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Simple Summary: Immunotherapy targeting the programmed death-1 (PD-1)/programmed death
ligand-1 (PD-L1) has attracted worldwide attention and is setting off a revolution in cancer treatment,
bringing new hope to cancer patients. PD-L2 is another ligand of PD-1 and a promising immunother-
apy marker. This study aimed to find a prediction model based on the radiomic characteristics of
magnetic resonance images to noninvasively predict the expression of PD-L2 in liver cancer before
surgery, thereby to provide a reference for the choice of immune checkpoint blockade therapy.

Abstract: Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and the third
leading cause of cancer death in the world. The emerging field of radiomics involves extracting many
clinical image features that cannot be recognized by the human eye to provide information for precise
treatment decision making. Radiomics has shown its importance in HCC identification, histological
grading, microvascular invasion (MVI) status, treatment response, and prognosis, but there is no
report on the preoperative prediction of programmed death ligand-2 (PD-L2) expression in HCC.
The purpose of this study was to investigate the value of MRI radiomic features for the non-invasive
prediction of immunotherapy target PD-L2 expression in hepatocellular carcinoma (HCC). A total of
108 patients with HCC confirmed by pathology were retrospectively analysed. Immunohistochemical
analysis was used to evaluate the expression level of PD-L2. 3D-Slicer software was used to manually
delineate volumes of interest (VOIs) and extract radiomic features on preoperative T2-weighted,
arterial-phase, and portal venous-phase MR images. Least absolute shrinkage and selection oper-
ator (LASSO) was performed to find the best radiomic features. Multivariable logistic regression
models were constructed and validated using fivefold cross-validation. The area under the receiver
characteristic curve (AUC) was used to evaluate the predictive performance of each model. The
results show that among the 108 cases of HCC, 50 cases had high PD-L2 expression, and 58 cases
had low PD-L2 expression. Radiomic features correlated with PD-L2 expression. The T2-weighted,
arterial-phase, and portal venous-phase and combined MRI radiomics models showed AUCs of 0.789
(95% CI: 0.702–0.875), 0.727 (95% CI: 0.632–0.823), 0.770 (95% CI: 0.682–0.875), and 0.871 (95% CI:
0.803–0.939), respectively. The combined model showed the best performance. The results of this
study suggest that prediction based on the radiomic characteristics of MRI could noninvasively
predict the expression of PD-L2 in HCC before surgery and provide a reference for the selection of
immune checkpoint blockade therapy.

Keywords: PD-L2; MRI; hepatocellular carcinoma; radiomics; immunotherapy target; immune
checkpoint blockade

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common malignant tumour and
the third leading cause of cancer death in the world [1]. Although the treatment of HCC
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has made great progress, the long-term efficacy is still not satisfactory [2–4]. Therefore, it is
necessary to seek new treatment methods for clinical practice. Tumour immunotherapy,
one of the most promising cancer treatment methods, regulates the immune system and
enhances antitumour immunity, thereby achieving the goal of inhibiting and killing tumour
cells [5].

Programmed death-1 (PD-1) is an important immunosuppressive molecule in the
human body. It binds to programmed death ligand-1 (PD-L1) to inhibit the activation of T
cells; it allows tumour cells to achieve immune escape, resulting in poor prognosis [6,7].
In recent years, tumour immunotherapy targeting PD-1 and PD-L1 has attracted much
attention. Some patients with negative PD-L1 expression still respond to PD-1 checkpoint
inhibitors, suggesting that other PD-1 ligands may underlie the clinical response to these
treatments [8]. PD-L2 is another ligand of PD-1 that can be induced in tumours by interferon
exposure, leading to immune evasion [9,10]. PD-L2 expression mostly associated with
PD-L1 expression, can also occur in the absence of PD-L1 [8]. Previous studies showed
that PD-L2 is expressed in pancreatic ductal adenocarcinoma, non-small-cell lung cancer,
glioma, and HCC and high PD-L2 expression is associated with poor prognosis [8,11–16].
A study reported that PD-L2 expression is upregulated in tumour-associated macrophages
(TAM), and its inhibitory effects become evident when PD-L1 function is abrogated by
anti-PD-L1 monoclonal antibody (mAb) [17]. These studies suggested that, although PD-
L1/PD-1-dependent suppression is the primary mechanism of immune evasion in cancer,
alternative mechanism of PD-L2 upregulation, may compensate once PD-L1 function
is dampened [17]; PD-L2 expression may provide information beyond that of PD-L1 in
predicting clinical results to targeted immunotherapy, and is a promising marker to anti-
PD-1 targeted agents [8,11,12,18].

