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Simple Summary: Recent AI methods in the automated analysis of histopathological imaging data
associated with cancer have trended towards less supervision by humans. Yet, there are circumstances
when humans cannot lend a hand to AI. Hence, we present an unsupervised method to learn
meaningful features from histopathological imaging data. We applied our method to non-small
cell lung cancer subtyping as a classification prototype and breast cancer proliferation scoring as a
regression prototype. Our AI method achieves high accuracy and correlation, respectively. Additional
experiments aimed at reducing the amount of available data demonstrated that the learned features
are robust. Overall, our AI method approaches the analysis of histopathological imaging data in a
novel manner, where meaningful features can be learned from without the need for any supervision
my humans. The proposed method stands to benefit the field, as it theoretically enables researchers
to benefit from completely raw histopathology imaging data.

Abstract: Recent methods in computational pathology have trended towards semi- and weakly-
supervised methods requiring only slide-level labels. Yet, even slide-level labels may be absent or
irrelevant to the application of interest, such as in clinical trials. Hence, we present a fully unsuper-
vised method to learn meaningful, compact representations of WSIs. Our method initially trains a
tile-wise encoder using SimCLR, from which subsets of tile-wise embeddings are extracted and fused
via an attention-based multiple-instance learning framework to yield slide-level representations.
The resulting set of intra-slide-level and inter-slide-level embeddings are attracted and repelled via
contrastive loss, respectively. This resulted in slide-level representations with self-supervision. We
applied our method to two tasks— (1) non-small cell lung cancer subtyping (NSCLC) as a classifica-
tion prototype and (2) breast cancer proliferation scoring (TUPAC16) as a regression prototype—and
achieved an AUC of 0.8641 ± 0.0115 and correlation (R2) of 0.5740 ± 0.0970, respectively. Ablation
experiments demonstrate that the resulting unsupervised slide-level feature space can be fine-tuned
with small datasets for both tasks. Overall, our method approaches computational pathology in a
novel manner, where meaningful features can be learned from whole-slide images without the need
for annotations of slide-level labels. The proposed method stands to benefit computational pathology,
as it theoretically enables researchers to benefit from completely unlabeled whole-slide images.

Keywords: deep learning; histopathology; self-supervised; contrastive; multiple instance learning

1. Introduction

Histopathological analyses play a central role in the characterization of biological
tissues. Increasingly, whole-slide imaging (WSI) of tissues, in tandem with inexpensive
storage and fast networks for data transfer, has made it possible to curate large databases
of digitized tissue sections [1]. Furthermore, advances in deep learning methods have
enabled scientists to develop automated histopathological analysis methods on whole-slide
images, ranging from primitive applications such as in nuclei detection [2] and in mitosis
detection [3] to more advanced applications, such as tumor grading [4].
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Despite successful application to various diagnostic and prognostic problems [1,5],
developing methods for computational pathology perpetually rely on painstakingly anno-
tated nuclei, cells, and tissue structures [6–10]. This is driven primarily by the prevalence
of annotation-heavy supervised methods in more generalized computer vision applica-
tions [11–13]. Unlike general computer vision applications and other medical imaging
modalities [14], reliance on annotations heavily limits research in computational pathology,
as annotations must be performed by expert pathologists [15]. Furthermore, annotations
are labor-intensive and often subject to significant inter- and intra- reader variability [1].
Finally, medical image datasets are vanishingly small compared to general-purpose com-
puter vision datasets [14,16]. It is no wonder that recent high-profile publications in
computational pathology have moved away from fully-supervised methods to semi- and
weakly-supervised methods [17–20].

In continuance with recent trends towards less supervision, our goal is to develop an
unsupervised method to learn meaningful, compact representations of WSIs. Such meth-
ods exist in other medical imaging modalities [14] but to our knowledge, no such method
currently exists for computational pathology. However, several unsupervised (specifically,
self-supervised) methods exist to learn patch-wise representations within computational
pathology. These works define pretext tasks from which patch-wise feature representations
are learned. Such pretext tasks include contrastive predictive coding [21], contrastive
learning on adjacent image patches [22], contrastive learning using SimCLR [23–25], and
SimSiam [26] with an additional stop-gradient for adjacent patches [27]. Many methods
utilize generic features derived from ImageNet as their patch-wise feature representa-
tions [17,18,28]. Neural image compression [29] compares several self-supervised pretext
training tasks to create feature-rich WSI representations but is impeded by dimensional-
ity [30], due to the sheer number of parameters associated with each compressed slide.
Finally, several autoencoder and derivative methods have been applied to learn compact
patch-wise representations without labels to a variety of application areas, including nuclei
detection [31,32], cell detection and classification [33], drug efficacy prediction [34], tumor
subtype classification [35], and lymph node metastases detection [36].

By and large, these studies have three main findings. Firstly, self-supervised pretext
tasks for learning patch-wise features tend to outperform ImageNet features. This is
probably because ImageNet features are generic with respect to everyday objects, whereas
features derived from self-supervision are purely based on WSI patches. Furthermore, the
transformation space can be tweaked to suit pathology (i.e., scale invariance). Secondly,
there is a saturation point, at which time adding more patches to the pretext tasks does
not offer downstream performance gains. This result is not reflected in general-purpose
self-supervised learning, where more images result in higher downstream performance.
Stacke et al. [23] propose that this may be due to the redundancy in WSI patches (i.e.,
anatomies tend to be repeated). Thirdly, fewer labels are required when compared to
training from scratch or transfer learning from ImageNet weights. This is also reflected in
general-purpose applications.

Due to these promising empirical findings and theoretical perspectives for patch-wise
classification of histopathology images, a few studies have combined self-supervised patch-
level representations with weakly supervised multiple instance learning (MIL) [37,38]
methods (i.e., for WSI analysis). Lu et al. [21] utilized contrastive predictive coding on WSI
patches as a pre-training step for subsequent MIL-based classification of breast cancer WSIs.
Another study by Li et al. [24] utilized SimCLR [39] on WSI patches as a pre-training step
for subsequent MIL-based classification. Fashi et al. [40] utilized contrastive learning based
on site-of-origin labels as pseudo-labels for pre-training then applied attention pooling on
the resulting embeddings to classify WSIs. All studies demonstrated similar benefits at the
slide level that were considered at the patch level.

