan), and a Philips Ultrafast Scanner (Philips,
Best, Netherlands). See Table 1 for further information on the CAMELYON16 and
CAMELYON17 datasets.

2.1.3. Data Splits

All datasets in this study, except LocalNegativeAxillary, were split into non-overlapping
training, validation, and test data subsets for which details are listed in Table 3. For
CAMELYON16, pre-generated data splits from the CAMELYON organizers were used.
For LocalSentinel and LocalAxillary, a stratified random split was used to ensure that a
similar ratio of positive to negative slides were present in all subsets. In addition, nine
extra negative axillary slides containing only extra-nodal tissue were manually added to
the training and validation sets in LocalAxillary to enrich data variation (contained fat
necrosis and foreign body reactions). In total, 961 slides were used in this study for model
training and evaluation and an additional 259 slides for model evaluation on negative
slides (LocalNegativeAxillary).
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Table 3. Distribution of WSI for training, validation, and test of four of the datasets. Italicized
numbers indicate added slides with extra-nodal tissue containing features of fat necrosis and foreign
body tissue reaction.

Dataset Summary Training Validation Testing
N Neg Pos N Neg Pos N Neg Pos N Neg Pos

CAMELYON16 399 239 160 216 127 89 54 32 22 129 80 49 (1)

CAMELYON17 344 310 34 55 40 15 19 10 9 270 260 10
LocalSentinel 161 107 54 88 58 30 22 15 7 51 34 17 (2)

LocalAxillary 48 + 9 24 + 9 24 24 + 6 11 + 6 13 7 + 3 3 + 3 4 17 10 7 (3)

Total 961 689 272 389 242 147 105 63 42 467 384 83
(1) Consists of 6 ILC slides (12%) and 43 NST slides (88%); (2) Consists of 6 ILC slides (35%) and 11 NST slides
(65%); (3) Consists of 2 ILC slides (28%) and 5 NST slides (72%).

2.2. Study Design

In this study, a state-of-the-art pretrained network from Radboud UMC, Nijmegen,
Netherlands was evaluated [16]. This network will be referred to as the base model
throughout this study and was trained on CAMELYON data (data from five centers). The
base model is a modified classification network of the DenseNet architecture, first published
by Huang et al [18]. Please see the "Model architecture” section below for more details on
the network.

This study was designed to evaluate the base model’s generalization performance
to new data. This evaluation was two-fold. Firstly, the LocalSentinel test set was used to
evaluate the generalization performance on same type of data that the model was trained on,
i.e., sentinel node data but from another clinical site. Secondly, the model’s generalization
performance was evaluated with a different (but similar) type of dataset, in this case with
lymph nodes from the same patient group and location (arm-pit) but with another surgical
indication and procedure, so-called axillary dissections, using the LocalAxillary test set.
The generalization performance of the base model was evaluated with receiver operating
curve–area under curve (ROC-AUC) and free-response operating characteristic (FROC),
which are described in more detail below. In addition, the potential impacts of primary
tumor subtypes were also evaluated. Furthermore, a quantitative evaluation of the base
model was performed on 24 negative axillary cases (LocalNegativeAxillary). This enabled
us to explore the number of false positives generated in a negative dataset when applying
the model to out-of-distribution data, such as a new surgical indication.

Furthermore, the base model was also retrained by pooling the CAMELYON and
local data to allow the model to learn new unseen features not present in the CAMELYON
datasets alone. Thereby, aiming to make the model more robust to larger data variations
related to different clinical settings and indications. The retraining procedure is explained
in more detail below. The resulting model will be referred to as the local model henceforth
in this paper. A second round of evaluation was then performed to explore the local model
s generalization performance in the same way as described above for the base model.

Concurrently to the generalization evaluation, a qualitative review of the predictions
of the local model was performed by a pathologist (S.J.) by visually inspecting model
predicted annotations from LocalSentinel and LocalAxillary test sets (68 slides). This
allowed us to explore commonalities in tissue morphology that potentially generate false
detections by the model, and also to explore how model predictions can be reviewed
in a clinical setting. The analysis of the false positives was primarily performed by one
pathologist (S.J.) while a secondary review was performed by a second pathologist (D.T.).

