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Simple Summary: Clear cell renal cell carcinoma (ccRCC) is the most common form of renal can-
cer. Currently, treatment of metastatic ccRCC (mccRCC) is challenging despite the use of modern
immunotherapy options. In order for the patient to receive the most effective treatment among the
available pharmaceutical agents, there is a constant need for biomarkers that can predict therapeutic
efficacy. The present study investigates changes in the mRNA expression of genes related to inflam-
mation and immunity in patient blood. By using machine learning approaches, several changes
in mRNA expression levels were observed in patients who had clinical benefit from the treatment
compared to patients with progressive disease. Collectively, our results show that gene expression
can be used to classify these samples with high accuracy and specificity.

Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Despite the
rapid evolution of targeted therapies, immunotherapy with checkpoint inhibition (ICI) as well as
combination therapies, the cure of metastatic ccRCC (mccRCC) is infrequent, while the optimal use
of the various novel agents has not been fully clarified. With the different treatment options, there is
an essential need to identify biomarkers to predict therapeutic efficacy and thus optimize therapeutic
approaches. This study seeks to explore the diversity in mRNA expression profiles of inflammation
and immunity-related circulating genes for the development of biomarkers that could predict the
effectiveness of immunotherapy-based treatments using ICIs for individuals with mccRCC. Gene
mRNA expression was tested by the RT2 profiler PCR Array on a human cancer inflammation and
immunity crosstalk kit and analyzed for differential gene expression along with a machine learning
approach for sample classification. A number of mRNAs were found to be differentially expressed
in mccRCC with a clinical benefit from treatment compared to those who progressed. Our results
indicate that gene expression can classify these samples with high accuracy and specificity.

Keywords: ccRCC; immunotherapy; TKIs; machine learning; cancer

1. Introduction

Renal cell carcinoma (RCC) represents the most common renal malignancy, accounting
for more than 80% of all renal cancer cases, with clear cell RCC (ccRCC) being the most
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common subtype (>80% of all cases) [1]. When detected at an early stage, disease is curable
with surgery in most cases [2]. Nevertheless, almost 1 out of 4 patients presents with
metastatic disease, while 30–40% of patients presenting with localized cancer will develop
metastases after nephrectomy [3].

The prognosis of metastatic ccRCC (mccRCC) has been significantly improved during
the last 15 years due to the introduction of agents that target essential mechanisms of ccRCC
development, expansion, and aggressiveness. These mainly include angiogenesis via
inhibition of the tyrosine kinase (TKIs) of the Vascular Endothelial Growth Factor Receptor
(VEGFR) and an anti-tumor immune response by blocking interactions, which result in the
suppression of immune response against the tumor [4]. Contemporary immunotherapy
of mccRCC includes two distinct types of molecules: programmed cell death-1 (PD-1)
inhibitors and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors. PD-1 is a
glycoprotein found in a variety of cells, including T cells. When its ligand (PD-L1), which
can be overexpressed by tumor cells, binds to PD-1, it inhibits the proliferation of PD-1+
cells and promotes tumor evasion. PD-1 inhibitors (e.g., Nivolumab) and mediate enhanced
antitumor activity [5]. CTLA-4 is a receptor found in T cells that exhibits inhibitory effects.
Its downstream targets include cell cycle machinery molecules, which are essential for cell
cycle progression [6].

The introduction of modern immunotherapy in our armamentarium greatly improved
the prognosis of mccRCC [7,8]. However, not all patients benefit from a given regimen.
In addition, the optimal sequence of novel agents for each patient remains to be found.
Currently, a challenge for personalized oncology remains the identification of biomarkers
capable of predicting response/resistance to treatment, which at the same time will be appli-
cable in the clinical practice. One of the first biomarkers to be investigated in patients who
received ICI treatment was PD-L1. Its expression in the tumor microenvironment has been
associated with responses to immunotherapy in a variety of tumors [9,10]. Nevertheless,
this is not the case for mccRCC [11]. In addition, obtaining sufficient tumor samples from
all patients with advanced disease can be practically challenging. Thus, serum markers
represent a more realistic option for everyday practice [12].

Recent studies have shown that the expression of immune-related genes has provided
a link between tissue expression and a patient’s outcome. These include increased tumor
expression of CCR7 that indicates poor prognosis in mccRCC patients treated with TKIs [13]
and increased CXCR4 [7], CXCL5 [8], CCL4 [9], CCL22 [10], and IL-1 [11], which have been
linked to poor outcomes by promoting high proliferation rates/aggressive phenotypes.
On the contrary, high IDO-1 expression is associated with favorable response status to
immunotherapy [12]. Whether the altered gene expressions observed in the tumor microen-
vironment are reflected in the serum or peripheral blood samples remains an important
yet unanswered question. Currently, there are considerably fewer studies that have iden-
tified mRNA expression changes in immune-related genes in patient blood samples. In
terms of transcriptomic alterations in blood, down-regulated IL-18R1 and IL-18RAP are
associated with treatment response in advanced lung cancer [14], while a model using
pretreatment mRNA levels of 15 genes in melanoma has been proposed for the prediction of
immunotherapy outcome [15]. Regarding mccRCC, studies that utilize serum mRNA with
regards to immunotherapy response aside from PD-1 are scarce and include upregulation
of IL-9R, which signifies response to treatment, and upregulation of RETN, which indicates
lack of response in immunotherapy-treated mccRCC patients [16,17]. Moreover, at the
protein level, increased serum IL-1α, IL-6, CCL44, and IL-13 are correlated with increased
survivorship in mccRCC patients that receive immunotherapy [18].

In the present study, we investigated the predictive value of distinct molecular signa-
tures of human cancer inflammation and immunity genes that could serve as circulating
biomarkers for the prediction of the response of mccRCC patients to ICIs-based therapeutic
approaches. In addition, we aim to elucidate the cascade of transcriptomic and immunolog-
ical changes these treatments attain beyond their intended targets, along with any changes
enacted by different therapeutic options.



Cancers 2023, 15, 5637 3 of 21

2. Materials and Methods
2.1. Patients

Peripheral blood samples from mccRCC patients (n = 27) were acquired before treatment
administration. All participants received anti-PD1 agents (Nivolumab/Pemprolizumab) in
combination with anti-CTLA-4 (Ipilimumab) or TKIs (Cabozantinib/Axitinib) as first-line
therapy for metastatic disease. The best response to treatment was categorized into: clinical
benefit (CB) [complete response (CR) or partial response (PR) or stable disease (SD)] or
progressive disease (PD) using the RECIST criteria (v.1.1) [19]. Participants were treated
at Attikon General University Hospital and Laikon General Hospital between 2021 and
2023. All subjects involved in this study provided their written informed consent prior
to participating, and the present study was approved by the Ethics Committee of the
hospitals. The clinicopathological data are summarized in Table 1, while all individual data
are described in detail in Supplementary Table S1.