Despite promising research showing the benefits of self-supervision and MIL, one as-
pect of WSI analysis that has yet to be addressed in the literature is whether self-supervision
can be applied at the slide level via multiple instance learning. Thus, we propose a novel
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fusion of self-supervision and MIL, which we call SS-MIL, as a method for learning un-
supervised representations for WSIs. Our method first trains a patch-wise encoder using
SimCLR [39]. Then, each patch is embedded to yield a collection of instances for each WSI.
Each collection is divided into multiple subsets, each representing the WSI, which MIL
then fuses to yield multiple slide-level representations. Through this operation on the same
slide, a positive pair for contrastive learning is created. Similarly, a negative pair is created
for a different slide. This MIL model is then trained using contrastive loss. The resulting
slide-level representations are therefore created without any supervision. We then apply
supervision to these unsupervised representations in both a classification and regression
task. For classification, we subtype NSCLC into lung adenocarcinoma (LUAD, n = 541) and
squamous cell carcinoma (LUSC, n = 512) using the publicly available Cancer Genome Atlas
(TCGA)-NSCLC dataset. For regression, we score the degree of proliferation (i.e., mitotic
activity) in breast cancer using the publicly available TUPAC16 dataset. We demonstrate
through ablation experiments that the unsupervised slide-level feature space can easily be
fine-tuned using a fraction of labeled slides, indicating the unsupervised feature space is
meaningful. Not only is SS-MIL a novel, label-less approach to computational pathology,
but it also creates an opportunity in which vast amounts of unlabeled or irrelevantly labeled
WSIs may benefit the development of models in computational pathology.

Our main contributions in this paper are: (1) a novel fusion of self-supervision at
the slidelevel; (2) an unsupervised method (SS-MIL) to learn representations of WSIs;
(3) empirical evidence suggesting that ImageNet features may outperform self-supervised
features at the slide-level, contrary to previous studies; and (4) empirical evidence via
ablation studies demonstrating that the resulting unsupervised feature space is rich.

2. Related Work
2.1. Self-Supervised Learning

Self-supervised learning is a subclass of unsupervised learning in which feature-rich
latent space representations are obtained without the need for manual labels. Rather,
the objective is altered such that it relies only on the data itself. Early deep learning
approaches focused primarily on generative approaches in which representations are
learned as a byproduct of image reconstruction from the learned latent space [41]. For
example, one may add noise to an image, train an autoencoder [42] to reconstruct the
image, and then utilize the learned latent space as a representation of the input image. Such
methods were challenged and matched by very popular GAN-based [43] approaches which
used adversarial (and sometimes reconstruction-based) objectives [44–46]. Alternatively,
pseudo-labels can be artificially created from the data directly. Such pseudo-labels have
traditionally been generated by exploiting the spatial characteristics of images—including
relative position, jigsaws, or rotation [47–49]. Such methods perturb the image using said
transformations and then minimize an objective attempting to predict said parameter
associated with said transformation.

More recently, contrastive learning approaches to self-supervised learning have be-
come increasingly popular. These methods draw their inspiration from the perturbation
aspect of self-supervision. Their key assumption is that the learned feature representations
of any two random perturbations of the same image should be similar, colloquially called
“positive pairs”. Conversely, the learned representations for two perturbed images not from
the same image should not be the same, colloquially called “negative pairs”. Furthermore,
the set of perturbations (or “transformations” colloquially) is expanded to include simple
image augmentations (resizing, flipping, color jittering, etc.). An analogous effect is derived
from data augmentation, in which several of the same transformations are applied in order
to increase the model robustness [50]. Several popular implementations exist to learn
effective transformation-invariant representations [26,39,51–57]. Other similarly-inspired
methods do away with negative pairs and instead exploit a slightly different aspect of
deep learning models to learn effective representations. These exploitable features include
temperature-based loss of function, exponential moving averages of model weights in a
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teacher/student fashion, comparing prototype feature representations instead of raw latent
representations, and sparsity [54,55,57,58]. These general-purpose self-supervised methods
have shown that the resulting feature space is so rich that only 1% of the original training
labels are required to train a classifier that rivals that trained with full supervision. Thus,
self-supervised methods within computational pathology are of particular interest, as labels
(or annotations) are expensive, time-consuming, and subject to inter-reader variability [59].

Several studies have applied patch-wise self-supervised methods to computational
pathology. A large-scale study by Ciga et al. [60] applied SimCLR [39] to 57 distinct
histopathology datasets for patch-wise classification, regression, and segmentation. They
showed that self-supervised pre-training and then fine-tuning on a small, labeled dataset
consistently performed on par with full supervision using ImageNet pre-training. Fur-
thermore, they showed that their pre-trained model outperformed ImageNet when labels
were limited. Moreover, they demonstrated that the number of patches utilized during
pre-training has a saturation point, after which no additional downstream performance
is obtained (~50,000). Finally, they showed that combining image patches from different
sites did not improve downstream performance and was comparable to single-site per-
formance. The same conclusions were drawn earlier by Stacke et al. [23], who applied
SimCLR to patch-wise breast cancer and skin cancer classification. They also showed
that the set of optimal transformations changed depending on the dataset utilized. Finally,
Srinidhi et al. [61] developed a custom contrastive learning-based self-supervised model
based on resolution sequence ordering (rather than transformations). They showed that
their histopathology-specific model outperformed a general-purpose contrastive learning
self-supervised model (i.e., MoCo [58]) on three datasets—tumor metastasis detection,
tissue type classification, and tumor cellularity quantification—under annotation-limited
settings. Lastly, Wang et al. developed a self-supervised method combined with self-
attention to learn the patch-level embeddings [62,63], and then performed slide-level image
retrieval based on said embeddings [64].

2.2. Multiple Instance Learning (MIL)

MIL [37,38] is a machine learning method where labels are assigned to collections
(called bags) rather than individual examples (called instances), as in conventional machine
learning. For histopathological analyses, bags consist of tessellated WSIs, in which each
tile is a small unannotated image sampled from the WSI. It is popular for WSI analyses, as
only slide-level (i.e., weak) labels are required for its training and implementation, thus
negating the need for tissue-level annotations.

Courtiol et al. [65] were the first to tackle WSI analysis with MIL. They applied their
MIL method to a Camelyon16 [66], which consists of sentinel lymph nodes that are either
present or absent in breast cancer metastases. Their method achieved a high area-under-
the-curve (AUC) and attended specifically to pathologist-annotated metastases (rather than
arbitrary tissue regions). This was notable at the time, as previous methods had relied on
tediously annotated tissue ROIs. Several studies have since followed suit [4,17,20,25,67–70].