2.3. Evaluation of WSI Predictions

Model predictions were produced by applying the models in a fully convolutional
matter, thus generating prediction score maps (also known as heatmaps) for each WSI,
highlighting cancerous regions. The heatmap values range from zero to one where a value
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of one indicates a high probability of tumor. Furthermore, the resulting heatmaps were
used to generate detection regions needed for calculating AUC and FROC by following the
outlined procedure in the study from Bejnordi et al. [13]. All detections with diameter less
than 0.2 mm were excluded from the evaluations, as these most probably indicate isolated
tumor cells (ITCs) which are out of scope for this study.

Resulting detection regions were converted into coordinate annotations, similar to
the drawn ground-truth annotations, using the automated slide analysis platform (ASAP,
version 1.9 [19] and uploaded to the research PACS for qualitative review. Finally, a slide
label was automatically assigned based on the diameter of the largest detection region
which was compared to the TNM classification criteria (see Table 2).

2.4. Metrics

Slide-level AUC and lesion-level FROC were used to statistically evaluate all networks
in this study. AUC expresses discriminative power between classes healthy and tumor at
the slide level [20]. The AUC score was calculated by extracting the pixel value with the
highest prediction score from each heatmap, excluding prediction regions smaller than
0.2 mm, and paired with the corresponding ground-truth label. The AUC score ranges
from zero to one, where a value of one indicates perfect discrimination between classes.

For FROC analysis, we evaluated each detection point returned by the algorithm
with respect to the annotated ground truth [21]. Points outside any annotation region
were considered false positives, whereas points within an annotation are true positives.
Annotations that were not assigned any detection points by the algorithm were considered
false negatives. The FROC curve, as defined in the CAMELYON challenge, shows the
lesion-level, true-positive fraction (sensitivity) relative to the average number of false-
positive detections in metastasis-free slides. Furthermore, a single FROC score was defined
as the average sensitivity across 6 predefined false-positive rates: 1/4 (1 false-positive result
in every 4 WSIs), 1/2, 1, 2, 4, and 8 false-positive findings per WSI. The FROC value ranges
from zero to one, where a value of one indicates perfect lesion detection.

Confidence intervals of 95% for both AUC and FROC were constructed based on
10,000 bootstrap samples of the datasets. Statistical significance was determined with
permutation testing using both AUC and FROC as test statistics with 10,000 permutations
and a p-value of 0.05 [22].

2.5. Model Architecture

In this study, a derivative of the DenseNet classification architecture, first developed
by Huang et al [18] and later modified by Bándi et al. [16] was used in all experiments. The
DenseNet architecture was chosen as it holds state-of-art performance in the CAMELYON17
challenge [23]. For the purpose of this study, it is unlikely that other architectures trained
using the same data would show significantly improved generalizability.

More specifically, the modified DenseNet architecture uses valid-padding instead
of zero-padding and is composed of 3 dense blocks, each consisting of four 1 × 1 con-
volutional layers and three 3 × 3 convolutional layers in an alternating manner. Each
dense block was followed by a transition block consisting of one 1 × 1 convolutional layer
and one 2 × 2 average pooling layer except for the last dense block, which was followed
by one 3 × 3 convolutional layer. In the dense blocks, each 1 × 1 convolutional layer
had 64 channels whereas each 3 × 3 convolutional layer 32 channels. Additionally, skip
connections for layer outputs were added in the dense blocks prior to each 1 × 1 convolu-
tion layer and were concatenated downstream with individual outputs from all 3 × 3 to
1 × 1 convolutional layer combinations inside of the dense block. Batch normalization [24]
and ReLU non-linearity transformation was applied after each convolution except for the
last 3×3 convolutional layer on which a soft-max function was applied instead.
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2.6. Model Retraining

All networks in this study were initialized with the He [25] initialization method and
the weights were updated using the Adam optimizer [26]. Categorical cross-entropy was
used as the loss function together with L2 regularization with a weight of λ = 10−4. A
pixel spacing of 0.5 micrometers per pixel was used to read the WSIs and a patch size
of 279 × 279 pixels was used as input to the network. 262,144 patches were randomly
extracted from the WSIs in each epoch for both the training set and validation sets indi-
vidually. The ratio between tumor and healthy patches was 20/80. A learning rate of
l = 1 × 10−4 was used in the beginning of network training and was reduced by a factor of
10 if no improvement in validation accuracy was observed for 4 consecutive epochs. The
models were trained for 200 epochs where early stopping was used if no improvement in
validation accuracy were observed for 20 consecutive epochs.