Table 1. Patient clinicopathological data.

Characteristic Number of Patients (%)

Gender Male 21 (77.78%)
Female 6 (22.22%)

Median age (Range) 66.4 ± 10.7
Treatment Nivolumab + Ipilimumab 11 (40.74%)

Nivolumab + Cabozantinib 8 (29.63%)
Pemprolizumab + Axitinib 8 (29.63%)

Response Status Clinical Benefit (CB) 14 (54.85%)
Progressive Disease (PD) 13 (48.15%)

2.2. Differential Gene Expression Analysis (DGEA)

Total peripheral blood RNA was extracted using the Qiagen AllPrep RNA/DNA
Mini Kit (Qiagen, Hilden, Germany). cDNA was prepared using the RT2 First Strand Kit
(Qiagen) according to the manufacturer’s instructions. Gene expression quantification was
performed by RT2 profiler PCR Array human cancer inflammation and immunity crosstalk
(PAHS-181ZA, Qiagen) using the RT2 qPCR SYBR Green Master Mix (Qiagen).

Comparative analysis involved dividing our samples according to CB and PD, or
timing in relation to treatment initation, and performing the following comparisons: (A)
patients with CB (control) and PD mccRCC at baseline to detect biomarkers able to predict
their response to immunotherapy; (B) patients with CB before (control) and after therapy;
(C) patients with PD before (control) and after immunotherapy; (D) patients with PD
and CB (control) disease after immunotherapy; and (E) patients regardless of disease
progression that receive either combinations of ICI/ICI or ICI/TKI (control) treatments.
The last three comparisons were conducted to allow for investigating the transcriptional
differences exacted by the therapy. Data analysis was conducted using the RT2 Profiler
PCR Array Data Analysis version 3.5 from Qiagen. All samples successfully passed quality
checks for PCR Array reproducibility, RT efficiency, and genomic DNA contamination.

For within-sample normalization, five housekeeping genes (ACTB, B2M, GAPDH,
HPRT1, and RPLP0) were utilized with the 2−∆Ct method. The fold change (FC) was
calculated as 2−∆∆Ct and is presented as fold regulation in the results. Genes that were
underexpressed are represented as the negative inverse of the fold change, while over-
expressed genes are presented as the fold change. The p-values were determined by
conducting Student’s t-tests on the replicate 2−∆Ct values for each gene in both the control
and test groups. Only genes with fold regulation higher than 2 or less than −2 and a
p-value of less than 0.05 are reported for the A, B, and C groups, while groups D and E
disregard p-value restrictions due to the small sample size and the scope of the analysis. A
graphical representation was created using R on the 1/∆Ct values to both normalize and
showcase higher expression levels. The analysis was performed on the Qiagen Geneglobe
platform (found online at https://geneglobe.qiagen.com/, accessed on 20 October 2023). Ct

https://geneglobe.qiagen.com/
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values for each gene per sample were provided in separate excel files, which are provided
as Supplementary Materials (BASELINE CB AND PD.xlsx (Table S2), AFTER CB AND
PD.xlsx (Table S3), CB BEFORE AND AFTER.xslx (Table S4), PD BEFORE AND AFTER.xslx
(Table S5), ICI VERSUS TKI.xlsx (Table S6)).

2.3. Machine Learning (ML)

To enhance and complement differential expression findings as predictive biomarkers
for disease progression and effects of therapy, H2O AutoML (v.3.40.0.4) [20], a machine
learning automation framework, was used. We performed predictive modeling tasks on
the previously defined (A–C) subsets of samples, in which each sample subset was divided
into two parts with a 60/40 split, one used for training and one for validation. Both sets
contained samples of both classes under investigation (CB and PD at baseline, CB before
and after therapy, and PD before and after therapy). Unfortunately, subsets D (PD or
CB after therapy) and E (ICI/ICI versus ICI/TKI after therapy) did not contain enough
samples for a sufficient ML analysis. H2O AutoML was then applied to the training dataset
using a 10-fold cross-validation approach for each fold iteratively, training and tuning
a total of 50 different models on various algorithms and hyperparameter combinations,
excluding ensemble and deep learning algorithms. The top 5 best-performing models in
total were selected based on their respective performance metrics, area under the curve
(AUC), and root mean squared error (RMSE). After completing the training process, each of
the 5 models was tested against the separate training set to evaluate their performance and
generalizations on new data. In addition, the top 10 contributing features for each model
were gathered and reported, along with the algorithm and the performance metrics for each
model. This has allowed for both feature selection and generalization of the models for the
classification of new samples. The R script that was used is provided in the Supplementary
Materials (ML.R) (File S1).

3. Results

Both the DGEA and ML approaches highlighted several genes that define specific
transcriptomic signatures with the potential to predict which patients are more likely
to respond well to treatment, as well as provide insights into how their immunological
profiles change after the intervention. The ML algorithms highlighted here, as expected,
even though favored genes with higher expression differences also provided more in-
depth insights into our subgroupings, highlighting transcriptomic patterns without the
restrictions of multiple testing and taking into account more complex relationships between
genes and metrics such as distribution.

3.1. Prediction of Response to Therapy

When comparing patients with known outcomes at baseline, we were able to identify
upregulated and downregulated genes that can act as potential biomarkers of how effective
treatment might be for each group. In total, 19 genes are differentially expressed in
the studied groups. Patients with PD exhibited high upregulation of ACKR3 (Atypical
Chemokine Receptor 3, also known as CXCR7) with a 36.1-fold regulation, making it
a prime candidate for further investigation, as it is considered an “orphan” chemokine
with no known ligand. In addition, BCL2 (B-Cell Lymphoma 2), a critical anti-apoptotic
protein that inhibits cell death with a 22.8-fold change, appears to contribute to mccRCC
cell survival. Other genes, such as SPP1 (Secreted Phosphoprotein 1), CCL22 (C-C Motif
Chemokine Ligand 22), GBP1 (Guanylate-Binding Protein 1), FASLG (Fas Ligand), MICA
(MHC Class I Polypeptide-Related Sequence A), PTGS2 (Prostaglandin-Endoperoxide
Synthase 2), and CTLA4 (Cytotoxic T-Lymphocyte-Associated Protein 4), also displayed
moderate upregulation with fold changes ranging from 5.0 to 7.7. Additionally, slight
increased mRNA expression (4.9–2.7-fold regulation) in cases with progressive disease
was observed for the genes CCL28 (Chemokine (C-C motif) ligand 28), CCL4 (C-C Motif
Chemokine Ligand 4), IRF1 (Interferon Regulatory Factor 1), and IL12A (Interleukin 12A).
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On the other hand, CXCR1 (C-X-C Chemokine Receptor Type 1), which is involved in
regulating neutrophil migration and activation, showed significant downregulation with a
12.5-fold change in its expression. In addition, CD274 (Programmed Cell Death 1 Ligand 1,
also known as PD-L1), FOXP3 (Forkhead Box P3), CCL21 (C-C Motif Chemokine Ligand 21),
CSF1 (Colony-Stimulating Factor 1), and CXCL11 (C-X-C Motif Chemokine Ligand 11)
exhibited a profile more closely associated with patients that will respond to therapy.
Figure 1A depicts these transcriptomic differences. 
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Figure 1. (A) Differential gene expression results at baseline (pre-therapy) for patients with clinical 
benefits (CB) and progressive disease (PD) (subgroup A). Bar charts showcase differences in expres-
sion based on log2ΔCt values for each group. Fold regulations for each gene highlight their differ-
ences after applying the 2−ΔΔCt method. Negative fold regulation signifies downregulation in the 
progressive disease group. (B) Top 5 ML models that best classify the samples to either group. For 
each one of them, the most important features as well as their name, AUC (Area Under the Curve), 
and RMSE (Root Mean Square Error) values are displayed. 