Metastasis detection is more difficult than tasks dealing with more generalized
cancer presence or absence, in which the diseased tissue is larger and more diffuse.
Campenella et al. [4] conducted the first study aiming to develop and apply an MIL
method for this task. They applied their method to three large sets of WSIs, includ-
ing an in-house prostate cancer dataset (n = 12,132), an external prostate cancer dataset
(n = 12,727), and a skin cancer basal cell carcinoma dataset (n = 9962). Their results showed
that MIL on large datasets outperforms strong supervision on small datasets. This was
significant, as previous studies relied on pathologists’ annotations of tumor regions in small
WSI datasets (with the obvious exception of earlier work by Courtiol et al.). Several studies
have similarly applied MIL for tumor presence or absence classification in WSIs [34–39].

MIL has also been applied to subtyping tasks. Courtiol et al. [65] were the first to apply
MIL to subtype cancer using WSIs—specifically, subtyping NSCLC into LUAD and LUSC
using WSIs available from TCGA [71]—and drew similar conclusions and implications
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from their work with Camelyon16. The standard set by Courtiol et al. has endured through
subsequent studies [17,25,68–70,72–74]. Wang et al. added an addition subtype for small-
cell lung cancer (SCLC) [43] using an in-house dataset. Beyond lung cancer, other subtyping
tasks have also been studied using MIL, most popularly renal-cell carcinoma subtyping into
papillary, chromophobe, and clear cells [17,25,69]. Hashimoto et al. subtyped lymphomas
into diffuse large B-cell (DLBCL) and non-DLBCL [75]. Lu et al. subtyped gliomas into
glioblastoma, oligodendroglioma, and astrocytoma while ignoring oligoastrocytoma [76].

Finally, MIL has been applied to grading—most popularly, Gleason grading [77,78].
Bulten el al. [79] removed the need for manual annotations by utilizing two pre-trained
models to (1) delineate a rough tumor outline and (2) remove epithelial tissue from WSIs.
Then, all tissue regions were labeled with the pathologist’s reported Gleason pattern.
During the training of their model, only “pure” biopsies were included (i.e., 3 + 3, 4 + 4,
and 5 + 5). They showed that despite this weak labeling strategy, their method was able
to accurately score Gleason grades outside the original domain (i.e., 3 + 4 and 4 + 3, etc.)
and had a high consensus with experts. Subsequent studies have also applied MIL for
Gleason grading [80,81], grading dysplasia of various cancers (i.e., normal, low-grade, and
high-grade) [82,83], and grading of colorectal cancer (i.e., low-grade and high-grade) [84].

2.3. Self-Supervision and MIL

The majority of the MIL studied and mentioned thus far utilize models pre-trained
on ImageNet as a feature extractor, in order to embed WSI patches into a feature space
for subsequent utilization by some MIL algorithm. Given that some studies applying self-
supervision to WSI patches showed improved performance over the ImageNet baseline,
a natural question arises—why not use self-supervision for pre-training? Thus, several
studies have followed suit. Lu et al. utilized contrastive predictive coding on WSI patches
as a pre-training step for subsequent MIL-based classification of breast cancer WSIs [21].
Not only did their method outperform ImageNet pre-training, but they also showed that
reducing the number of labels per class by 80% during MIL training did not significantly
degrade performance. Another study by Li et al. [24] utilized SimCLR on WSI patches as a
pre-training step for subsequent MIL-based classification. Alike Lu et al., they showed that
these features outperformed ImageNet features on downstream MIL classification tasks.
Furthermore, they showed the same increase in performance for multiple datasets and
for several MIL methods (not just their own). Liu et al. [27] reached similar conclusions,
albeit utilizing a slightly modified self-supervised objective which, in addition to exploiting
transformation-invariance, incorporated locality-invariance. Rather remarkably, they noted
that neighboring WSI patches look the same and thus should have similar embeddings.
Finally, Fashi et al. utilized contrastive learning based on site-of-origin labels as pseudo-
labels for pre-training, then applied attention pooling on the resulting embeddings to
classify WSIs [40]. They astutely noted that site-of-origin is nearly always available and
thus, should be incorporated into the self-supervised objective (i.e., as a label).

3. Methods
3.1. SimCLR for Effective Patch-Wise Representations

SimCLR [39] is a framework for learning effective representations of images without
labels (i.e., self-supervised). The model consists of two parts: an encoder followed by a
projection head. A pair of images is generated through random transformation methods
(such as cropping, resizing, or color jittering) of an image from the dataset and fed into
the network. This pair is known as a positive pair, as it is generated from the same source
image. Conversely, a negative pair is a pair not generated from the same source image.
Contrastive loss is then used to optimize the network. This loss function essentially rewards
positive image pairs for which the outputs of the projection head are similar (in terms of
cosine similarity) and penalizes negative image pairs for which the projection outputs are
similar. In essence, the network learns embedded representations of input images invariant
to their transformations. This is depicted in Figure 1.
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Figure 1. Contrastive learning as presented in SimCLR [39]. The input images xi and xj are augmented
via random transformations, embedded via encoder f to yield embedding h, and then projected via
g to yield projection z. The contrastive objective maximizes the similarity between positive pair zi1

and zi2 as well as positive pair zj1 and zj2 (i.e., “attract”) while minimizing the similarity between all
other (negative) pairs (i.e., repel).

Using this intuitively simple framework, the resulting encoder outputs representations
of images that are easily discriminated by a single-layer multilayer perceptron (MLP) for
classification purposes [39]. Their discriminative performance matches the performance of
equivalent fully supervised methods. Several self-supervised methods inspired by Sim-
CLR have consistently demonstrated that the pursuit of transformation invariance yields
meaningful representations of images [18,54,55,85]. Self-supervised methods cannot be
applied directly to WSIs, as the images are too large. Instead, self-supervision operates
at the tile level. Several studies have carried such experiments out for tile-level classifi-
cation [23,24,27,60]. This is justified by the observation that WSI tiles exhibit some of the
same variation that SimCLR tries to achieve through transformation invariance. When a
tile is sampled from a WSI—whether it be at different magnifications (scale), with slightly
different staining (color), or with rotation—the learned representation of that tile should be
the same. This is because regardless of scale, stain variations, and rotation, the information
contained in that tile should be the same. Therefore, the same transformation variances that
SimCLR attempts to minimize also apply to WSI tiles. We adopt SimCLR-style contrastive
learning for WSI tiles.