It is important to accurately predict the immune status of cancer patients before
immunotherapy [19]. The emerging radiomics extracts many potential image features
that cannot be recognized by the human eyes based on the existing images of imaging
such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound
to provide a reference for precise treatment decision making [20]. Some scholars have
reported the application value of radiomics to HCC differentiation, histological grading,
microvascular invasion (MVI) status, treatment response, and prognostic prediction [21–27].
To date, no radiomics model has been reported to predict the expression of PD-L2 in HCC
before surgery. This study investigated the efficacy of the preoperative prediction of PD-L2
expression in HCC by a new MRI radiomics model.

2. Materials and Methods
2.1. Patient

This study included 108 patients with HCC who underwent surgical resection in our
hospital between January 2018 and June 2021. Inclusion criteria: 1. HCC was confirmed
by surgical resection and pathology. 2. MRI examination was performed within 2 weeks
before treatment. 3. No other antitumour treatment was received before surgery. 4. The
patient’s clinical data were completed. Exclusion criteria: 1. The maximum diameter of the
lesion was <10 mm. 2. The image quality was poor (Figure 1).

2.2. Immunohistochemistry

Immunohistochemical staining was performed to detect the expression of PD-L2 in
HCC tissues. The staining results were scored as described [13]. Two pathologists who
were unaware of the clinical results scored images based on the percentage of positively
stained cells and the intensity of staining. Positive cells were those with yellow or brown
cell membranes and/or cytoplasm. Scoring criteria for the percentage of positive cells:
<10%: 0 points; 10–50%: 1 point; >50%: 2 points. Scoring criteria for staining intensity: no
staining: 0 points; weak staining: 1 point; strong staining: 2 points. The total score was
the sum of the above two. According to the total score, HCC patients were divided into
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two groups: low PD-L2 expression (<3 points) and high PD-L2 expression (≥3 points). For
controversial results, the final score was reached through discussion by the two radiologists.
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Figure 1. Flow chart of the study population.

2.3. MR Image Acquisition

MRI scans were performed using the Discovery 750 3.0-T superconducting mag-
netic resonance imaging scanner (GE HealthCare, Chicago, IL, USA), with a 32-channel
phased-array surface coil. The scan sequences included T1-weighted imaging (T1WI),
fat-suppressed T2-weighted imaging (FS-T2WI), and dynamic contrast-enhanced (DCE)
MRI (Table 1). Dynamic enhanced scanning: A high-pressure syringe was used to inject
15–20 mL of the contrast agent gadolinium–diethylenetriaminepentaacetic acid (Shanghai
Bracco Sine Pharmaceutical Co., Ltd.) through the superficial vein on the back of the hand
at a speed of 2–2.5 mL/s. The images of the hepatic arterial and portal venous phases
were acquired.

Table 1. MRI sequences and their related parameters.