This study made use of several augmentation techniques to further enrich the training
dataset. The following augmentations with their corresponding parameter values listed in
square brackets were used in the following order, horizontal flipping, rotation [0◦, 90◦, 180◦,
and 270◦], scaling [0.9, 1.1], hue adjustment [−0.1, 0.1], saturation adjustment [−0.25, 0.25],
brightness adjustment [−0.25, 0.25], contrast adjustment [−0.25, 0.25], Gaussian noise
[0.0, 0.05], and Gaussian blur [0.0, 1.0]. For additional information regarding the model
architecture and the training setup used in this study, please see Bándi et al. [16].

Several new retraining strategies were implemented in this study in an attempt to
further build on the domain knowledge acquired from the Bándi et al. This to further
account for systematic differences between the datasets related to different clinical settings
and surgical indications. In summary, three different strategies were implemented in this
study to address potential differences between data sources:

1. Transfer learning: Two modes were used when retraining the model:

a. The model was retrained from scratch on available data (CAMELYON + local data)
b. The base model was used as a starting point and only trained on the local data

(LocalSentinel + LocalAxillary).

2. Sampling rates: Two modes for patch sampling from WSI were implemented when
both CAMELYON and local data were used:

a. Patches were sampled uniformly from all available images.
b. The patch sampling rate from LocalSentinel and LocalAxillary was increased to

allow the model to learn more from the local data and combat fitting preference
towards the CAMELYON data which contained the most slides.

3. Hard negative mining. Increased sampling rate in negative regions that were often
classified as false positives in LocalSentinel and LocalAxillary. See further description
of this method below.

Several permutations of the above strategies were implemented and evaluated in this
study, see Table S1 in the Supplementary Materials for more information on each imple-
mented permutation. All models were trained and validated on the defined training sets
and validation sets seen in Table 3, respectively. The model with the highest performance
across all datasets was selected, and its generalization performance was evaluated on the
defined test sets.

2.7. Hard Negative Mining

A simple protocol for adding hard negative regions (i.e., regions which contain tis-
sue morphology that can be mistaken as tumor) to label masks is illustrated in Figure 2
below [27]. The label masks contain spatial information of locations where healthy and
tumor regions are located within the slides. An initial model was trained on the full dataset
(CAMELYON + local data) and was used to produce whole-slide heatmaps where regions
with a prediction score equal to or larger than 0.5 of being tumor were retained (yellow
regions). Resulting regions larger than ITCs (>0.2 mm) were added to the label mask if,
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and only if, no overlap occurred between the predicted region and the ground-truth tumor
lesions (green regions).
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Figure 2. Hard negative mining protocol. Mask generation is based on model generated heatmap
(yellow regions) and existing ground-truth annotations (green regions). Heatmap regions overlapping
with the ground truth are excluded in the final mask where background (white) is coded as 0, healthy
tissue (pink) as 1, ground-truth annotations as 2 (green), and hard negative regions as 3 (yellow).

3. Results
3.1. Test of Generalisation to a New Setting: Base Model on Local Sentinel Node Data

The base model achieved an AUC of 0.969 (95% CI 0.926–0.998) and FROC of 0.838
(95% CI 0.757–0.913) on CAMELYON16 test data (see Table 4) which is identical to reported
values by Bándi et al. [16]. The base model achieved an AUC of 0.929 (95% CI 0.800–0.998)
and a FROC of 0.744 (95% CI 0.556–0.912) on LocalSentinel test set, indicating a drop in
performance when tested on local data. No statistical difference between the CAMELYON16
and LocalSentinel test sets was observed for either AUC (p > 0.05) or FROC (p > 0.05).