However, there is an additional aspect unique to pathology that does not necessarily
apply to natural images typically used in SimCLR applications. Histopathology necessitates
local invariance—the diagnostic or prognostic information contained in a sampled tile
should be similar to adjacent or overlapping tiles, and thus the learned representations
should be similar. This is because microanatomy is localized—the neighbor of a random tile
within a specific microanatomy (stroma, tumor, inflammation, etc.) is likely to be a part of
the same anatomy and likely contains the same information. For example, if a pathologist
makes an assessment such as counting positive cells in a high-power field, shifting that field
over a few hundred microns should not make a significant difference in terms of diagnosis
or prognosis, if any. We note that we are not the first to recognize this aspect of pathology
with respect to self-supervision [27], although it was independently incepted. Thus, in
addition to the transformation invariances implemented by SimCLR, we propose locality
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invariance. This yields a family of transformations—rotation, adjacency, and scale—which
the proposed model learns to encode into an invariant representation. This will be the first
way we will co-opt SimCLR in the proposed model—contrastive learning will be used to
build representations of tiles that are invariant to transformed tiles. Figure 2 depicts this
contrastive framework.
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Figure 2. SimCLR learns effective representations of tiles from WSIs, which are invariant to rotation,
scale, and adjacency. Each input tile is subject to two random transformations, both composed of a
random rotation, selection of an adjacent tile, and random rescaling. This yields two transformed
tiles for each input tile. All transformed tiles are encoded via a feature extractor, projected via a fully
connected layer, and finally contrasted with transformations of all other input tiles and attracted to
transformations of itself.

3.2. Multiple Instance Learning (MIL)

MIL [37,38] is a machine learning method where labels are assigned to collections
(called bags) rather than individual examples (called instances), as in conventional ma-
chine learning. For histopathological analyses, bags consist of tessellated WSIs, in which
each tile is a small unannotated image sampled from the WSI. It is popular for WSI
analyses [4,17,19,20,86,87], as only slide-level labels are required for its training and imple-
mentation, thus negating the need for tissue-level annotations.

Arguably, the most successful adaptation of MIL within WSI analysis is attention-
based (AB) MIL [17–21,86,87]. The attention-based pooling mechanism [88] automatically
learns to dynamically weight embedded instances into a bag-level feature vector. A weight
is automatically computed for each embedded instance, and then a weighted sum com-
bines them into a single, bag-level instance corresponding to a slide-level embedding.
Classification or regression is then performed on this bag-level embedding.

ak =
exp
{

wTtanh
(
VhT

k
)
·sigm

(
UhT

k
)}

∑K
j=1 exp

{
wTtanh

(
VhT

j

)
·sigm

(
UhT

k
)} (1)

z =
K

∑
k=1

akhk (2)

Implementation of the attention mechanism consists of a simple two-layer fully con-
nected network which passes each instance embedding (hk) through two parallel layers of
the network (V, U). Then, it applies a tanh and sigmoid activation function to the respective
results, dots the results, next passing the fused activation through another layer (wT), which
maps the vector into a single value, its attention weight (ak). Equation (1) summarizes these
interactions. The weighted sum of each embedded instance and its attention weight yields
a bag-level instance (z), as in Equation (2). The parameters (V, U, w) for this two-layer
neural network are automatically learned through model training.
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3.3. Contrastive MIL

Contrastive learning is also applied on the MIL level. Commonly, MIL is utilized in
a supervised manner to predict a label associated with the bag. For WSIs, this can be a
diagnostic outcome. Inspired by SimCLR, we propose a novel method to learn effective
representations of WSIs without supervision, using contrastive learning with MIL. With a
transformation-invariant tile encoder trained as in Figure 2, pairs of bags are subsampled
from the resulting tile encodings. These MIL bags serve as “transformations” of the WSI,
similar to the color, scale, and rotation transformations of SimCLR. AB-MIL is used to
aggregate MIL bags into bag-level encodings and similar to SimCLR, project via a projection
head. Contrastive loss is then used to attract bag-level projections from the same slide and
to contrast bag-level projections from different slides. With this framework, a label-free
slide-level feature vector is created. These steps are summarized in Figure 3.
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Figure 3. Encodings learned as in Figure 2 are utilized to construct multiple MIL bags per WSI. Each
bag is aggregated into a bag-level encoding via attention-based MIL, trained via contrastive learning.
Here, each bag-level encoding from a given slide acts as a “transformation” and attracts each other
while contrasting with bag-level encoding from other slides. Note that the example here is only for
one training iteration. Each iteration yields different pairs of MIL bags for each slide.

Our hypothesis with this latter framework is that the learned bag-level encodings
of each slide contain features that are unique to each slide. Usually, in attention-based
MIL, attention weights bias the bag-level encodings towards instances that correlate to the
slide’s label. For example, when attention-based MIL is trained on a set of WSIs labeled
for tumor presence or non-presence, tiles within the tumor receive higher attention [17,18].
This is what gives the model a degree of interpretability. However, for the proposed model,
there are no labels initially. Instead, the objective is to force differently sampled MIL bags of the
same slide to map to the same bag-level encoding and make these bag-level encodings as different as
possible from bag-level encodings of other slides. To satisfy these constraints, we hypothesize
that microanatomies that discriminate from one another are attended to. For example,
assume we have two slides—both share two kinds of microanatomies, but one has an
additional microanatomy. To maximize the contrast between these two slides, the bag-level
encoding should be biased towards the unique microanatomy, which is not shared between
the two slides. This bias (or weight) towards unique microanatomies (or tiles) is learned
by SS-MIL. Ultimately, we hypothesize that the features learned by SS-MIL in bag-level
encodings correspond to features of the slide with the maximum variance across the dataset.
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3.4. Datasets

We utilize two publicly available datasets to test the proposed method. TCGA-NSCLC
is a dataset of 1053 non-small-cell lung cancer H&E WSIs. The task is to subtype these
biopsies into LUAD(n = 541) and LUSC (n = 512). This dataset serves as a “classification”
prototype. The second dataset is TUPAC16 [89], which consists of 500 breast cancer H&E
WSIs. The task is to predict a continuous proliferation score, reflecting the degree of mitotic
activity within the tissue. This serves as a “regression” prototype. All slides are resampled
to 20× magnification, regardless of the data source.

3.5. Experimental Design

A five-fold cross-validation was applied to each dataset. The proportion of training,
validation, and testing slides was 60%, 20%, and 20%, respectively, in which each testing set
is mutually exclusive from all other testing sets. These folds were kept consistent through
each stage of model training and for comparison methods.

SimCLR pre-training was conducted using ResNet50 as a backbone with standard
scaling, color jittering, and contrast jittering augmentations. Additionally, a separate set
of experiments were carried out in which random neighboring tiles (i.e., those within one
step of the anchor tile) were selected as augmentations of the anchor tile. Learning rate,
optimizer, batch size, and projected feature dimensions were 0.001, Adam, 0.5, and 128,
respectively. Typically, SimCLR is trained for hundreds of epochs without subsampling
the data. However, recent studies have reported that increasing the training time beyond
20 epochs and exhaustively sampling all slides does not improve the resulting discrimina-
tive power of tile embeddings for histopathology images [23,60]. Therefore, our models
were trained for 20 epochs and stopped if validation loss did not decrease for 5 epochs.
1000 tiles were randomly selected from each slide for pre-training. However, all tiles were
passed through the resulting self-supervised encoder during inference.