Figure 1. (A) Differential gene expression results at baseline (pre-therapy) for patients with clinical
benefits (CB) and progressive disease (PD) (subgroup A). Bar charts showcase differences in expression
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based on log2∆Ct values for each group. Fold regulations for each gene highlight their differences after
applying the 2−∆∆Ct method. Negative fold regulation signifies downregulation in the progressive
disease group. (B) Top 5 ML models that best classify the samples to either group. For each one of
them, the most important features as well as their name, AUC (Area Under the Curve), and RMSE
(Root Mean Square Error) values are displayed.

When the same data were processed through our ML pipeline, the five top models
managed to achieve AUCs of 0.8–1 with low RMSE values. Gradient boosting machine
(GBM) algorithms and their variation, the XGBOOST (extreme gradient boosting), with
various hyperparameters, appear to perform well for this kind of analysis occupying the
top four spots, albeit with variable accuracies. The fifth model highlighted was a GLM
(generalized linear model) algorithm, which required more features than the rest of the
models in order to successfully classify our samples. At least four out of five models
agree on CSF1, CXCR1, STAT1 (Signal Transducer and Activator of Transcription 1), CCL18
(C-C motif Chemokine Ligand 18), and ACKR3. In addition, CSF1 appears to be the
strongest biomarker candidate, performing very well on all models. All the models and the
top 10 genes used for distinguishing between patients who will respond to treatment are
featured in Figure 1B.

3.2. Transcriptomic Changes in CB after Therapy

To better understand how the transcriptional profile of ccRCC patients who will re-
spond to immunotherapy changes after treatment we employed the same approaches as
before. In total, 15 genes appear to be differentially expressed after the intervention. TNF
(Tumor Necrosis Factor), whose role is triggering immune reactions and maintaining tissue
homeostasis, exhibited an impressive 94.8-fold-regulation increase after treatment. IRF1
(Interferon Regulatory Factor 1) also displayed a considerable upregulation of 35.5-fold
suggesting an upregulation in the production of interferons. Other significantly upregu-
lated genes were HIF1A (Hypoxia-Inducible Factor 1 Alpha) with a 28.1-fold regulation,
the cytotoxic GZMB (Granzyme B) by 24.0-fold, FOXP3 by 16.3-fold, TLR3 (Toll-Like Re-
ceptor 3) by 15.4-fold, CCL28 (C-C Motif Chemokine Ligand 28) by 14.8-fold. CXCL11 by
13.1-fold, the tissue healing IGF1 (Insulin-like Growth Factor 1) by 11.7-fold and IL4 (Inter-
leukin 4) by 10.7-fold. The effects of treatment were also showcased in the downregulation
of PCDP1 (Programmed Cell Death Protein 1, PD-1) by 20.9-fold and CXCL10 (C-X-C Motif
Chemokine Ligand 10), by 5.0-fold. All the relevant results are shown in Figure 2A.

As previously, GBM ML models performed very well in highlighting key molecules
before and after treatment in patients with CB. All five top models exhibited high accuracy
with AUCs of 1 and low RMSE scores. In addition to the aforementioned GBM models the
DRF (Decision Rule-based Fuzzy) and the GLM algorithms utilized more genes to classify
the groupings effectively. In the comprehensive analysis, it was revealed that at least
4 out of the 5 models placed significant emphasis on certain key genes. These molecules
were identified as CCL18, GZMB, CCL28, HLA-A (Human Leukocyte Antigen-A), and
prominently CSF3 (Colony-Stimulating Factor 3). All molecules that emerged as possible
biomarkers for effectiveness of treatment and the respective algorithms are depicted in
Figure 2B.
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Figure 2. (A) Differential gene expression results for patients with Clinical Benefits (CB) before and
after therapy (subgroup B). Bar charts showcase differences in expression based on log2∆Ct values
for each group. Fold regulations for each gene highlight their differences after applying the 2−∆∆Ct

method. Negative fold regulation signifies downregulation in the patients after therapy. (B) Top 5 ML
models that best classify the samples into either group. For each one of them the most important
features as well as their name, AUC (Area Under the Curve), and RMSE (Root Mean Square Error)
values are displayed.
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3.3. Transcriptomic Changes in PD after Therapy

Identifying patients whose treatment might prove ineffective and having a short time-
line for transitioning to another therapeutic strategy is very important. For this reason,
we studied the effects of intervention on patients who did not respond to their current
regiments before and after treatment. From the DGEA analysis, we observed significant up-
regulation of several genes associated with immune activation and inflammatory responses
after treatment. GZMB exhibited a 39.7-fold increase, while FOXP3, TNFSF10 (Tumor
Necrosis Factor Superfamily 10), and IFNG (Interferon Gamma) showed fold upregulations
of 39.0, 19.8, and 19.7, respectively. Furthermore, IL4, HLA-A, VEGFA (Vascular Endothelial
Growth Factor A), TLR3, CCXCL11, MIF (Macrophage Migration Inhibitory Factor), and
CXCR1 all demonstrated moderate upregulation, with fold changes ranging from 13.7 to
4.8. In contrast, we observed a notable downregulation of TGFB1 (Transforming Growth
Factor Beta 1) after treatment, with a fold regulation of −10.7. Figure 3A contains all the
pertinent results for the total of 12 differentially expressed genes detected.
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Figure 3. (A) Differential gene expression results for patients with progressive disease (PD) before
and after therapy (subgroup C). Bar charts showcase differences in expression based on log2∆Ct values
for each group. Fold regulations for each gene highlight their differences after applying the 2−∆∆Ct
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method. Negative fold regulation signifies downregulation in the patients after therapy. (B) Top 5 ML
models that best classify the samples into either group. For each one of them, the most important
features as well as their name, AUC (area under the curve), and RMSE (root mean square error)
values are displayed.