Sequence TR/TE (ms) FA (◦) FOV (mm2) ST (mm) Matrix (mm2)

T1WI 4/2 12 320 × 320–360 × 360 2.5 260 × 192
FS-T2WI 2609/97 110 320 × 320–380 × 380 6 384 × 384

DCE-MRI 4/2 12 320 × 320–360 × 360 5 224 × 192

Note: T1WI:T1-weighted imaging: T1WI was acquired using a three-dimensional liver acquisition with volume
acceleration (3D-LAVA) with axial slicing; FS-T2WI: axial T2-weighted imaging with fat suppression; DCE-MRI:
dynamic contrast-enhanced MRI; TR: repetition time; TE: echo time; FA: flip angle; FOV: field of view; ST:
slice thickness.

2.4. Tumour Segmentation and Feature Extraction

The MR images of the study subjects were downloaded and exported through PACS
and imported into 3D-Slicer software. A radiologist with 7 years of work experience
manually delineated the volume of interest (VOI) on the FS-T2WI sequence, DCE-MRI
arterial phase, and portal venous phase sequence [28,29] (Figure 2). When sketching the
VOI, attention should be given to avoid the surrounding bile ducts and blood vessels.
The original images were passed through the Laplacian of Gaussian filter and the wavelet
filter [30] to obtain the derived images for each patient. The extracted features were derived
from the original images and the derived images. A total of 1130 features were extracted
from each sequence. The arterial phase and portal vein phase feature sets of FS-T2WI
and DCE-MRI, and the combined feature set of the former three were established [31].
The extracted features were standardized using R software to eliminate the unit limit of
each feature data [32]. Two observers randomly selected 50 HCC patients to delineate the
VOIs of FS-T2WI sequence, arterial-phase, and portal venous-phase images and extract the
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radiomic features. The interclass correlation coefficient (ICC) was calculated to evaluate
interobserver consistency. Features with ICC < 0.75 were excluded [33].
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Figure 2. Delineation of the target area and generation of the full VOI. The 2D region of interests (ROIs)
were manually delineated on FS-T2WI and dynamic contrast-enhanced MRI. Three-dimensional
views were automatically generated for all ROIs.

2.5. Feature Screening and Model Establishment

The least absolute shrinkage and selection operator (LASSO) and stepwise regression
analysis were used to select the optimal radiomic feature [34,35]. A logistic regression
model was established for the selected optimal feature set. A 5-fold cross-validation
method was used to verify the performance of the model [36]. The predictive performance
of each model was evaluated by the area under the receiver operating characteristic (ROC)
curve (AUC).

2.6. Statistical Analysis

R software (version 4.1.1, https://www.r-project.org/, accessed on 12 August 2021)
was used for statistical analysis. Categorical data are expressed as whole numbers and
proportions, and they were compared between groups by the chi-squared test. LASSO was
performed using the “glmnet” software package of the R statistical environment. Statistical
results were considered significant when p < 0.05.

3. Results

A total of 108 HCC patients were enrolled in this study, aged 23–73 years (mean:
53 years); 95 (88%) were male, 81 (75%) had liver cirrhosis, and the longest tumour diameter
ranged from 2.0 cm to 20.1 cm (the average longest diameter was 6.4 cm). There were
50 patients in the high-PD-L2-expression group and 58 patients in the low-PD-L2-expression
group (Table 2, Figure 3).
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Table 2. Clinical characteristics of patients in the high and low PD-L2 expression groups.

Clinical Variables Total (n = 108) High PD-L2 Expression
(n = 50)

Low PD-L2
Expression (n = 58) p

Age (years) 0.105
≤60 69 (64%) 36 (72%) 33 (57%)
>60 39 (36%) 14 (28%) 25 (43%)

Sex (%) 0.163
Male 94 (87%) 46 (92%) 48 (79%)

Female 14 (13%) 4 (8%) 10 (21%)

AFP (ng/mL) 0.375
<20 37 (34%) 18 (36%) 19 (33%)

20–400 25 (23%) 14 (28%) 11 (19%)
≥400 46 (43%) 18 (36%) 28 (48%)

Diameter (cm) 0.629
0–5 47 (44%) 23 (46%) 24 (41%)
≥5 61 (56%) 27 (54%) 34 (59%)

Hepatitis B 0.785
No 12 (11%) 7 (14%) 5 (9%)
Yes 96 (89%) 43 (86%) 53 (91%)

Liver cirrhosis 0.504
No 27 (25%) 14 (28%) 13 (22%)
Yes 81 (75%) 36 (72%) 45 (78%)

Portal vein tumour thrombus 0.664
No 82 (76%) 37 (74%) 45 (78%)
Yes 26 (24%) 13 (26%) 13 (22%)

Note: AFP: alpha-fetoprotein.