For SS-MIL, models were trained using SimCLR embeddings with a learning rate of
0.0002, Adam optimizer with a weight decay of 10−5, and a batch size of 70. For positive
pair generation, each bag was subsampled (with replacement) for one-quarter of the total
instances in the bag. Contrastive loss during this step utilized a temperature parameter
of 1.0. Models were trained for 1000 epochs, and the model with the lowest validation
loss was saved. A separate set of SimCLR models were trained with neighboring tiles as
additional augmentation. As in recent studies comparing instance-level self-supervised
methods, we (1) fine-tune the resulting contrastive MIL model with a new fully-connected
layer along with slide-level labels. Then, we (2) freeze the resulting contrastively MIL
model and train a new fully connected layer along with slide-level labels, and (3) perform
an ablation study in which only 25%, 50%, and 75% of the labels are utilized for both (1)
and (2). Finally, we (4) compare with fully-supervised attention-based MIL, CLAM [17]
and Attention2majority [20], using both SimCLR embeddings as well as generic ImageNet
embeddings derived from a pre-trained ResNet50. For Attention2majority, we test different
numbers of instances, as in the original study. For TCGA-NSCLC, we report the resulting
accuracy for each class and AUC, and for TUPAC, we report the Pearson correlation.
We refer to self-supervision via SimCLR as “SSL” and self-supervision via SimCLR with
neighboring tiles as additional augmentation as “SSLn” in the Results.

4. Results
4.1. NSCLC Subtyping

Table 1 reports the results of the NSCLC subtyping task. Based solely on AUC, the
highest performance was achieved using CLAM and ImageNet features, with an AUC
of 0.9434 ± 0.0140. However, nearly the same performance was achieved when utilizing
plain AB-MIL with ImageNet features, with an AUC of 0.9415 ± 0.0130. Furthermore,
ImageNet features outperformed the same methods with SimCLR-derived features, with
around a 0.02 decrease in AUC. However, these SimCLR-derived features did exhibit more
balance between sensitivity and specificity comparatively. Furthermore, AB-MIL seems to
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perform better when utilizing SSL or SSLn features. As for Attention2majority, we again
observed a slight decrease in overall performance, especially specificity. As expected, the
more instances included in each bag, the higher the overall performance, regardless of
feature set. This is consistent with previous findings [20]. Finally, SS-MIL achieved an
AUC of 0.8641 ± 0.0115 and 0.8212 ± 0.0129 for respective SimCLR-derived and modified
SimCLR-derived features.

Table 1. NSCLC subtyping sensitivity, specificity, and the AUC and TUPAC proliferation scoring cor-
relation (R2) for various methods: AB-MIL [88], CLAM [17], Attention2majority [20] (with increasing
number of instances), and the proposed method. SSL refers to self-supervision via SimCLR, while
SSLn refers to self-supervision via SimCLR with neighboring tiles as additional augmentation.

NSCLC TUPAC

Method Sensitivity Specificity AUC R2

AB-MIL
ImageNet features 0.8528 ± 0.0323 0.8779 ± 0.0330 0.9415 ± 0.0130 0.6738 ± 0.0432
SSL features 0.8473 ± 0.0279 0.8461 ± 0.0352 0.9259 ± 0.0188 0.6790 ± 0.1108
SSLn features 0.7465 ± 0.0711 0.8157 ± 0.0453 0.8674 ± 0.0246 0.5776 ± 0.1075

CLAM
ImageNet features 0.8800 ± 0.0376 0.8622 ± 0.0419 0.9434 ± 0.0140 -
SSL features 0.8427 ± 0.0430 0.8407 ± 0.0171 0.9240 ± 0.0147 -
SSLn features 0.7373 ± 0.0503 0.7879 ± 0.0779 0.8479 ± 0.0553 -

Attention2majority
SSL features

100 (instances) 0.8047 ± 0.0707 0.7406 ± 0.0843 0.8504 ± 0.0177 0.5518 ± 0.0567
200 0.8002 ± 0.0463 0.7525 ± 0.0731 0.8651 ± 0.0284 0.5943 ± 0.0471
500 0.8214 ± 0.0374 0.7663 ± 0.0755 0.8719 ± 0.0244 0.6218 ± 0.0892
1000 0.8480 ± 0.0180 0.7565 ± 0.0652 0.8770 ± 0.0119 0.6361 ± 0.0855
2000 0.8486 ± 0.0284 0.7649 ± 0.0599 0.8848 ± 0.0151 0.6431 ± 0.0783
5000 0.8609 ± 0.0296 0.7455 ± 0.0230 0.8916 ± 0.0192 0.6492 ± 0.0877
10,000 0.8708 ± 0.0103 0.7237 ± 0.0349 0.8931 ± 0.0152 0.6505 ± 0.0879

SSLn features
100 (instances) 0.7708 ± 0.0822 0.7394 ± 0.0759 0.8246 ± 0.0453 0.4161 ± 0.1163
200 0.7730 ± 0.0920 0.7573 ± 0.0842 0.8347 ± 0.0320 0.4422 ± 0.0872
500 0.7672 ± 0.1049 0.7465 ± 0.0959 0.8408 ± 0.0289 0.5308 ± 0.0586
1000 0.7687 ± 0.0979 0.7628 ± 0.0648 0.8425 ± 0.0403 0.4888 ± 0.0655
2000 0.7811 ± 0.0907 0.7576 ± 0.0401 0.8452 ± 0.0352 0.5192 ± 0.0551
5000 0.8092 ± 0.0983 0.7280 ± 0.0983 0.8478 ± 0.0329 0.5066 ± 0.0889
10,000 0.8208 ± 0.0857 0.7334 ± 0.0620 0.8490 ± 0.0237 0.4718 ± 0.1066

SS-MIL (proposed)
ImageNet 0.7363 ± 0.0315 0.7533 ± 0.0521 0.8245 ± 0.0392 0.5418 ± 0.0330
SSL features 0.8720 ± 0.0361 0.7888 ± 0.0336 0.8641 ± 0.0115 0.5740 ± 0.0970
SSLn features 0.8251 ± 0.0509 0.7598 ± 0.0328 0.8212 ± 0.0129 0.4611 ± 0.2058

4.2. TUPAC Proliferation Scoring

Table 1 also reports the results of the TUPAC proliferation scoring task. The high-
est R2 was 0.6790 ± 0.1108, achieved using AB-MIL with SimCLR-derived features and
closely followed by the same method with ImageNet features with R2 of 0.6738 ± 0.0432.
However, we noted that though the average R2 was slightly higher for SimCLR-derived
features, a much larger standard deviation was observed, perhaps suggesting that Ima-
geNet features are superior. Moving on, a stark drop-off in performance was observed
when utilizing modified SimCLR-derived features, with an R2 of 0.5776 ± 0.1075. Like the
NSCLC subtyping task, Attention2majority performance increased when the number of
instances increased. Likewise, SS-MIL did not achieve the same level of performance as
the supervised counterparts, achieving an R2 of 0.5764 ± 0.0996 and 0.4018 ± 0.0828 for
respective SimCLR-derived and modified SimCLR-derived features.