Once more, ML algorithms were used to further detect genes that distinguish the
transcriptomic profiles of patients with progressive mccRCC before and after treatment. A
mixture of GBM, DRF, and XRT (extremely randomized trees) algorithms performed as the
top 5 models in the ML approach. All achieved an AUC of 1, with low RMSEs utilizing a
variety of features. At least 4 out of 5 algorithms agree on GZMB, CSF3, IL4, IFNG, and
highlight the role of FOXP3. Since CSF3 and GZMB were also highlighted in the analysis of
the CB patients, we can safely assume that their contribution is an effect of the treatment
itself and does not contribute to the early detection of treatment response. Figure 3B
illustrates the molecules identified as potential biomarkers for treatment effectiveness,
along with the corresponding algorithms used in the analysis.

3.4. Transcriptomic Changes Affected by Therapy in PD and CB Patients

To supplement our analyses and further elucidate differences between responders
and non-responders to therapy, we analyzed the expression differences in patients with a
progressive course of disease versus those that appear to be more stable at follow-up. We
chose to examine differences in all genes that had statistically significant dysregulation
after therapy when compared to the baseline samples (analyses on subgroups B and
C). The analysis revealed significant changes in the regulation of several genes. Those
that exhibited substantial upregulation include PDCD1 (74.37-fold), HLA-A (60.76-fold),
suggesting enhanced antigen presentation to T cells and TNFSF10 (44.22-fold). VEGFA
(18.48-fold), CXCL10 (13.15-fold), and MIF (9.03-fold). Meanwhile, CXCR1, TGFB1, and
IFNG also show a moderate upregulation pattern with a fold regulation of 3.67-fold, 1.53-
fold, and 1.41-fold, respectively.

On the other hand, genes that show modest downregulation include CCL28 (−1.64-fold),
FOXP3 (−1.67-fold), GZMB (−1.75-fold), TLR3 (−1.97-fold), and IL4 (−2.13-fold). IGF1,
CCL21, CXCL5, CSF1, CXCL11, IRF1, and TNF show a higher downregulation with −4.95,
−6.92, −11.25, −12.13, −12.70, −14.67, and −14.76 folds, respectively. The most significant
downregulation was observed in HIF1A (−43.71-fold). All results are presented in Figure 4.

Cancers 2023, 15, x FOR PEER REVIEW 4 of 5 
 

 

 
Figure 4. Differential gene expression results after therapy for patients with clinical benefits (CB) 
and progressive disease (PD) (subgroup D). Bar charts showcase differences in expression based on 
log2ΔCt values for each group. Fold regulations for each gene highlight their differences after ap-
plying the 2−ΔΔCt method. Negative fold regulation signifies downregulation in the progressive 
ccRCC group. 

  

Figure 4. Differential gene expression results after therapy for patients with clinical benefits (CB)
and progressive disease (PD) (subgroup D). Bar charts showcase differences in expression based on



Cancers 2023, 15, 5637 10 of 21

log2∆Ct values for each group. Fold regulations for each gene highlight their differences after
applying the 2−∆∆Ct method. Negative fold regulation signifies downregulation in the progressive
ccRCC group.

3.5. Transcriptomic Changes Affected by Different Therapeutic Combinations

In addition to previous analyses, DGEA was conducted to examine the influence of
the ICI/ICI and ICI/TKI combinatorial treatments on the expression levels of inflammation
and immunity genes. For the analysis, we used the ICI/TKI-treated patients as a baseline
and reported on the top 10 upregulated and downregulated genes found in the ICI/ICI
group. The results revealed significant fold regulation changes, although we failed to
achieve statistical significance due to the low number of samples and the variation be-
tween individuals. Notable upregulated genes include TP53—Tumor Protein p53 (9.3-fold),
IL1A—Interleukin 1 Alpha (3.7-fold), ACKR3 (3.3-fold), HLA-A (3.3-fold), BCL2L1—BCL2
Like 1 (2.8-fold), CCR9—C-C Motif Chemokine Receptor 9 (2.8-fold), KITLG—KIT Lig-
and (2.8-fold), NOS2—Nitric Oxide Synthase 2 (2.8-fold), MIF (2.5-fold), and CXCL8—
Interleukin-8 (2.5-fold). On the other side, downregulated genes include CXCL5 (−2.4-fold),
TNF (−2.4-fold), CSF1 (−2.5-fold), EGFR—Epidermal Growth Factor Receptor (−2.5-fold),
TGFB1 (−2.5-fold), CD274 (−2.8-fold), CSF2—Colony Stimulating Factor 2 (−2.9-fold),
HIF1A (−3.0-fold), IL15—Interleukin 15 (−4.0-fold), and EGF—Epidermal Growth Factor
(−5.1-fold).

All results are presented in Figure 5. The complete DGEA results, which conform to
the constraints of statistical significance we imposed for all subgroupings, can be found in
Table 2.
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Figure 5. Differential gene expression results after therapy for patients under combination of ICI/ICI
or ICI/TKI treatments. Bar charts showcase differences in expression based on log2∆Ct values for
each group. Fold regulations for each gene highlight their differences after applying the 2−∆∆Ct

method. Negative fold regulation signifies downregulation in the ICI/ICI group.
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Table 2. DGEA results for all subgroups.

PD vs. CB at Baseline PD vs. CB after Therapy ICI/ICI vs. ICI/TKI after Therapy

Gene Symbol Fold
Regulation p-Value Gene

Symbol
Fold

Regulation p-Value Gene
Symbol

Fold
Regulation p-Value

ACKR3 36.1 >0.001 PDCD1 74.4 0.030 TP53 9.3 0.310
BCL2 22.8 0.026 HLA-A 60.8 0.050 IL1A 3.7 0.884
SPP1 7.7 >0.001 TNFSF10 44.2 0.036 ACKR3 3.3 0.377

CCL22 6.2 0.016 VEGFA 18.5 0.041 HLA-A 3.3 0.783
GBP1 6.0 0.013 CXCL10 13.2 0.045 BCL2L1 2.8 0.183

FASLG 5.8 0.031 MIF 9.0 0.055 CCR9 2.8 0.287
MICA 5.7 0.019 CXCR1 3.7 0.053 KITLG 2.8 0.553
PTGS2 5.0 0.034 TGFB1 1.5 0.678 NOS2 2.8 0.901
CTLA4 5.0 0.050 IFNG 1.4 0.747 MIF 2.5 0.242
CCL28 4.9 0.023 CCL28 −1.6 0.676 CXCL8 2.5 0.966
CCL4 4.3 0.017 FOXP3 −1.7 0.376 CXCL5 −2.4 0.942
IRF1 3.3 0.023 GZMB −1.8 0.227 TNF −2.4 0.905

IL12A 2.7 0.017 TLR3 −2.0 0.659 CSF1 −2.5 0.747
CD274 −3.6 0.026 IL4 −2.1 0.121 EGFR −2.5 0.751
FOXP3 −4.0 0.025 IGF1 −5.0 0.097 TGFB1 −2.5 0.110
CCL21 −4.7 0.005 CCL21 −6.9 0.034 CD274 −2.8 0.952
CSF1 −5.4 0.004 CXCL5 −11.3 0.046 CSF2 −2.9 0.487

