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Simple Summary: In locally advanced rectal cancer (LARC), a minority of patients presents a
pathological complete response (pCR) after neoadjuvant chemoradiotherapy (CRT). In this sub-
population, organ preservation could be proposed without compromising overall survival. Using
a robust neural network based statistical approach, correction of imbalanced data and inter-center
variability, a radiomics-based model was externally validated with a balanced accuracy of 85.5%.
This model efficiently predicted the patients with a pCR in an external cohort and could be used to
select the patients eligible for organ preservation.

Abstract: Objective: Our objective was to develop a radiomics model based on magnetic resonance
imaging (MRI) and contrast-enhanced computed tomography (CE-CT) to predict pathological com-
plete response (pCR) to neoadjuvant treatment in locally advanced rectal cancer (LARC). Material:
All patients treated for a LARC with neoadjuvant CRT and subsequent surgery in two separate
institutions between 2012 and 2019 were considered. Both pre-CRT pelvic MRI and CE-CT were
mandatory for inclusion. The tumor was manually segmented on the T2-weighted and diffusion
axial MRI sequences and on CE-CT. In total, 88 radiomic parameters were extracted from each
sequence using the Miras© software, with a total of 822 features by patient. The cohort was split
into training (Institution 1) and testing (Institution 2) sets. The ComBat and Synthetic Minority
Over-sampling Technique (SMOTE) approaches were used to account for inter-institution hetero-
geneity and imbalanced data, respectively. We selected the most predictive characteristics using
Spearman’s rank correlation and the Area Under the ROC Curve (AUC). Five pCR prediction models
(clinical, radiomics before and after ComBat, and combined before and after ComBat) were then
developed on the training set with a neural network approach and a bootstrap internal validation
(n = 1000 replications). A cut-off maximizing the model’s performance was defined on the training
set. Each model was then evaluated on the testing set using sensitivity, specificity, balanced accuracy
(Bacc) with the predefined cut-off. Results: Out of the 124 included patients, 14 had pCR (11.3%).
After ComBat harmonization, the radiomic and the combined models obtained a Bacc of 68.2% and
85.5%, respectively, while the clinical model and the pre-ComBat combined achieved respective Baccs
of 60.0% and 75.5%. Conclusions: After correction of inter-site variability and imbalanced data,
addition of radiomic features enhances the prediction of pCR after neoadjuvant CRT in LARC.
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1. Introduction

Colorectal cancer is one of the most common cancers worldwide, with breast and
lung cancer, and is particularly frequent in the Western population: in Europe alone,
for the year 2020, the estimated incidence of rectal cancer specifically was 113,684 new
cases [1]. All stages combined, the five years overall survival reaches approximately 55%,
and colorectal represents the second leading cause of cancer death worldwide. The most
common histology is adenocarcinoma [2].

For locally advanced rectal cancer (LARC), current guidelines recommend neoadjuvant
chemoradiotherapy (CRT) +/− neoadjuvant chemotherapy as proposed by the PRODIGE
23 and RAPIDO trials [3,4] followed by surgery and adjuvant chemotherapy in the case
of lymph nodes involvement [5]. Neoadjuvant treatment has demonstrated significant
benefits in terms of recurrence-free survival, with complete response rates of 15–20% and
up to 28% [3,4], but without any gain in overall survival [6]. Surgery usually consists of
a total mesorectal excision (TME). It is now hypothesized that patients with a complete
response after neoadjuvant CRT could benefit from a wait-and-see strategy and avoid the
morbidity of surgery [6,7] without compromising survival outcomes [8–10]. Predicting this
complete response to neo-adjuvant treatment is therefore an unmet need in the management
of LARC.

Radiomics consists of the extraction of multiple quantitative parameters from med-
ical images. Such features are thought to better apprehend the heterogeneity of the
tumor [11–13] and have been previously studied in pelvic localizations such as prostate [14],
cervical [15], and rectal cancer [16]. A prediction model based on magnetic resonance imag-
ing (MRI) and positron emission tomography (PET) images previously achieved promising
results in LARC [17]. However, PET is not currently recommended on a clinical basis
yet [18]. On the contrary, contrast-enhanced computed tomography (CE-CT) could be
of interest in this context as it is routinely acquired for these patients. Various machine
learning tools exist and are constantly being developed. In the specific setting of pCR
prediction in LARC, external validation of a model is awaited.