Finally, 10, 8, 10, and 14 optimal features were obtained from the FS-T2WI, enhanced-
scan arterial-phase, portal venous-phase, and combined datasets, respectively, which were
used to establish the prediction model. The AUCs of the FS-T2WI sequence, contrast-
enhanced arterial-phase, and portal venous-phase sequence models and the combined
model in the training set were 0.852 (95% CI: 0.781–0.924), 0.814 (95% CI: 0.734–0.895), and
0.857 (95% CI: 0.734–0.895), and 0.955 (95% CI: 0.921–0.989), respectively. The AUCs in the
validation set were 0.789 (95% CI: 0.702–0.875), 0.727 (95% CI: 0.632–0.823), 0.770 (95% CI:
0.682–0.857), and 0.871 (95% CI: 0.803–0.939), respectively (Figure 4, Table 3).

Table 3. Predictive performance of each model.

Model AUC of Training Set
(95% CI)

AUC of Validation Set
(95% CI) Accuracy Sensitivity Specificity p Value

FS-T2WI 0.852 (0.781–0.924) 0.789 (0.702–0.875) 73.15% 66.00% 79.31% 0.0051
AP 0.814 (0.734–0.895) 0.727 (0.632–0.823) 69.44% 62.00% 75.86% 0.0006

PVP 0.857 (0.789–0.925) 0.770 (0.682–0.857) 71.30% 70.00% 72.41% 0.0018
Combined 0.955 (0.921–0.989) 0.871 (0.803–0.939) 82.41% 86.00% 79.31% Reference

Note: AUC: area under the ROC curve; CI: confidence interval; FS-T2WI: fat suppression T2-weighted imaging;
AP: arterial phase; PVP: portal venous phase; Combined: FS-T2WI + AP + PVP. p value versus combined.

There was no significant difference in the efficacy of PD-L2 expression in HCC patients
evaluated by the single-sequence models (p > 0.05), while the AUCs of the training set
and validation set of the combined model were significantly higher than that of any of the
above single-sequence model (p < 0.05) (Figure 5).
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ROC curve; AP: arterial phase; PVP: portal venous phase; Combined: combined model.

4. Discussion

MRI-based radiomic features can be used as a non-invasive predictor of immune
characteristics of liver cancer, which may be helpful for the treatment stratification of liver
cancer patients [37–39]. Hectors [38] showed that MRI-based textural features were signif-
icantly correlated with PD-L1 expression. Gu [39] established a support vector machine
model based on MR imaging radiomic features for predicting Glypican 3 expression in
HCC patients and achieved good results. The AUC of the training group was 0.879, and
the AUC of the validation group was 0.871. When it was combined with the clinical risk
predictor AFP, its predictive performance was significantly improved. Its AUC was 0.926
in the training group and 0.914 in the validation group.



Cancers 2023, 15, 365 7 of 10

As one of the ligands of PD-1, PD-L2 is involved in the composition of the immune
microenvironment of HCC patients and is associated with poor prognosis [13]. The use
of non-invasive methods to predict the expression of PD-L2 is conducive to the develop-
ment of individualized liver cancer protocols. The results of this study showed that the
logistic regression model established based on the radiomic characteristics of the FS-T2WI
sequence, the contrast-enhanced arterial phase sequence, and the portal venous phase
sequence could well predict PD-L2 expression in HCC patients. The combined model
had significantly improved predictive performance, possibly because the MRI combined
model was constructed from data from different sequences, and their different information
was complementary to each other and could more fully and accurately reflect the internal
characteristics of the tumour. This conclusion is consistent with the literature [21,23,40].