4.3. Ablation Studies

Table 2 reports the result of the NSCLC and TUPAC ablation studies. Overall, we
observed an increase in performance with more slides in the training set, as previously
reported in other studies [17,20,23]. As in the results reported in Table 1, SimCLR-derived
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features outperformed respective SimCLR-derived features with neighboring tiles utilized
as an additional augmentation. For the NSCLC subtyping task, supervision with AB-
MIL clearly exceeded the performance of fine-tuning SS-MIL, which in turn exceeds the
performance of the proposed model. In each case, we observed a decrease in AUC of
0.02 and 0.04 relative to 75% when 50% and 25% of the slides were used, respectively.
For the TUPAC proliferation scoring task, fine-tuning SS-MIL outperformed supervised
attention-based MIL, which outperformed SS-MIL, unlike the NSCLC subtyping task.

Table 2. NSCLC and TUPAC ablation study. Supervised refers to supervised attention-based MIL
from scratch. Fine-tune refers to fine-tuning SS-MIL model. Frozen refers to training only a new
linear layer after training the SS-MIL. SSL refers to self-supervision via SimCLR, while SSLn refers to
self-supervision via SimCLR with neighboring tiles as additional augmentation.

NSCLC TUPAC

Method Sensitivity Specificity AUC R2

SSL features
Supervised

25% 0.7898 ± 0.0967 0.7001 ± 0.1220 0.8204 ± 0.0521 0.4214 ± 0.1853
50% 0.8059 ± 0.0769 0.7672 ± 0.0747 0.8633 ± 0.0302 0.4680 ± 0.1848
75% 0.8268 ± 0.0537 0.7795 ± 0.0705 0.8858 ± 0.0212 0.5453 ± 0.0711

Fine-tune
25% 0.7951 ± 0.0796 0.6691 ± 0.1165 0.8081 ± 0.0602 0.4898 ± 0.0841
50% 0.8153 ± 0.0655 0.7336 ± 0.0661 0.8545 ± 0.0277 0.5320 ± 0.0936
75% 0.8537 ± 0.0670 0.7260 ± 0.0837 0.8744 ± 0.0175 0.5692 ± 0.0831

Frozen
25% 0.7176 ± 0.0932 0.6784 ± 0.0937 0.7787 ± 0.0375 0.3912 ± 0.0940
50% 0.7651 ± 0.0355 0.7597 ± 0.0477 0.8358 ± 0.0249 0.4289 ± 0.1012
75% 0.7721 ± 0.0405 0.7696 ± 0.0452 0.8532 ± 0.0138 0.4283 ± 0.0966

SSLn features
Supervised

25% 0.7453 ± 0.1107 0.4948 ± 0.1320 0.6749 ± 0.0534 0.3311 ± 0.0976
50% 0.7236 ± 0.0960 0.6139 ± 0.1707 0.7465 ± 0.0585 0.4059 ± 0.0914
75% 0.7881 ± 0.0748 0.6331 ± 0.1448 0.7871 ± 0.0581 0.4603 ± 0.0925

Fine-tune
25% 0.6627 ± 0.3339 0.5047 ± 0.3551 0.7079 ± 0.0574 0.3950 ± 0.1203
50% 0.8239 ± 0.1157 0.5140 ± 0.2054 0.7690 ± 0.0543 0.4588 ± 0.0957
75% 0.8385 ± 0.0779 0.5306 ± 0.2163 0.7916 ± 0.0572 0.5078 ± 0.1040

Frozen
25% 0.6981 ± 0.0765 0.6740 ± 0.0658 0.7461 ± 0.0293 0.3731 ± 0.1376
50% 0.7106 ± 0.0503 0.7153 ± 0.0686 0.7846 ± 0.0264 0.4160 ± 0.1537
75% 0.7418 ± 0.0447 0.7373 ± 0.0460 0.8097 ± 0.0235 0.4547 ± 0.1608

ImageNet
Supervised

25% 0.8112 ± 0.0725 0.8123 ± 0.0696 0.8958 ± 0.0150 0.5670 ± 0.0672
50% 0.8261 ± 0.0679 0.8569 ± 0.0501 0.9197 ± 0.0153 0.6291 ± 0.0627
75% 0.8602 ± 0.0664 0.8537 ± 0.0408 0.9288 ± 0.0117 0.6446 ± 0.0385

Fine-tune
25% 0.7776 ± 0.0944 0.8188 ± 0.0788 0.8863 ± 0.0227 0.5511 ± 0.0699
50% 0.8011 ± 0.0655 0.8743 ± 0.0512 0.9196 ± 0.0173 0.5986 ± 0.0523
75% 0.8245 ± 0.0684 0.8649 ± 0.0510 0.9257 ± 0.0118 0.6297 ± 0.0455

Frozen
25% 0.7065 ± 0.0889 0.6512 ± 0.0975 0.7324 ± 0.0668 0.4827 ± 0.0552
50% 0.7497 ± 0.0471 0.7383 ± 0.0660 0.8205 ± 0.0329 0.5072 ± 0.0696
75% 0.7663 ± 0.0365 0.7474 ± 0.0470 0.8386 ± 0.0256 0.5222 ± 0.0503

5. Discussion
5.1. SS-MIL Can Leverage Completely Unannotated Datasets

The lack of need for labels, tissue-level or slide-level, opens up several opportunities
for research that are simply not possible with existing methods. SS-MIL allows for datasets
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to be combined even though they may have different kinds of slide-level labels or if no
slide-level labels exist for a particular data source (i.e., missing data). For example, the
TUPAC16 dataset could be combined with the TCGA-BRCA (breast invasive carcinoma).
Our proposed model could be trained on TCGA-BRCA and then either frozen or fine-tuned
on TUPAC16, or vice-versa. Furthermore, SS-MIL could be trained on both TCGA-BRCA
and TUPAC16 and then frozen or fine-tuned on a smaller, external dataset. The benefit
SS-MIL derives from combining different datasets to learn slide-level representation is
impossible with existing methods. It is not just publicly available datasets that could
theoretically be combined, and benefit derived from. Hospitals and clinical trials have
large swaths of WSIs which are easily accessible, but their slide-level labels are either
prohibitively difficult to obtain, irrelevant to the problem of interest, or non-existent [90,91].