The aim of this study was to build a radiomics model based on pre-therapeutic
MRI and CE-CT images to predict pathological complete response (pCR) in patients with
LARC treated with neoadjuvant CRT and subsequent surgery and to externally validate
this model.

2. Materials and Methods
2.1. Patient Population

All patients who received neoadjuvant CRT followed by surgery for a LARC from
May 2012 to October 2019 in Nantes (Institution 1) and the West Brittany Oncology Institute
(Institution 2) were retrospectively screened. Only patients with available MRI with T2 and
diffusion sequences, CE-CT, and definitive anatomopathological analysis were included
in this study. Patients who did not undergo surgery after neoadjuvant treatment or with
incomplete neoadjuvant treatment were excluded.

2.2. Outcome

The primary endpoint was the prediction of pCR to neo-adjuvant CRT defined as the
absence of tumor residue on the surgical specimen, i.e., ypT0 ypN0.

2.3. MRI

The acquisition machines and protocols differed among institutions. Pelvic MRI were
performed on two different Siemens 1.T (Siemens Healthcare, Malvern, PA, USA) and a
Philips 3T (Philips Healthcare, Eindhoven, The Netherlands), and a Siemens 3T (Siemens
Healthcare, Malvern, PA, USA) in institution 1, a Philips 1.5T (Philips Healthcare, Eind-
hoven, The Netherlands) and 2 Siemens 1.5T (Siemens Healthcare, Malvern, PA, USA) in in-
stitution 2, respectively. The images were performed in supine positioning. MRI sequences
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included axial T2-weighted sequences and axial diffusion sequences using different b-
values up to 1000 s/mm2. MRI characteristics are summarized in Supplementary Table S1.

2.4. Contrast-Enhanced CT Scan

For the majority of patients, the radiotherapy (RT) planning CT, if performed with
contrast agent injection, was used. In the other cases, the CE-CT performed as part of the
initial extension assessment of the disease was collected. CTs were performed in the supine
position. Four different CT scans were used including a Siemens and a Philips in institution
1 and two different Siemens in institution 2. The average slice thickness was 2 mm (range
1–5 mm).

2.5. Clinical Features

We retrospectively collected the following clinical parameters from each patient’s medical
record: initial tumor stage (according to clinical examination, ultrasound-endoscopy, and
MRI), initial nodal stage (defined using ultrasound-endoscopy and MRI), carcinoembryonic
antigen (CEA) and carbohydrate (CA) 19-9 values, tumor grade on biopsy, distance to anal
margin, tumor size, and response to neoadjuvant CRT according to the ypTNM classification.

2.6. Tumor Delineation

Rectal tumors were manually delineated in 3D on the different pre-therapeutic se-
quences, i.e., T2-weighted, diffusion, and on the contrast-enhanced CT separately, by a
single expert (A.B.), using the 3D Slicer v4.10.1 software. All segmentations were performed
blinded to the pathological response status. Supplementary Figure S1 shows an example
of tumor segmentation. In order to assess the robustness of each model to segmentation
variability, 25 randomly selected patients from the testing set were segmented by a second
expert (V.B), blinded to the first segmentation and the pathological response status (see
Section 2.10).

2.7. Radiomic Features

Radiomic features were extracted using the Miras© software (LaTIM UMR 1101, Brest,
France), compliant with the most up-to-date Image Biomarker Standardization Initiative
(IBSI) guidelines and benchmark values [19]. In total, 88 features (15 shape, 11 intensity,
and 62 textural features) were extracted from each image (T2, diffusion, and CE-CT). The
62 textural features were calculated with two intensity discretization schemes: linear or
equalization (not standardized yet by the IBSI). For both discretization schemes, two fixed
bin numbers (FBN), 32 and 64, were used. Texture matrices were built following the merging
strategy, i.e., a single matrix taking into account all 13 directions, and a distance of 1 voxel.
As a result, 822 features were extracted for each patient from the 3 imaging modalities.

2.8. Harmonization Method

We applied the ComBat statistical method using the “COMBAT” package available
in R. This a posteriori statistical method aims to account for the imaging modalities’ het-
erogeneity [20,21] and proved successful in removing intersite technical variability while
preserving intersite biological variability. Harmonization was thus performed before feature
set reduction. Harmonized features were then processed through the further-defined statis-
tical workflow, developing two new harmonized prediction models: ComBat-Radiomic
and ComBat-Combined.