CXCL11 −5.4 0.005 CSF1 −12.1 0.026 HIF1A −3.0 0.782
CXCR1 −12.5 0.008 CXCL11 −12.7 0.049 IL15 −4.0 0.052

IRF1 −14.7 0.043 EGF −5.1 0.244

TNF −14.8 0.050
HIF1A −43.7 0.030

CB after vs. before Therapy PD after vs. before Therapy

Gene Symbol Fold
Regulation p-Value Gene

Symbol
Fold

Regulation p-Value

TNF 94.8 >0.001 GZMB 39.7 >0.001
IRF1 35.5 0.001 FOXP3 39.0 >0.001

HIF1A 28.1 >0.001 TNFSF10 19.8 0.045
GZMB 24.0 >0.001 IFNG 19.7 0.004
FOXP3 16.3 0.003 IL4 13.7 >0.001
TLR3 15.4 0.003 HLA-A 12.7 0.008

CCL28 14.8 0.003 VEGFA 6.7 0.031
CXCL11 13.1 0.001 TLR3 5.8 0.008

IGF1 11.7 0.003 CXCL11 5.6 0.008
IL4 10.7 >0.001 MIF 4.8 0.014

CXCL5 7.0 0.001 CXCR1 3.3 0.010
CSF1 4.4 0.001 TGFB1 −10.7 0.028

CCL21 3.1 0.031
CXCL10 −5.0 0.039
PDCD1 −20.9 0.039

4. Discussion

ICIs-based therapies have revolutionized cancer therapeutic strategies; however, the
responses of mccRCC patients and survival rates are still poor [20]. Additionally, reliable
biomarkers for therapy response prediction and individualized patient selection for proper
therapy are still limited. In the present study, we investigated how the expression of
inflammation and immune gene signatures in the peripheral blood prior to ICI-based
therapy differs in patients with CB and PD and how those are affected by therapy.

The pretreatment gene signature we identified contains 19 differentially expressed
genes from the initial 84 tested for classifying patients according to response. ACKR3
mRNA was significantly overexpressed in progressive disease. ACKR3 is overexpressed in
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many human cancers, including renal carcinoma, and is correlated with poor prognosis,
tumor progression, and metastasis [21,22]. It is important to notice that atypical chemokine
receptors (ACKRs) are basic regulatory components of the chemokine network in a wide
range of pathological conditions, including cancer, suggesting the need to validate them
as novel targets for immunotherapies [23]. Furthermore, we identified elevated levels
of BCL2 mRNA expression in cases of progressive disease. Although there are discrep-
ancies in the literature regarding its expression in renal cancer [24,25], it is established
that heightened expression of this gene in tumors correlates with unfavorable responses
to systemic cancer therapy and a resistance to immunotherapy [26,27]. Other genes that
had increased expression in progressive disease cases were SPP1, CCL22, GBP1, FASLG,
MICA, PTGS2, CTLA4, CCL28, CCL4, IRF1, and IL12A. Our findings are in agreement
with previous studies. In particular, SPP1 expression demonstrated increased levels in
the progressing group and decreased levels in the regressing group within an RCC cohort,
underscoring its potential as an indicator in immunotherapy [28], while high expression
of PTGS2 mRNA is a poor prognostic indicator in human mccRCC [29]. Additionally,
high FASLG expression in RCC is associated with a significantly worse prognosis [30], and
FasL neutralization has the potential to improve the efficacy of immunotherapy based
on immune checkpoint inhibitors. The effect of GBP1 expression in cancers appears to
be complex. Zhao et al. [31] based on the TCGA database report increased expression of
GBP1 in kidney renal clear cell carcinoma cases, and by examining 33 cancer types, they
suggested that generally, patients with high GBP1 expression may possibly result in better
responses to immunotherapy; however, other studies like the one by Ye et al. [32] show
that GBP2, which is highly co-expressed with GBP1, is a robust prognostic biomarker for
high immune infiltration and poor prognosis in ccRCC. In our cohort, we observed that
GBP1 has a moderate increase in cases with progressive disease. It is well recognized that
many human cancers, including ccRCC, express the MHC class I chain-related polypeptide
A (MICA) protein that serves as a ligand for the activating NK group 2D (NKG2D) receptor
on NK cells [33]. Torres et al. [34] reported that targeting MICA-expressing tumors with
an anti-MICA antibody significantly delayed their growth, and more recently, Secchiari
et al. [35] reported that higher expression of MICA was associated with worsened overall
survival for ccRCC patients. Our results align with these observations since we found
increased MICA expression in progressive disease patients. Regarding CTLA4, it is well
known that it is the second target of checkpoint inhibition therapeutic approaches in RCC,
and CTLA4 expression was significantly correlated with metastatic diseases and associ-
ated with a reduced survival in ccRCC [36]. We found moderate upregulation of CTL4
expression in cases with progressive disease at baseline; however, recently, the findings of
Klumper et al. [37] indicated that reduced methylation of the CTLA4 promoter, linked to
elevated mRNA levels, predicts a positive response to immune checkpoint blockade and
favorable outcomes among ccRCC patients. This positive effect offsets the initial negative
prognostic impact of CTLA4 hypomethylation. However, it is worth noting that CTLA4
methylation appears to be specifically predictive for immunotherapy and is not correlated
with the response to TKIs. This observation helps shed light on our results, given that our
cohort includes patients undergoing a combination of immunotherapy and TKI treatments.
It has also been shown, consistent with our findings, that high levels of chemokines CCL4,
CCL22, and CCL28 in pre-treatment tumor specimens were associated with worse patient
overall survival after immunotherapy in RCC [38–40]. We also observed a small increase
in IRF1 and IL12A mRNA in the progressive disease group. Recently, Chehrazi-Raffle
et al. [41] have also reported that mRCC patients with lower levels of circulating IL12 have
a clinical benefit during treatment with ICI or TKI. Regarding IRF1 in mccRCC, the data
from Chen et al. [42], primarily sourced from public databases, suggests that cases with a
low IRFscore (constructed based on the transcriptomic expression of the IRF family) may
exhibit heightened sensitivity to targeted therapies, while those within the high IRFscore
subgroup might be more responsive to immunotherapy. In addition, they highlight the cor-
relation of a low IRFscore with the mccRCC2/3 phenotypes, while a high IRFscore matched
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with mccRCC1/4. Thus, our results can be partially justified since our cohort includes
patients that received combined therapies but are also agnostic to the subphenotyping of
mccRCC, highlighting the need for further study to determine biomarker viability.