In addition, the base model was further evaluated on CAMELYON16 and LocalSen-
tinel slides containing only NST as the primary tumor type. All ILC slides were therefore
excluded from the CAMELYON16 and LocalSentinel test sets. For CAMELYON16 this
resulted in an AUC of 0.976 (95% CI 0.936–0.999) and a FROC of 0.820 (95% CI 0.732–0.902).
For LocalSentinel an AUC of 0.992 (95% CI 0.966–1.000) and a FROC of 0.844 (95% CI
0.688–1.000) was observed. No statistical significance was observed between the CAME-
LYON16 and LocalSentinel test sets in either AUC (p > 0.05) or FROC (p > 0.05) when ILC
slides were excluded.

Table 4. Results for base model and local model on defined testset with AUC and FROC. Metrics
were calculated individually on each dataset. The second and fourth row show the results for datasets
containing only NST slides.

LocalSentinel LocalAxillary CAMELYON16 CAMELYON17
AUC FROC AUC FROC AUC FROC AUC FROC

Model (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Base 0.929 0.744 0.898 0.503 0.969 0.838 0.997 0.967
(0.800–0.998) (0.566–0.912) (0.700–1.000) (0.201–0.911) (0.926–0.998) (0.757–0.913) (0.990–1.000) (0.886–1.000)

Base 0.992 0.844 1.000 0.594 0.976 0.820 - -
(only NST) (0.966–1.000) (0.688–1.000) (1.000–1.000) (0.212–1.000) (0.936–0.999) (0.732–0.902) - -

Local 0.972 0.774 1.000 0.758 0.981 0.825 0.976 0.910
(0.910–1.000) (0.592–0.940) (1.000–1.000) (0.632–1.000) (0.953–1.000) (0.746–0.900) (0.926–1.000) (0.722–1.000)

Local 0.997 0.870 1.000 0.744 0.988 0.817 - -
(only NST) (0.985–1.000) (0.706–1.000) (1.000–1.000) (0.619–1.000) (0.965–1.000) (0.730–0.896) - -
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3.2. Test of Generalisation to a New Indication: Base-Model on Local Axillary Dissection
Node Data

The base model achieved an AUC of 0.898 (95% CI 0.700–1.000) and a FROC of
0.503 (95% CI 0.201–0.911) on the LocalAxillary test data (see Table 4). The large drop in
FROC performance between the CAMELYON16 and LocalAxillary test sets was statistically
significant (p = 0.012) when using the base model. No statistical significance in model
performance was observed between the CAMELYON16 and LocalAxillary test sets (p > 0.05)
when using AUC as a test statistic.

As before, the base model was further evaluated on LocalAxillary slides containing
only NST as the primary tumor type. This resulted in an AUC of 1.000 (95% CI 1.000–1.000)
and a FROC of 0.594 (95% CI 0.212–1.000). No statistical significance was observed between
the CAMELYON16 and LocalAxillary test sets for AUC (p > 0.05) when excluding ILC slides.
Statistical significance was observed for FROC (p = 0.045) between the CAMELYON16 and
LocalAxillary test set when ILC slides were excluded.

Furthermore, 9088 false positive detections were made by the base model on Local-
NegativeAxillary (259 negative slides) which corresponds to around 35 detections per slide
on average.

3.3. CNN Retraining to Increase Performance on Local Data

To mitigate the observed drop in performance, especially for FROC, several new
models were trained and validated by including slides from both LocalSentinel and Lo-
calAxillary in the training data. The corresponding performance of all models are reported
in Table S2 in the Supplementary Materials. We found that re-training the model on both
sentinel and axillary nodes in combination with hard negative mining on axillary lymph
nodes resulted in the largest increase in validation performance for both sentinel and
axillary data. This model is referred to as the local model henceforth throughout this paper.
The local model achieved an AUC of 0.972 (95% CI 0.910–1.000) and a FROC of 0.774 (95%
CI 0.592–0.940) for the LocalSentinel test set, and an AUC of 1.000 (95%CI 1.000–1.000) and
FROC 0.758 (95% CI 0.632–1.000) for the LocalAxillary test set (see Table 4). No significant
change in performance was observed in the LocalSentinel test set between the base model
and the local model for either AUC (p > 0.05) or FROC (p > 0.05). A significant performance
increase for AUC was observed in the LocalAxillary test set between models (p = 0.019)
whereas no significant change in performance was observed for the FROC value in the
LocalAxillary test set (p > 0.05).