Different MRI sequences provide different information, and their contributions to
the combined model are also different. Wang [41] established an MRI-based radiomics
model to predict the 5-year survival rate of HCC patients, the contribution of different
sequences to the prediction model was as follows: DCEI > DWI > T2WI > T1WI. Among
the 14 features of the combined model established in this study, there were six features from
the FS-T2WI and eight features from the enhanced sequence (three in the arterial phase and
five in the portal venous phase), which is consistent with the literature [42].

The normal liver is mainly supplied by the portal vein; HCC is mainly supplied by the
hepatic artery. Dynamic-enhanced MRI can display the characteristics of dynamic-enhanced
images of HCC and provide information on differences in vascular distribution. Zhang et al.
showed that the radiomics model established based on the contrast-enhanced sequence
was more effective at predicting the MVI status and early recurrence of HCC than other
sequences [24,43]. In Zhao’s [44] study on preoperative prediction of early recurrence after
partial resection of HCC, the AUC of their MRI radiomics model based on the portal vein
phase was 0.750, which was superior to that of the T2WI model (AUC: 0.710) and the arterial-
phase model (AUC: 0.717).The radiomics model based on multiparametric MRI radiomics
features presented the best performance (AUC: 0.831) among all radiomics models in the
training cohort. The combined nomogram (AUC: 0.873) incorporated clinicopathologic
radiologic (CPR) factors (MVI, pathological grading, and tumour size) outperformed the
radiomics model and the CPR model. These results described above may be related
to the following factors [44,45]: (1) MVI is one of the important prognostic factors and
correlated closely with early recurrence of HCC after surgical treatment. (2) Due to the
large signal differences caused by the washout of the typical enhancement method of HCC,
the tumour boundary on the portal vein phase in the dynamic enhanced image can be clear
so that the preoperative portal vein phase image can highlight the heterogeneity of HCC.
(3) Multiparametric MRI contains more potential tumour heterogeneity information.

Discrete wavelet transform with eight filters (four high-pass and four low-pass) [46]
can help identify sudden changes in details or intensity in an image [30]. After the feature
screening in this study, the wavelet features in each sequence model and the combined
model were the most preserved, in line with previous studies [47–50]. Yuan [49] established
a nomograph based on enhanced CT images and clinical factors to predict the efficacy
of anti-PD-1 treatment in patients with advanced HCC, and the features extracted after
wavelet filter transformation accounted for 8/9 (88.9%) of the features. They suggested
that wavelet transform is a mathematical technique that can decompose special patterns
hidden in a large amount of data. Xu [50] developed and validated a predictive model for
the preoperative lymph node status in patients with intrahepatic cholangiocarcinoma, and
the features used were all from wavelet features.

This study has the following limitations. (1) First, the manual segmentation method
was used. Manual segmentation has higher accuracy than semiautomatic segmentation
and automatic segmentation, so it is often used as the standard basis for evaluating other
segmentation methods [28,29]. However, the problem of inaccurate segmentation caused
by unclear boundaries of some images cannot be completely avoided. (2) The main purpose
of this study was to investigate the performance of the MRI radiomics model in predicting
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the expression of PD-L2 in HCC patients, and only a logistic regression model was used.
Other classification models, such as random forest and support vector machine, were not
tried. The advantages and disadvantages of different classifiers were not compared. (3) This
study was a retrospective study using single-centre data and the same MRI model. It lacked
effective external validation, limiting the generalizability of our results to other centres.

5. Conclusions

This MRI-based radiomics model can predict the expression of PD-L2 in HCC patients
before surgery and provide reference information for immune checkpoint blockade therapy.
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