Corro et al. [43] suggested that CXCR1 expression is associated with cancer stem cell-
like properties of ccRCC as well as negatively correlated with overall survival. As far as we
know, there are no studies examining the CXCR1 expression levels and the immunotherapy
response, but our results highlight an upregulation of CXCR1 mRNA in patients with PD
versus those with CB after therapy, while before therapy the phenomenon is reversed. These
results appear to be in agreement with a study by Panaiyadiyan et al. [44], which suggested
that increased tumor CXCR1 expression before TKIs relates to progression-free survival and
can predict reduced benefit of therapy in patients with mccRCC. However, it is known that
CXCR1 is associated with a direct migration of neutrophils and neutrophil infiltration in
several cancers and is implicated in both anti- and pro-tumor roles [45]. Thus, more studies
are needed to elucidate the role of CXCR1 in modulating the immunotherapy response.

Concerning the CD274 expression in mRCC, its possible predictive value for response
to immunotherapy is still controversial, and the results from the analyses of the clinical
trials investigating ICIs in this disease are inconclusive [46]. However, in agreement with
Kang et al. [47], we observed that elevated CD274 mRNA expression at the baseline was
significantly associated with CB patients. FOXP3 mRNA was also upregulated in baseline
in the patient group that will exhibit stable disease, but also after therapy. Interestingly,
Koh et al. [48] suggested that higher levels of FoxP3+ Treg cells can predict a beneficial
response to anti-PD-1 immunotherapy in patients with advanced non-small cell lung can-
cer, and this observation can rationalize our results. Patients with CB in our cohort were
found to have increased CCL21 and CXCL11 mRNA levels. In preclinical mouse models,
CCL21 was shown to facilitate antitumor activity via recruiting and colocalizing NK cells,
DCs, and T cells in tumors, and it was supported that anti-PD-1 administered in combi-
nation with CCL21-DC tumor antigen therapeutic vaccines eradicated lung cancer [49].
Regarding CXCL11, its mRNA upregulation was associated with a better prognosis in
several cancers, and PD-L1 blockade combined with an oncolytic vaccinia virus expressing
CXCL11 in mouse models was shown to considerably decrease tumor burden and improve
prognosis [50,51]. In our results, we also found moderately elevated mRNA CSF1 base-
line levels in the CB patient group as well as after therapy. Our findings seem to be in
contrast with studies supporting the idea that high levels of CSF1 and tumor-associated
macrophages (TAMs) are associated with a poor cancer prognosis [52] and that inhibition
of CSF-1/CSF-1R signaling can improve the efficacy of checkpoint blockade in animal
tumor models by enhancing anti-CTLA-4 and anti-PD-1-induced tumor immunity [53].
Nevertheless, it remains controversial whether CSF-1/CSF-1R signaling basically functions
through regulating tumor immunity or tumor cell malignancy. Studies indicated that CSF-
1R is mainly expressed in tumor cells, while CSF-1R has also been reportedly expressed
in tumor-associated macrophages (TAMs) and involved in tumor immune escape [54,55].
Becht et al. [56] identified 4 robust ccRCC subtypes (ccRCC1 to ccRCC4). The immunome
identified the ccRCC4 subgroup as exhibiting the highest expression of CSF1 and proposed
that the ccRCC4 subgroup identifies patients that may respond to therapeutic immune
checkpoint modulators. These observations indicate that therapeutic responses to im-
munotherapy are multifaceted and can be influenced by a wide range of factors, including
the specific tumor type, the overall immune landscape, and the genetic and molecular
characteristics of the tumor. In general, the case of CSF1 is a curious one. Proposed by
our ML approaches as a high-confidence feature for sample classification, it appears to
have a pleiotropic role during ccRCC. On one hand, it has a clear homeostatic role in cell
proliferation and survival and has been found elevated in healthy subjects [57], and on
the other, during cancer, it is implicated in M2 macrophage polarization, which promotes
cancer cell proliferation and cell infiltration [58]. Its immunological role both enhances
and hinders cancer progression, either by assisting said TAM formation or by actively
contributing to the fight against cancerous cells. Even the role of TAMs is not definite since
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there appears to be a similar dichotomy in their role, both promoting proliferation and
killing cancer cells [59,60]. It appears that the role of CSF1 and TAMs is heavily reliant on
ccRCC subphenotypes and a very delicate balance in expression, which when perturbed,
can lead in opposing directions [59]. Ongoing research aims to unravel these complexities
and identify reliable biomarkers and predictors of immunotherapy response are needed.

ICI-based treatment has a profound effect on gene expression in our cohort. In patients
that responded to therapy, we found 15 differentially expressed genes before and after
therapy. Among them, TNF was found to be significantly overexpressed after treatment.
It is known that ICI treatment is associated with increased TNF gene expression, and in
agreement with our findings, it has been reported that melanoma patients responding
to ICI had higher gene expression of TNF and TNF response signatures after therapy
compared to non-responders [61]. Additionally, we also found increased TNF expression
in CB patients when we compared the post-therapy gene expression between CB and PD
cases. The pattern of upregulation extends to other immune-related genes as well, albeit
at a lower rate, suggesting a strong immune response overall and seemingly training the
immune system to fight off mccRCC progression. As expected, PDCD1, the gene that
encodes PD-1, was significantly downregulated after successful anti-PD-1 therapy. PD-
1/PD-L1 blockade has shown prolonged survival benefits in several malignancies [62].
Regarding CXCL10, increased transcription for CXCL10 mRNA has been observed after
immunotherapy treatment (i.e., nivolumab) [63]. However, overexpression of CXCL10
could enhance RCC cell metastasis [64]. Thus, its downregulation following treatment
seems to be consistent with CB, as shown by our results when comparing PD patients
versus CB after therapy.

Regarding the patients with progressive disease, GZMB was found to be upregu-
lated post-treatment compared to pre-treatment samples. Au et al. [65] have shown a
small increase in GZMB expression post-nivolumab treatment in both responders and
non-responders, but CD8+T cell-specific GZMB expression was to be found significantly in-
creased in responders. When we compared post-therapeutic gene expression, we also found
increased GZMB expression in patients with CB compared to patients with PD. Neverthe-
less, it is supported that in spite of the favorable outcome associated with GZMB expression
in tumors, its expression in some cases was associated with poor prognosis, resistance to
therapy, and advanced cancer stage [66]. Additionally, we observed increased levels of
FOXP3, TNFSF10, and IFNG following treatment compared to pre-treatment samples in
progressive disease group patients. Jensen et al. [67] reported that IL-2-based therapy leads
to the accumulation of FOXP3-positive immune cells in the tumor microenvironment in
metastatic renal cell carcinoma and that high numbers of on-treatment FOXP3-positive cells
were correlated with poor prognosis. Tumor necrosis factor-related apoptosis-inducing lig-
and (TRAIL) is encoded by TNFSF10, and high TRAIL expression levels are linked with poor
disease-specific survival in patients with RCCs [68]. Furthermore, even if the mechanism is
unclear, interferon-γ (IFNG)-mediated adaptive resistance is one basic barrier to improving
immunotherapy in solid tumors [69]. Although TGFB1 exhibited downregulation after
treatment in the progressive disease group, its expression remained elevated compared to
the CB group. It is well known that TGF-β is a multifunctional cytokine that acts in a cell-
and context-dependent way as a tumor promoter or suppressor, and its pleiotropic nature
contributes to drug resistance, tumor escape, and a weakened response to therapy [70].
Several TGF-β-targeting therapies are under clinical investigation in combination with anti-
PD-(L)1 therapies, particularly in tumor types that have had poor responses to anti-PD-(L)1
monotherapies.