2.9. Statistical Analysis

Patients from institution 1 were included in the training cohort while patients from
institution 2 formed the testing cohort. Clinical and radiomic features (either original or
harmonized) were then selected in the training set only. The feature set reduction workflow
was developed as a two-step approach. The first step selected features based on their
predictive value of the pCR status. An area under the curve (AUC) ≥ 0.60 was chosen to
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retain potential features. The second step selected features based on their inter-correlation
using the Pearson’s rank correlation coefficient (ρ): when two features appeared as highly
correlated (ρ > 0.7), only the feature with the highest AUC was kept. The features selected
by this two-step approach were then fed to a neural network classifier, using the “Multilayer
Perceptron” toolbox available in SPSS Modeler v26.0. Internal validation was performed
using bootstrap, with n = 1000 replications, for robustness optimization. Before each to
building of each model, correction of imbalanced data was performed using the Synthetic
Minority Over-sampling Technique (SMOTE). Five models were built in a decremental
manner using the clinical, radiomic, and the clinical + radiomics features defining the
Clinical, No-ComBat and ComBat-Radiomic, and No-ComBat and ComBat-Combined
models, respectively. An optimal cut-off was determined maximizing the Youden Index
(YI = Sensitivity + Specificity − 1). Each model’s performance was also evaluated using
the AUC and the Receiver Operative Characteristics (Specificity: Sp; Sensitivity: Se; cross-
validated Balanced accuracy: Bacc). Each model was then evaluated on the testing set,
using sensitivity, specificity, and Bacc.

Statistical analysis was performed using SPSS Modeler v26.0 and MedCalc v15.8.

2.10. Inter-Individual Variability

Variability between the initial segmentation and the segmentation performed by the
second expert for the 25 randomly selected patients in the testing set was determined using
the Dice coefficient. Radiomic features were extracted from these 25 new delineations.
Each pre-trained model was then evaluated on this sub-set of patients using these newly
extracted features and prediction performances were compared.

2.11. Radiomics Quality Score

To evaluate the quality of our study, the Radiomics Quality score was calculated [22].

2.12. Ethical Considerations

This study was approved by the hospital ethical committee and all patients gave
consent for using their medical data (NCT B2020CE.12). All authors had access to the study
data and approved the final manuscript.

3. Results

In total, from May 2012 to October 2019, 124 patients were included (64 in institution
1 and 60 in institution 2) with a 1:2 sex ratio (38% women and 62% men) and a median age
of 65 years (29–86 years). The flowchart is available in Figure 1. The majority of patients
had T2 (13%) or T3 (78.2%) stages and 76% had a lymph node involvement. The initial CEA
rate was available for 66% of patients and ranged from 0.8 to 91 ng/mL. Data regarding the
histological subtype was available for 27 patients of institution 2. Among these patients,
only one patient presented with a mucinous tumor. All patients’ characteristics are available
in Table 1.

All patients received neoadjuvant treatment. In total, 118 patients (95%) received CRT,
and 6 patients (5%) received neoadjuvant RT only due to contraindications to concomitant
chemotherapy. Regarding RT, all patients received a total dose of 45 Gy in 25 fractions
to the pelvis with a boost to the rectal tumor up to 50.4 Gy (in 28 fractions) in 44% of
them (54 patients). Regarding chemotherapy, 97 patients (78%) received oral Capecitabine
and 21 patients (18%) received FOLFOX (5-Fluororacil combined with Oxaliplatin). The
mean time between completion of CRT and surgery was 58 days (SD: 13.25). Details of the
treatment distribution in the different sets (training and testing) are given in Table 1.
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Table 1. Initial characteristics.

Variable Total Cohort
n = 124

Training Set
n = 64

Testing Set
n = 60 p-Value

Mean age at diagnosis (years) 65 (SD: 10.75) 62 (SD: 11.8) 68 (SD: 8.4) 0.65

Gender (male/female) 76/47 37/27 40/20 0.91

Degree of differentiation

Well differentiated (%) 43 (35%) 26 (40.6%) 19 (31.7%) 0.82

Moderately differentiated (%) 58 (47%) 32 (50%) 23 (38.3%) 0.43

Undifferentiated (%) 15 (12%) 1 (1.5%) 14 (23.3%) 0.59

High-grade dysplasia (%) 8 (6%) 4 (6.3%) 6 (10%) 0.59

Mean ACE rate (ng/mL) 8 (SD: 12.27) 6.8 (SD: 7.2) 9.7 (SD: 16.8) 0.80

cT stage

cT 1 (%) 1 (0.8%) 0 (0%) 1 (1.6%) 0.99

cT 2 (%) 16 (13%) 7 (10.9%) 9 (15%) 0.96

cT 3 (%) 97 (78.2%) 52 (81.3%) 28 (46.7%) 0.23

cT 4 (%) 10 (8%) 5 (7.8%) 4 (6.6%) 0.82

N+ (%) 95 (76%) 50 (78%) 44 (73%) 0.99

pCR (%) 14 (11%) 9 (14%) 5 (8%) 0.75

Radiotherapy 124 (100%)