The local model was further evaluated on the datasets in which ILC had been excluded.
This resulted in an AUC of 0.997 (95% CI 0.985–1.000) and a FROC of 0.870 (95% CI
0.706–1.000) for the LocalSentinel test set, and an AUC of 1.000 (95%CI 1.000–1.000) and
FROC 0.744 (95% CI 0.619–1.000) for the LocalAxillary test set (see Table 4). No significant
performance change was observed between models in the LocalSentinel test set with
excluded ILC slides for either AUC (p > 0.05) or FROC (p > 0.05). Similarly, no significant
change was observed between models in the LocalAxillary test set with excluded ILC slides
for either AUC (p > 0.05) or FROC (p > 0.05).

In addition, 327 false positive detections were made by the local model on LocalNega-
tiveAxillary which is a little more than 27 times fewer compared to the base model. On
average, there were about 1.3 false positive detections per slide.

3.4. Qualitative Evaluation of Local Model Predictions

The combined test set from LocalSentinel and LocalAxillary consisted of 68 slides. The
ground-truth slide labels and the local model slide labels matched in 45 of the 68 (66%)
slides. Among the positive slides, the slide label matched in 20 of 24 slides (83%). No
positive slides in ground truth were wrongly assigned as negative by the model. See
Figure 3a for more details. For example of ground truth annotation and model prediction
detection area overlapping see Figure 4a. In one slide the model detected a micro-metastasis,
that was missed in the ground-truth generation. The micro-metastasis was confirmed
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in the immunohistochemical stained slide (see Figure 4b,c) and was reviewed by three
pathologists (S.J., A.B., D.T.). That slide was also reported as negative in the clinical system.
In the remaining negative slides, the slide labels matched in 25 of 43 slides (58%). All
mislabeled negative slides were assigned as micro-metastasis by the model.

Reviewing the slides in the research PACS showed that 30 of the 68 slides had areas
predicted by the model which were false positive. Review of those false positive areas
showed that they comprised benign pathological features. The most common category
was histocytes, then in reducing order of frequency: vascular elements, germinal centers,
capsular region and fibrotic elements, and subcapsular region. The smallest category was
other features such as artefactually damaged tissue, eosinophilic amorphous material and
plasma cells. Most of the slides with false positives contained between 1–4 false positive
areas (see Figure 3b). For examples of false positive areas see Figure 5. The model also
showed false negative areas. In five slides there were false negative areas corresponding
to the size of micro-metastases, and the number of areas per slide ranged between 1–7.
In no cases did that change the slide label diagnosis. In two slides large areas of missed
malignant cells inside larger metastases were observed.
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Figure 3. Results from pathologist qualitative evaluation of local model predictions: (a) Sankey
diagram over the combined test set (LocalSentinel + LocalAxillary), n = 68, with the ground-truth
slide label on left side and local model prediction slide label on right side. Numbers represent the
number of slides in each diagnosis group. (One negative slide in ground truth misclassified as
negative); and (b) the distribution of false positive across the 68 slides: 38 slides had no false positive;
most of the slides with false positives contained 1-4 false positive; a small number of slides had a
large number of false positives.
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4. Discussion

Today, there is a gap between deep learning models showing good (i.e., human-level)
performance in experimental evaluation and examples of successful clinical implemen-
tations. Reasons for this could be a lack of digitization among pathology laboratories,
pathologists not trusting the computer models, and regulatory matters. But one of the great-
est challenges is the generalization of the models, i.e., its ability to maintain high accuracy
on novel data or situations. The models must be robust and maintain high performance on
slides from different laboratories if AI is to be successful in clinical practice. In a pathology
laboratory there are many potential sources of data variations. For example, many of the
laboratory steps, such as differences in staining protocol, tissue quality, and thickness of the
sections could render color variation. Gray et al. showed, for example, that slides stained
on different days varied considerably compared to slides stained on the same day based
on experiments using image analysis color deconvolution. They could also show staining
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variability between automated staining instruments, between regional laboratories and
between scanners [28]. In training state-of-the-art AI models, a large amount of data is
needed from several centers to cover data variation and to prevent the model from becom-
ing overfitted to training data [29]. Obtaining well-curated and annotated data, however, is
a substantial bottleneck. The training of models in computational pathology is often based
on supervised learning, which requires detailed annotations made by expert pathologists.
This is a slow and laborious process, limiting the amount of available high-quality data.
To mitigate potentially too small dataset sizes, different pre-processing steps can be used
such as image augmentations which was used in this study. Image augmentation is a
technique to introduce variation of the data in the already existing dataset in an attempt to
overcome the challenge of obtaining large hand-curated datasets. Extracted patches used
for training are altered, e.g., flipping the image horizontally or vertically, rotating the image,
introducing random noise, and change in color intensities to mention a few [30,31].