The expression analysis of post-therapy samples further highlighted differences be-
tween responders and non-responders. Most of these changes have been discussed previ-
ously, but some results were accentuated. For example, HLA-A overexpression in progres-
sive disease not only was highlighted as distinctive between PD and CB after therapy but
appears to also be promoted by the interventions under study in the PD group, hinting at
a synergistic interaction. HLA-A has been proposed as a therapeutic target for ccRCC in
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recent studies [71,72], in addition to studying specific defects that promote immune escape
to tumors contrary to their typical role [73]. High expression of VEGFA in patients with
progressive disease after therapy is also quite common since it is a marker and facilitator
of highly vascularized tumors [74] and the target of the TKI-based therapies used in our
study. HIF1A was significantly upregulated in CB patients after therapy when compared
both to their baseline and to progressive disease patients. In line with our results, HIF1A
has been proposed as an effective biomarker for response to immunotherapy [75] and as a
cancer suppressor gene in ccRCC [76].

Finally, the evaluation of ICI/ICI versus ICI/TKI using differential expression analysis
revealed some interesting findings. First and foremost, the ICI/ICI combination appears to
upregulate the expression of the onco-suppressor TP53 gene that encodes the p53 protein.
Even though rarely-occurring mutations of TP53 have been linked to poor prognosis in
ccRCC [77] and its overexpression in ccRCC has not shown any real clinical potential [78],
its elevated expression is under-reported and demands further study. The fact that the
combined ICI/ICI therapy might induce expression of this gene over the ICI/TKI approach
can be deemed inconclusive, or it can also be a marker of cell overcompensation and
immune system overdrive. Such is also the case of IL1A, which appears to have a dual
role in cancer [79], and in ccRCC especially, its blocking has been associated with better
outcomes [80]. On the other hand, EGF and EGFR overexpression found in the ICI/TKI
group has once more been implicated in silico with poorer outcomes [81] and presents
another controversial answer to our questions since EGFR in ccRCC has been shown to
be on the uptake even after EGFR-targeted therapies due to a variety of tumor-specific
characteristics [82]. At this junction, it is important to note that our analysis contained
both responders and non-responders to therapy, which might be influencing these results,
and the low number of samples in each group prevented results from reaching statistical
significance regardless of their seemingly perturbed expressions. The fact that ICI and
TKI treatments have different targets further complicates the extraction of any conclusions
for this analysis, even though in literature ICI/TKI combinations are presented as more
effective [83] or at best requiring further investigation [84].

To enhance the DGEA analysis results, we employed ML approaches in both conven-
tional and unconventional ways. In the case of predicting response to therapy at baseline,
ML, in its traditional role, classified our samples, highlighting CSF1, CXCR1, STAT1, CCL18,
and ACKR3 as important features that promote said classification. While this knowledge
does not fully reveal the optimal expression levels for each feature, it does provide a
distinct pointer toward smaller feature subsets that should be investigated collectively.
This in tandem study can enable the accurate classification of new samples based on their
potential to respond to therapy or not. Hence, we deemed it appropriate to also apply
the same logic in a nonconforming way to let ML models select important features that
discern transcriptional changes effected by therapeutic intervention. This approach can
serve a dual purpose: aiding upcoming research in pinpointing features that precisely
signal therapeutic response on a molecular scale and providing clinicians with insights into
potential risks associated with maintaining therapy, even when a patient’s clinical status
remains uncertain at a specific timepoint. These results might be able to serve as the basis
for future works, especially those conducted with larger sample sizes, which would be able
to provide more robust results.

5. Conclusions

Our research, like many others in the field, faces several significant limitations due to
the inherent characteristics of the specific cancer under investigation and the immunother-
apy strategies employed. These limitations are crucial to acknowledge and consider when
interpreting our findings. First and foremost, one of the major challenges we encounter is
the low incidence rate of the cancer of interest, ccRCC, within the general population. This
rarity makes it difficult to assemble a sufficiently large and diverse cohort of participants
for our study, especially since this is a single-center study. Globally, the prevalence of
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ccRCC is estimated to be less than 2% [85]. As a result, our study may suffer from a limited
sample size, which may not accurately represent the broader population affected by this
cancer. The scarcity of available samples is further compounded by the fact that ccRCC
primarily affects individuals later in life, and those who do not respond well to treatment
often have a very poor prognosis. Consequently, we have access to only a small number
of post-treatment samples for comparison, which in turn diminishes our statistical power
to detect meaningful trends or draw definitive conclusions. Additionally, the complexity
of our research is heightened by the diversity of treatment approaches undertaken by the
participating patients. Our patients were treated with combinations of ICIs and TKIs, each
targeting different molecular pathways. This diversity in treatment strategies introduces a
layer of complexity to our study, as these therapies can have distinct effects on the immune
system and tumor microenvironment, although this makes the study relevant to everyday
clinical practice. The interplay between various molecules as treatment targets and the
resulting immunological cascade effects further complicates our ability to elucidate clear
and concise outcomes, prompting further validation of these results. In summary, our
research confronts significant limitations stemming from the rarity of ccRCC, the resulting
challenges in sample accrual, the limited post-treatment samples available, and the intricate
nature of the immunotherapy strategies employed. While we strive to overcome these
limitations to the best of our abilities, it is essential to approach our findings with a nuanced
understanding of these constraints and their potential impact on the generalizability and
robustness of our conclusions.

Addressing the limitations associated with the rarity of clear cell renal cell carcinoma
(ccRCC), challenges in sample accrual, limited post-treatment samples, and complex im-
munotherapy strategies requires a multi-faceted approach. Collaborative research efforts
can be instrumental, as they allow for the pooling of resources, samples, and data from
multiple research institutions or centers that specialize in ccRCC. Additionally, collabo-
rating with patient registries and advocacy groups focused on ccRCC can help identify
potential participants and access existing datasets, thereby providing a larger and more
diverse study cohort. To overcome the challenge of small sample sizes, longitudinal studies
can also be considered. These studies involve following patients over an extended period,
which can lead to the collection of more post-treatment samples over time, ultimately
enhancing the statistical power of the research. In these prospective studies, patients
receiving specific immunotherapy regimens are enrolled and monitored from the outset,
which can reduce the complexity introduced by different treatment histories and increase
the homogeneity of the study population. Additionally, computational modeling and
simulation studies can complement empirical research by exploring the potential effects
of different treatment strategies and outcomes under varying conditions. This can also
allow us to investigate the complex immunological interactions associated with different
immunotherapy approaches, where the use of additional in vitro or animal models may be
considered. Where the sample size allows it, patient stratification based on specific criteria,
such as treatment history or genetic markers, can help mitigate the variability introduced
by different treatment approaches.