3D-CRT 70 (56.5%) 53 (82.8%) 17 (28.3%)
<0.0001

IMRT 54 (43.5%) 11 (17.2%) 43 (71.7%)

45 Gy to the pelvis only 70 (56%) 59 (92%) 10 (16.7%) 0.04

45 Gy to the pelvis + boost up to 50.4 Gy to the rectal tumor 54 (44%) 5 (8%) 50 (83.3%) 0.03

Concomitant chemotherapy 118 (95%) 64 (100%) 54 (90%) 0.39

Capecitabine 97 (78%) 56 (88%) 41 (68%) 0.37

Folfox 21 (17%) 8 (12%) 13 (21.7%) 0.42

Duration of neoadjuvant therapy (mean, days) 39 (SD: 4.71) 38 (SD: 4.67) 39 (SD: 6.11) 0.93

Delay between the end of treatment and surgery (mean, days) 58 (SD: 13.19) 59 (SD: 12.08) 56 (SD: 15.05) 0.82
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In the whole cohort, 14 patients (11.3%) achieved pCR after neoadjuvant CRT. pCR
was equally distributed in the training (n = 9, 14%) and the testing (n = 5, 8%) sets. The
clinical features that stand out as significant predictors of pCR were the initial T-stage and
the tumor grade. The clinical model derived from these parameters obtained an AUC of
0.77 (p = 0.001) and a Bacc of 65.5% (with a threshold of 8.0% based on the Youden index)
in the training set. In the testing set, the clinical model achieved a Bacc of 60.0% with 88.0%
of false positives among patients classified at high chance of pCR.

After selection, only 3 features from the T2 sequence (elongation, energy_histogram
and entropy_histogram) and 2 from the diffusion sequence (elongation and HGLRE_align;
HGLRE: High Gray Level Run Emphasis) remained. None of the CE-CT features were
selected. Regarding the training cohort, the No-ComBat Radiomics and No-ComBat Com-
bined models resulted in AUCs of 1.00 and 0.97 and Baccs of 98.2% and 93.6%, respectively.
Using their respective cut-offs, each model resulted in a Bacc of 50.9% and 70.0%. No
radiomic features extracted from the CT scan were retained in the radiomics and combined
prediction models. Considering the radiomic features harmonized with ComBat as input
to the feature selection workflow, additional features ended up being retained: from the
T2 sequence: mean_histogram, variance_histogram, standard_deviation_histogram, en-
ergy_histogram, Gray Level Non Uniformity (GLNU)_norm_align, and from the diffusion
sequence: High Gray Level Zone Emphasis (HGLZE) and elongation. However, even
after harmonization, no radiomic features extracted from the CE-CT were retained. The
most efficient models combining either harmonized radiomic features only or both clinical
and harmonized radiomic features achieved respective AUCs/Baccs of 0.62/60.0% and
0.81/85.5%. ROC curves are available in Figure 2a,b for the training and testing cohorts,
respectively, while detailed composition of each model and importance of each feature are
proposed in Supplementary Table S2. Detailed results of each model in the training and
testing cohorts are, respectively, available in Tables 2 and 3.
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Table 2. Results of each model in the training cohort (institution 1).

Model AUC p Cut-Off
(%) Se (%) Sp (%)

Bacc
(%)

Below the Cut-Off Above the Cut-Off

Total
(n, %)

TN
(n, %)

FN
(n, %)

Total
(n, %)

FP
(n, %)

TP
(n, %)

Clinical 0.77 0.001 8.0 71.2 77.8 65.5 38 (59.4) 36 (94.7) 2 (5.3) 26 (40.6) 19 (73.1) 7 (26.9)

Radiomic 1.00 <0.0001 23.0 100.0 96.4 98.2 53 (82.8) 53 (100.0) 0 (0.0) 11 (17.2) 2 (18.2) 9 (81.8)