5.2. SS-MIL Still Underperforms Compared to Supervised Methods

Overall, SS-MIL’s performance is not on par with supervised methods’ performance
in both tasks. However, this is to be expected. All supervised comparison—attention-based
MIL, CLAM, and Attention2majority—can learn slide-level feature spaces that can more
easily discriminate NSCLC subtypes or regress proliferation scores. Furthermore, each of
these methods, whether utilizing SimCLR-derived features or ImageNet features, partly
consist of a shallow feature extractor, allowing the network to learn a tile-level feature
space which ultimately contributes to a more discriminable slide-level feature space. By
comparison, SS-MIL does not benefit from these advantages. Instead, it entirely relies on
the target of transformation invariance to learn meaningful tile-level features. Likewise, SS-
MIL relies on the power of contrastive learning and attention to learn a sampling-invariant
representation of each slide rather than a label-dependent feature space.

This is evidenced by three observations. Firstly, fine-tuning SS-MIL clearly outper-
forms itself when training a new linear layer on the unsupervised slide-level representations.
With fine-tuning, only the starting point of the network is different, and slide-level feature
space dependent on the slide-level labels is more easily achieved. Secondly, training any of
the comparison methods using SimCLR-derived features and slide-level labels outperforms
fine-tuning. In other words, each supervised method can learn a favorable tile-level feature
space in which slide-level representations are more easily distinguished. Thirdly, during
model training, we observed that all supervised methods always yielded training set losses
approaching zero. Of course, this did not result in model overfitting, as early stopping
criteria was based on validation loss. However, this behavior was in strong contrast to
SS-MIL. No matter how long SS-MIL was trained, training loss always converged to a
level well-above zero and nearly matched validation and testing losses. This observation
supports the notion that supervised comparisons learn a slide-level feature space that
benefits greatly from labels. We also believe this observation indicates that SS-MIL is
self-regularizing to a degree. In summary, there are several benefits to supervised methods
that SS-MIL does not benefit from.

Despite the advantages of supervision, the results of the ablation study offer some
respite. The results suggest that SS-MIL still learns a robust feature space. This is evidenced
by the observation that the decrease in performance when utilizing fewer slides for SS-
MIL is about the same as comparable methods in the ablation study (i.e., fine-tuning
and supervision). In addition, evidence is derived from the apparent maintenance of
performance despite the decrease in the number of training slides.

5.3. Generic Features Outperform Histopathology Features

The results also suggest that ImageNet features may be advantageous over
histopathology-specific features. Several studies have sought to utilize histopathology-
specific tile features for WSI analysis either using self-supervision [21,22,24,25,27], weak su-
pervision using slide-level labels [20,65], supervision on unrelated histopathology
tasks [29,92], in an end-to-end manner [86,87], or graph-based methods [93]. The argument
made by such studies is that histopathology WSI analysis should utilize histopathology-
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specific tile features. Without context, this makes sense. However, this point-of-view is
entirely upended by the vast body of work across medical image analysis which utilizes
transfer learning with small image datasets [94]. Furthermore, and by contrast, several
studies use generic ImageNet features [17–19] for WSI analysis with great success. These
studies and the results presented here call into question the necessity of histopathology-
specific features for WSI analysis. Be that as it may, we do not suggest rejecting the prospect
of histopathology-specific features altogether, as studies have shown that self-supervision
as a means of reducing label load is far superior to transfer learning from ImageNet
features [60,61].

5.4. Neighbors as Augmentations Does Not Benefit Downstream MIL

Contrary to supporting previous studies’ utilization of ImageNet features, our re-
sults do not support previous findings that consider neighboring tiles as augmentations
for self-supervision to result in better representations than standard augmentations. In
SimTriplet [27], the authors extended SimSiam [17] to include an additional stop-gradient
arm that operated solely on encoded neighboring patches. The loss was then computed
between the original SimSiam augmentation and the anchoring tile as well as between the
neighbor tile and anchor tile. The idea here is that not only should tiles be invariant to
their transformation but that they are nearly identical to their neighbors. Their method
outperformed SimSiam on a melanoma histopathology tile classification task. We also
independently recognized this aspect of histopathology that may be exploited by self-
supervision. However, in all our experiments, SLLn features (with neighbors considered
as augmentations) always underperformed compared to SSL features (not considering
neighbors). This contradicts the results presented in SimTriplet [27]. We believe that the
gap between these two approaches could be narrowed and flipped if our SimCLR encoder
had ample time to learn SLLn representations. This is supported by our observation that
the contrastive loss for the SLLn SimCLR encoder was higher at stopping time compared
to the SLL SimCLR encoder (average 3% higher). We did not let either encoder train longer
because previous studies showed that this does not affect downstream patch-wise classifica-
tion accuracy [23,60]. However, these studies did not consider neighbors as augmentations
nor were they performing slide-level classification or regression. Perhaps under these
conditions, training the encoder longer may improve slide-level performance.

5.5. Why CLAM Outperforms Attention2majority

Contrary to expectations, CLAM outperformed Attention2majority in the NSCLC
subtyping task. In a previous study [20], Attention2majority outperformed CLAM in a
multi-class kidney grading task and Camelyon16. We believe this is due to the difference
between the tasks. In NSCLC subtyping and TUPAC proliferation scoring, the signal
AB-MIL attends to is well-dispersed throughout the tissue. In contrast, in Camelyon16, the
signal may be a very small lesion, even smaller than the size of a tile, and in the kidney
grading task, the signal is mixed. Attention2majority outperforms CLAM on these latter
datasets because of its intelligent sampling scheme, which verifiably biases bags to include
tiles that correspond to the overall slide-level label. CLAM utilizes all tiles, so the signal
becomes harder to detect. Given that the signal is more dispersed in the NSCLC and TUPAC
datasets, this effect is less pronounced, so the advantages afforded by Attention2majority
no longer apply.