Regardless of these constraints, this study validates and expands current knowledge
on the impact of immunotherapy in ccRCC and whether we can safely predict patient
response, even though not all immunological mechanisms can be effortlessly explained.
The baseline predictive biomarkers highlighted within were detected by easily accessible
and non-invasive blood draws, giving clinicians a possibly fast and consistent way to
assess patient response to selected regiments. By relying on routine blood tests, healthcare
practitioners can swiftly ascertain whether the immunotherapy is yielding the desired
effect, enabling timely adjustments to optimize patient outcomes and paving the way for
enhanced patient care and personalized treatment strategies. The importance of identifying
the right marker to support clinical decision-making in RCC goes beyond the potential
(predictive) impact on treatment outcomes and carries economic repercussions as well. This
is why, across cancer care, studies underline the importance of careful evaluation of both
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their clinical utility and their cost-effectiveness before wide-spread adoption in routine
clinical practice [86]. The discussion is not new—the call to assess the impact on cost of
care of introducing predictive biomarkers has been intensifying over the past decade [87].
Still, there is very poor literature on the matter. This is mainly due to the limited research
horizon, which focuses on the clinical and cost impact of a treatment after its selection and
fails to combine the probabilities to choose that treatment upfront, which may be affected
using a biomarker. This results in a fragmentation of the evaluation of the cost-effectiveness
impact of a biomarker on the total patient pathway and disallows a much-needed holistic
approach to inform decision-making, including reimbursement.

Our research, which has identified potential predictive biomarkers of response to
treatment through the integration of differential expression analysis and machine learning
techniques, has the potential to significantly impact the field of personalized medicine
and patient care. By tailoring therapies based on an individual’s genetic or molecular
profile, healthcare providers can increase treatment efficacy while minimizing adverse
effects. Patients are more likely to receive treatments that are specifically targeted to their
unique biological characteristics, increasing the chances of a positive response and better
disease management. Biomarker-driven treatment decisions can reduce the administration
of ineffective treatments to non-responsive patients. This not only spares patients from
unnecessary side effects but also optimizes healthcare resources and reduces healthcare
costs. While promising, the integration of biomarkers and machine learning also presents
challenges, including the need for rigorous validation, potential bias in data sources, and
ethical considerations regarding patient privacy and data sharing.
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P.W.; Kmieć, Z. Expression and Prognostic Significance of EP300, TP53 and BAX in Clear Cell Renal Cell Carcinoma. Anticancer.
Res. 2017, 37, 2927–2937.

79. Chiu, J.W.; Binte Hanafi, Z.; Chew, L.C.Y.; Mei, Y.; Liu, H. IL-1α Processing, Signaling and Its Role in Cancer Progression. Cells
2021, 10, 92. [CrossRef]

80. Aggen, D.H.; Ager, C.R. Blocking IL1 Beta Promotes Tumor Regression and Remodeling of the Myeloid Compartment in a Renal
Cell Carcinoma Model: Multidimensional Analyses. Clin. Cancer Res. 2021, 27, 608–621. [CrossRef]

81. Wang, S.; Yu, Z.H.; Chai, K.Q. Identification of EGFR as a Novel Key Gene in Clear Cell Renal Cell Carcinoma (ccRCC) through
Bioinformatics Analysis and Meta-Analysis. BioMed Res. Int. 2019, 2019, 6480865. [CrossRef]

82. Muroni, M.R.; Ribback, S.; Sotgiu, G.; Kroeger, N.; Saderi, L.; Angius, A.; Cossu-Rocca, P.; De Miglio, M.R. Prognostic Impact of
Membranous/Nuclear Epidermal Growth Factor Receptor Localization in Clear Cell Renal Cell Carcinoma. Int. J. Mol. Sci. 2021,
22, 8747. [CrossRef] [PubMed]

83. Stühler, V.; Maas, J.M.; Rausch, S.; Stenzl, A.; Bedke, J. Immune Checkpoint Inhibition for the Treatment of Renal Cell Carcinoma.
Expert. Opin. Biol. Ther. 2020, 20, 83–94. [CrossRef] [PubMed]

84. Rebuzzi, S.E.; Perrone, F.; Bersanelli, M.; Bregni, G.; Milella, M.; Buti, S. Prognostic and Predictive Molecular Biomarkers in
Metastatic Renal Cell Carcinoma Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review. Expert. Rev. Mol.
Diagn. 2020, 20, 169–185. [CrossRef] [PubMed]

85. Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal
Cell Carcinoma. World J. Oncol. 2020, 11, 79. [CrossRef]

86. Maqbool, M.; Khan, A.; Shahzad, A.; Sarfraz, Z.; Sarfraz, A.; Aftab, H.; Jaan, A. Predictive Biomarkers for Colorectal Cancer: A
State-of-the-Art Systematic Review. Biomarkers 2023, 28, 562–598. [CrossRef]

87. Gazouli, M.; Souliotis, K. The Economic Considerations and Implications of the Stratification of Future Oncology Therapeutics.
Mol. Diagn. Ther. 2014, 18, 403–408. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.tranon.2022.101554
https://doi.org/10.1158/2159-8290.CD-11-0098
https://www.ncbi.nlm.nih.gov/pubmed/22037472
https://doi.org/10.1007/s00432-021-03786-1
https://doi.org/10.3390/cells10010092
https://doi.org/10.1158/1078-0432.CCR-20-1610
https://doi.org/10.1155/2019/6480865
https://doi.org/10.3390/ijms22168747
https://www.ncbi.nlm.nih.gov/pubmed/34445451
https://doi.org/10.1080/14712598.2020.1677601
https://www.ncbi.nlm.nih.gov/pubmed/31587590
https://doi.org/10.1080/14737159.2019.1680286
https://www.ncbi.nlm.nih.gov/pubmed/31608727
https://doi.org/10.14740/wjon1279
https://doi.org/10.1080/1354750X.2023.2247185
https://doi.org/10.1007/s40291-014-0102-7

	Introduction 
	Materials and Methods 
	Patients 
	Differential Gene Expression Analysis (DGEA) 
	Machine Learning (ML) 

	Results 
	Prediction of Response to Therapy 
	Transcriptomic Changes in CB after Therapy 
	Transcriptomic Changes in PD after Therapy 
	Transcriptomic Changes Affected by Therapy in PD and CB Patients 
	Transcriptomic Changes Affected by Different Therapeutic Combinations 

	Discussion 
	Conclusions 
	References