Combined 0.97 <0.0001 5.0 100.0 87.3 93.6 48 (75.0) 48 (100.0) 0 (0.0) 16 (25.0) 7 (43.7) 9 (56.2)

ComBat_Radiomic 1.00 <0.0001 17 100.0 100.0 100.0 55 (85.9) 55 (100.0) 0 (0.0) 9 (14.1) 0 (0.0) 9 (100.0)

ComBat_Combined 0.95 <0.0001 6.0 100.0 80.0 90.0 44 (68.7) 44 (100.0) 0 (0.0) 20 (31.2) 11 (55.0) 9 (45.0)

Abbreviations: AUC: area under the curve; Se: sensitivity; Sp: specificity; Bacc: balanced accuracy; TN: true
negative; FN: false negative; FP: false positive; TP: true positive.

Table 3. Results of each model in the testing cohort (institution 2).

Model AUC p Cut-Off
(%) Se (%) Sp (%)

Bacc
(%)

Below the Cut-Off Above the Cut-Off

Total
(n, %)

TN
(n, %)

FN
(n, %)

Total
(n, %)

FP
(n, %)

TP
(n, %)

Clinical 0.50 1.00 8.0 60.0 60.0 60.0 35 (58.3) 33 (94.3) 2 (5.7) 25 (41.7) 22 (88.0) 3 (12.0)

Radiomic 0.69 0.07 23.0 20.0 81.8 50.9 49 (81.7) 45 (91.8) 4 (8.2) 11 (18.3) 10 (90.9) 1 (9.1)

Combined 0.77 0.004 5.0 80.0 60.0 70.0 34 (56.7) 33 (91.1) 1 (2.9) 26 (43.3) 22 (84.6) 4 (15.4)

ComBat_Radiomic 0.62 0.49 17 20.0 100.0 60.0 59 (98.3) 55 (93.2) 4 (6.8) 1 (1.7) 0 (0.0) 1 (100.0)

ComBat_Combined 0.81 0.03 6.0 80.0 90.9 85.5 51 (85.0) 50 (98.0) 1 (2.0) 9 (15.0) 5 (55.6) 4 (44.4)

Abbreviations: AUC: area under the curve; Se: sensitivity; Sp: specificity; Bacc: balanced accuracy; TN: true
negative; FN: false negative; FP: false positive; TP: true positive.

As shown in Figure 3, the best calibrated models appeared to be the combined model
but only after ComBat harmonization.
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Figure 3. Decisional curve analysis for each model in the testing cohort.

The analysis of inter-observer variability showed a moderate variability in delineations,
with a median DICE coefficient of 0.74 (range 0.41–0.99). The application of the combined
prediction model with the ComBat harmonization method provided satisfactory results
with an AUC of 0.82 (p = 0.002) and a sensitivity of 80.0%, a specificity of 90.0%, and a Bacc
of 85.0% with the 6.0% cut-off.

Our study scored 22 points out of 36.
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4. Discussion

In this study, we evaluated several pCR prediction models in patients treated with
neoadjuvant CRT for a LARC. The combined model using harmonized radiomics features
performed better than the clinical and radiomics models, with Bacc of 85.5% and the second
lowest rate of false positive (55.6%) after the ComBat harmonized radiomics model. This
a posteriori ComBat “harmonization’ method certainly enhanced the performance of the
radiomics-based models. Depending on the clinician preference, one could either choose
the most performant model based on the overall results (ComBat-Combined model) or
the ComBat-Radiomics model as it harbors a more favorable profile regarding the risk of
false positives.

To our knowledge, the value of the CE-CT scan has never been evaluated in regard to
pCR prediction. In our study, we found no added value of the CE-CT-scan for the prediction
of pCR when compared to MRI scans. The majority of CE-CT-based radiomics features
were highly correlated with the MRI features and were less effective in predicting response
to treatment.

Other studies have focused on this subject, using different approaches [16,23]. Shaish
et al. [24] considered T2-weighted sequences of the pre-therapeutic MRI in order to predict
pCR. Their model resulted in an AUC of 0.66 in the testing population. In a monocentric
study, Cui et al. [25] analyzed the value of the multimodality (T1, T2, and ADC sequences),
finding an AUC of 0.73 for the T2-based radiomics model and 0.94 for the multimodal-
based model. Although the authors showed interest in combining different sequences,
their model is subjected to a significant risk of instability and over-fitting due to the large
number of factors (12), and has not been externally validated. Zhou et al. [26] developed
an efficient model to predict relapse-free survival, which resulted in an AUC of 0.77 in the
validation set.