In this study, we evaluated the generalizability performance of a multi-center pre-
trained model with previously state-of-the-art performance in detecting breast cancer
metastases in lymph nodes of sentinel node type. When we tested the base model on
unseen local sentinel node data a performance drop was observed. The performance drop
however was not seen when only NST slides were evaluated (excluding ILC slides). This
is an indication that the model struggles to correctly classify the ILC slides. In our data
test sets (LocalSentinel and LocalAxillary), the amount of ILC slides is more than twice
(~33%) of that present in CAMELYON16 (~12%), thus the impact on AUC and FROC will
be larger in LocalSentinel and LocalAxillary when ILC slides are incorrectly classified. NST
and ILC are the two most common subtypes in breast cancer and differ in morphology.
Tang et al. describe in an example that the risk of overfitting a model with limited data
for a heterogeneous cancer type can be detrimental to the generalization performance and
demonstrating that adding additional subtypes of osteosarcoma increases the model’s
performance and robustness [32].

Other sources of variation between the data could be differences in scanning manufac-
turers and magnification, or surgical method of tracing the sentinel lymph node. Another
aspect could also be that the local data was retroactively collected directly from a clinical
digital archive where all slides were scanned in a large-scale scanning process with mi-
nor manual interference and will represent the whole clinical spectrum of slide quality,
scanning artifacts and special features such as necrotic lymph nodes and extra-glandular
tumor deposits.

Secondly, we wanted to test the generalization potential of the multicenter-trained
model to another but similar surgical indication. The base model, trained on sentinel
nodes, was tested on local lymph nodes from axillary dissections, with a considerable
drop in performance, especially in FROC. The performance difference in FROC between
CAMELYON16 and LocalAxillary was still pronounced even when ILC was excluded. The
result indicates that a small difference in surgical indication, i.e., in this case the lymph
nodes originate from the same patient group (breast cancer) and same topography (axilla),
can have a large impact on model performance. In qualitative analysis of the model’s
predictions on axillary lymph nodes in the PACS we could see that the base model rendered
a large number of false positives with the same pattern as false positives in sentinel nodes
but with additional features i.e., fat necrosis and foreign body reaction. Those areas are
presumably more apparent in axillary nodes while those nodes often have been preceded
by another intervention, such as sentinel node procedure, as they are reactive changes
seen post-operatively.

Our results showed that retraining was needed, especially in the case of axillary lymph
nodes to mitigate the performance drop. The most successful retraining strategy was a
combination of training of patches sampled uniformly from all slides and hard negative
mining on axillary lymph nodes resulting in improved performance for both sentinel nodes
and axillary nodes. With the retrained model the AUC results on local data are comparable
with AUC results with the CAMELYON16 data. The FROC for local data is still inferior
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to FROC for CAMELYON16, but the result indicates that a large increase was gained for
axillary nodes after retraining.

The retrained model shows a high AUC, meaning a good performance in differentiat-
ing negative from positive slides. However, important to note is that AUC in this study is
calculated by extracting the pixel with the highest prediction score in each slide, meaning
if there is a good separation of score values between negative and positive slides, a high
AUC value will be obtained. Furthermore, in cases where an AUC of 1.0 is observed, there
exists a threshold which allows for perfect class separation. However, due to using the
pixel with the highest prediction score from each slide to represent the slide labels (positive
or negative), an optimistic performance bias is introduced that only holds true for the
slide-level predictions. On the other hand, lesion-level predictions can only be evaluated
by using FROC for which lesion-prediction scores will be more varied and, in many cases,
lower than the pixel with the highest prediction score in the slide. Caution should therefore
be observed to not evaluate the model solely with AUC, but should instead be combined
with the FROC value and a qualitative review. This to find a good balance between retain-
ing a high slide-level accuracy and limiting the number of false positive detections in the
individual slides.