5.6. Issues with Reproducibility

Contrary to our expectations, we could not reproduce the results reported by CLAM
on the NSCLC subtyping task. In the original paper, CLAM achieved an AUC of
0.9561 ± 0.0179. Granted, we did not have the same experimental setup regarding slide
divisions among folds. However, other studies have been unable to reproduce the results
reported by CLAM for NSCLC subtyping. TransMIL reported 0.9377 [25], neural image
compression reported 0.9477 [95], and node-aligned graphs reported 0.9320 [96]. Similarly,
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contrary to our expectations, AB-MIL performed as well as CLAM with ImageNet features
and performed better when utilizing SSL or SSLn features. This is corroborated by one
other study [96]. These observations highlight the importance of reproducibility in deep
learning methodologies.

5.7. Areas for Improvement

SS-MIL has many areas for improvement. First and foremost, given the results pre-
sented in the ablation study, a larger and label-free WSI dataset would likely be beneficial.
Clearly, increasing the number of slides at the level of constative MIL improves downstream
performance (Table 2). Similar benefits from more slides may also be derived for the initial
tile-level SimCLR pretraining step, as is supported by one study [60]. However, SS-MIL
would not require slide-level labels from a larger dataset, unlike previous methods.

Notwithstanding, such datasets would not necessarily be beneficial if it were not
the same tissue type or disease category [23]. The proposed method may benefit from
longer training times for the SimCLR encoder (specifically when neighbors are used as
augmentations). We may also consider a more apt augmentation space. The original
SimCLR augmentation space allows for two random crops from the same image to serve
as a positive pair. We can modify this random cropping augmentation in two ways. First,
our experiments are performed at 20×. When randomly cropping a 20× tile, the resulting
crop is unsampled. However, since we have access to the WSI, we may instead grab the
crop at 40× and then down sample it. In this manner, the tile crop augmentations contain
more detail.

Secondly, we may consider a random center crop as an augmentation rather than a
random crop. In other words, a tile is randomly cropped by keeping the center position
the same and then resampled directly from the slide from 40×. This is motivated by the
observation that two random crops from the same tile may not be adjacent. However,
by center cropping, we can be sure that they overlap. Ultimately, augmentation space
greatly affects downstream performance and may even be dataset-dependent [23,27]. The
modifications that could be made with respect to augmentation space are many [97]. We
could also modify our positive/negative pair generation during contrastive MIL model
training. Currently, different bag views are generated by randomly subsampling 25% of
the WSI tile embeddings.

However, for tasks in which the region of interest is very small, such as metastasis
detection, this sampling method will miss regions of interest and thus generate positive
pairs in which one bag contains the region of interest and the other does not. Alternatively,
we could generate multiple bags for the same slide by shifting the starting position of the
tile grid. This way, each bag contains all tiles from the WSI but is also distinct from other
bags from the same WSI. Additional augmentation policies could be applied to WSI bags,
including random perturbation and random zeroing [98].

5.8. Implications of SS-MIL

SS-MIL enables researchers to benefit from a dataset where no label information is
available. Its innovation lies 1) in the subtly of histopathology that neighboring tissue
structures are likely to represent relatively the same (or very similar) clinical information
and thus should be represented similarly as embeddings and 2) in the unsupervised nature
of the proposed model. As the learned WSI embeddings have general applicability to many
machine learning tasks (classification and regression), many other applications can benefit
from these results.

The lack of the need for labels opens several opportunities for research that are simply
not possible with existing methods. SS-MIL allows for datasets to be combined even
though they may have different kinds of slide-level labels or if no slide-level labels exist
for a particular data source (i.e., missing data). For example, the TUPAC16 dataset could
be combined with the TCGA-BRCA (breast invasive carcinoma). Our proposed model
could be trained on TCGA-BRCA and then either frozen or fine-tuned on TUPAC16, or
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visa-versa. Furthermore, SS-MIL could be trained on both TCGA-BRCA and TUPAC16 and
then frozen or fine-tuned on a smaller, external dataset. The benefit SS-MIL derives from
combining different datasets to learn slide-level representation is impossible with existing
methods. It is not just publicly available datasets that could theoretically be combined,
and benefit derived from. Hospitals and clinical trials have large swaths of WSIs which
are easily accessible, but their slide-level labels are either prohibitively difficult to obtain,
irrelevant to the problem of interest, or non-existent.

Furthermore, we have yet to examine the attention weights from the SS-MIL. We
hypothesized that the features learned in bag-level encodings correspond to features of the
slide with the maximum variance across the dataset and that instances with the highest
attention would correspond to these histopathological features. It may prove difficult
to support such a hypothesis with this dataset. However, perhaps with a hand-crafted
dataset with a diversity of tissue structures (such as one WSI per organ), we may indeed
demonstrate that the SS-MIL method possesses learning imaging features with the highest
variance across a given dataset.

6. Conclusions

In conclusion, we have presented a method to learn compact representations of WSIs
without supervision. Our method trains a patch-wise encoder using SimCLR. Each patch
is embedded to yield a collection of instances for each WSI. Each collection is divided
into several subsets, each representing the WSI, which MIL then fuses to yield multiple
slide-level representations. Through this operation on the same slide, a positive pair for
contrastive learning is created. Similarly, a negative pair is created for a different slide.
This MIL model is then trained using contrastive loss. These unsupervised representations
can be utilized to classify and regress WSIs to weakly labeled outcomes. We applied our
method to both NSCLC subtyping and TUPAC proliferation scoring, achieving an AUC of
0.8641 ± 0.0115 and R2 of 0.5740 ± 0.0970. Though our method does not achieve the same
level of performance as supervised attention-based MIL, CLAM, or Attention2majority, we
have shown through ablation experiments that the slide-level feature space that its learning
is robust and its performance is likely limited solely by the number of available slides. In
future experiments, we plan to apply our method to larger datasets in order to observe
whether the apparent benefits from increasing the number of slide (as evidence in ablation
studies) continues to return benefits in performance. We expect that the performance
of our method may indeed exceed that of supervised methods when limited labels are
available. Secondly, we plan to modify our tile-level augmentation space to more accurately
reflect the histopathology-specific transformation invariance (i.e., center crops). We will
also perform separate experiments to find an optimal transformation policy. Similarly,
we plan to modify our slide-level augmentation space (via shifting the overlaid grid or
random zeroing) to represent each slide fully rather than randomly subsampling as in
the current study. Thirdly, we will apply our resulting method to Camelyon16, a breast
cancer seminal lymph node metastasis dataset, in conjunction with the novel, in-house
MIL models. From a technical standpoint, our proposed method is a novel approach to
computational pathology, where meaningful features can be learned from WSIs without
needing any annotations. The proposed method can benefit computational pathology from
a practical standpoint, as it would theoretically enable researchers to benefit from vast
amounts of unlabeled or irrelevantly labeled.
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