Our objective was to predict pCR based on the pre-CRT clinical and imaging data. Pre-
diction of pCR based on the post-CRT has also been studied in the literature. Liu et al. [27]
showed that combination of radiomics signatures from pre- and post-CRT imaging with
tumor size could efficiently select patients with pCR, with an AUC of 0.98. In this study,
imaging was performed on the same MRI machine, making the analyses homogeneous.
However, the variability due to the acquisition on different machines with different pa-
rameters was not considered, and therefore, applying this model to data acquired on other
devices may be challenging. In addition, it would have been interesting to take into account
the variations in radiomic parameters between the pre- and post-CRT MRIs as well as clini-
cal parameters. Horvat et al. [28] looked at the T2-weighted sequences of post-therapeutic
MRIs and developed a very efficient model with an AUC of 0.92, but without internal
or external validation, and as such, a risk of over-fitting exists. Such approaches would
make it possible to provide further arguments in favor of a response or non-response to
treatment, while remaining non-invasive.

Genomics has also been studied in this context [29,30]. We previously showed that
combining CE-CT radiomics with gene expression analysis and histopathological examina-
tion of primary colorectal cancer could provide higher prognostic stratification power [31].
Park et al. [32] specifically reported different genomic signatures in patients with LARC
depending on CRT response. Thus, a radio-genomics approach could further enhance the
prediction’s performance and offer an optimized and tailored treatment of rectal cancer.

The management of LARC is evolving rapidly. The PRODIGE 23 trial recently reported
a trend towards improved disease-free survival, with a significant difference at 3 years, as
well as a higher complete response rate with the neo-adjuvant folfirinox chemotherapy
sequence followed by pre-operative CRT and total mesorectal excision compared to the
standard approach [4]. The RAPIDO trial [3] randomized patients between the short
radiation schedule of five fractions of 5 Gy followed by chemotherapy (capox or folfox)
compared to the standard of care (CRT with 50.4 Gy) before surgery. A significant decrease
in treatment failure and a 2-fold increased response rate compared to standard treatment
was found, probably due to the neoadjuvant chemotherapy. As a consequence, therapeutic
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sequences might change in the near future. Testing our algorithm in this new era will be of
particular interest. Surgical management is also on the break of change, especially in the
geriatric population where total mesorectal excision could be avoided in favor of transanal
endoscopic resection [33]. Going further, several studies have analyzed the possibility of
an organ preservation strategy in patients with complete response, with very encouraging
results [8–10]. It is therefore crucial to be able to properly select for therapeutic strategy
adaptation in order to improve quality of life without compromising survival.

The strong point of our study is its multicentric and multiscanner nature. To our
knowledge, it is the first external validation of such a model. We also studied the inter-
individual variability during segmentation and showed the robustness of the proposed
model. Indeed, despite a moderate variability of inter-reader segmentation, the ComBat-
corrected combined model achieved similar results when compared to the initial testing set,
supporting its robustness. Such stability can be partly explained by the feature selection
workflow, the neural network’s approach, and the internal validation process (bootstrap).

Some limitations in our study must be acknowledged. The loss between the training
and testing test leaves room for over-fitting correction. Such a task remains troublesome
given the low events rate (only 5 pCR patients out of 60 in the testing set), even with the use
of the SMOTE correction for imbalanced data. Acknowledging the great heterogeneity of
MRI scans in our study, we enhanced the radiomics and combined prediction models after a
posteriori statistical harmonization using the ComBat harmonization technique. Our results
show the need to use these methods to improve the performance of the model. Finally, the
pCR rate of 11.3% found in our study was particularly low compared to other available data
with rates close to 20% [5]. This can be explained by a large inclusion period, which started
in 2012. Indeed, in 2012, MRIs were used less often in the extension disease assessment,
resulting in a possible selection bias. Inclusion of mutational status (RAS/BRAF/MSI)
could also partly explain this low pCR rate. Despite this lower percentage, our model was
able to predict pCR to neoadjuvant CRT.

5. Conclusions

Our radiomic model based on MRI parameters appears to add significant value to
usual clinical features for the prediction of pCR after neoadjuvant CRT in patients treated
for a LARC while being robust to segmentation variability. Imaging harmonization allowed
to increase the prediction performance of our model. Given these promising results, we
plan to confirm our findings on a prospective cohort, and to integrate other tumor-specific
parameters, notably genomics.
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