In the study 44% of the test slides contained a false positive area, and in the dataset
with only negative slides from axillary nodes, there were an average of 1.3 false pos-
itives per slide. Most of the false positives represented well-known morphologies of
non-tumorous features, some known to be difficult for AI models such as germinal centers
and histiocytes [14] but can often easily be rejected by the pathologist. Some amount of
false positives will probably be accepted as a reasonable “cost” for not missing malignant
areas, but if too many false positives are flagged then user trust in the AI may be lost.
Different ways of thresholding the model’s output can be useful for decreasing the number
of false positives or avoiding false negative predictions. A comprehensive list of popu-
lar post-processing steps in digital pathology was recently reviewed by Salvi et al. [33].
Lindvall et al. and Steiner et al. describes clinical approaches of AI models and how to
mitigate imperfect AI and false positives distracting the pathologists by limiting the number
of regions displayed for pathologists, but still maintain quality of diagnostics and even
reduced review time. Both papers from Lindvall et al. and Steiner et al. show promising
results of a synergistic effect of the combination of pathologist and AI-model [14,34].

In the qualitative evaluation of the model predictions, we saw that no positive slides
were missed by the model. This could lay ground for a clinical approach of an aiding tool
triaging the positive cases first in order to be diagnosed by the pathologist, to shorten lead
time to a malignant diagnosis. The retrained model correctly assigned slide-label diagnosis
in 20 of 24 positive slides and mismatched micro- and macro-metastasis in four of the
positive slides. A possible model of assistive AI deployment could be to let the model
outline metastases, but when measuring the metastases, the pathologist could take other
factors into account such as measuring two areas together that belong to same tumor.

Regarding limitations in this study the exclusion of ITC can be noted. The model
was not trained to detect ITC and no slides with only ITC were included. ITC is reported
clinically if detected but still the sentinel lymph nodes are considered as negative according
to the TNM-classification, and the clinical value of ITC, or even micro-metastasis, in
sentinel node is debatable [35]. However, when examining sentinel node after preoperative
treatment any size of viable rest of metastasis is relevant [11,36]. Furthermore, of concern
could be the missed malignant areas by the local model, although it did not change slide-
level diagnosis. We think further studies are needed to evaluate the impact of those missed
malignant areas, for example in a clinical reader-study where multiple full cases are used.

Future studies are required to overcome the challenges of generalizability. Large,
multi-center datasets are of paramount importance to train robust deep learning models.
This ideally includes different surgical protocols and a good representation of breast cancer
subtypes. Large scale initiatives, in which multicentric data is collected and made available
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to the community at large, may play a major role in the future. One such example is the
Bigpicture project, that aims to collect WSI from all of Europe [37].

To reduce data dependence, strategies for model training without the need for detailed
(pixel-level) ground-truth annotations could potentially accelerate the development. To
better appreciate the impact that AI can have on pathology diagnostics, and also under-
stand the performance requirements of the AI models, further studies are needed in which
AI is validated in a real-world clinical setting. Today, little is known on what exact model
performance is needed to generate clinical value. AI models will not stand alone but
will rather work as an aid to the pathologist, in which the pathologist will decide on the
diagnosis. The next steps in our research will be to explore user interface design, in combi-
nation with model performance, to assess potential added clinical value for histopathology
cancer diagnostics.

5. Conclusions

The study highlights the generalization challenge in computational pathology where
we tested a multicenter pretrained deep learning model on unseen lymph node data of
the same type of tissue it was trained for and also introduced data with a small change in
surgical indication, i.e., lymph nodes from axillary dissections. Retraining with targeted
data was needed in both scenarios to mitigate the drop in performance. The result espe-
cially highlights that a small change in indication can impact the model’s performance
considerably. The retrained model showed no missed positive slides, but in a few of those
slides, areas of malignant cells corresponding to the size of a micro-metastasis were missed.
The study highlights the need for further work on strategies overcoming the generaliza-
tion challenge and the need for evaluation of what model performance is needed to add
clinical value.
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