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Simple Summary: Gastric cancer (GC) ranks as one of the most life-threatening malignancies world-
wide, and over one billion new cases and 783,000 deaths were reported last year. The incidence of
GC is exceptionally high in Asian countries. Multiple oncogenic signaling pathways are aberrantly
activated and implicated in gastric carcinogenesis, leading to the malignant phenotype acquisition.
G-protein-coupled receptor (GPCR) signaling is one of them, and the aberrant activation of GPCRs
and G proteins promotes GC progression. The activated GPCRs/G proteins might serve as useful
biomarkers for early diagnosis, prognostic prediction, and even clinically therapeutic targets. This
review summarized the recent research progress of GPCRs and highlighted their mechanisms in
tumorigenesis, especially in GC initiation and progression.

Abstract: G-protein-coupled receptors (GPCRs) belong to a cell surface receptor superfamily respond-
ing to a wide range of external signals. The binding of extracellular ligands to GPCRs activates a
heterotrimeric G protein and triggers the production of numerous secondary messengers, which
transduce the extracellular signals into cellular responses. GPCR signaling is crucial and imperative
for maintaining normal tissue homeostasis. High-throughput sequencing analyses revealed the
occurrence of the genetic aberrations of GPCRs and G proteins in multiple malignancies. The altered
GPCRs/G proteins serve as valuable biomarkers for early diagnosis, prognostic prediction, and
pharmacological targets. Furthermore, the dysregulation of GPCR signaling contributes to tumor
initiation and development. In this review, we have summarized the research progress of GPCRs and
highlighted their mechanisms in gastric cancer (GC). The aberrant activation of GPCRs promotes GC
cell proliferation and metastasis, remodels the tumor microenvironment, and boosts immune escape.
Through deep investigation, novel therapeutic strategies for targeting GPCR activation have been
developed, and the final aim is to eliminate GPCR-driven gastric carcinogenesis.

Keywords: G-protein-coupled receptor; G protein; gastric cancer; targeted therapy

1. Introduction

Gastric cancer (GC) is a substantial global health burden, accounting for the fifth most
commonly diagnosed cancer and the third leading cause of fatal malignancies worldwide.
Incidence rates are markedly increased in Eastern Asia, especially in Mongolia, Japan, and
Korea, which are strongly associated with various predisposing and etiological factors,
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according to several migrant studies [1,2]. Most GC-related deaths occur due to late diag-
nosis, lymph node metastasis, and refractory after surgery. Thus, numerous efforts have
been made to develop useful prognosis markers for early detection and therapeutic targets
to improve clinical outcomes. Heterogeneity represents one of the biggest challenges in
GC treatment owing to the histological categories and diverse molecular drivers. The well-
established histological classification divides gastric carcinomas into diffuse and intestinal
types [3]. The Cancer Genome Atlas (TCGA) network also reaffirmed our understanding of
molecular categories by analyzing the dysregulated pathways identified in multiomics data.
This study developed a robust molecular classification scheme comprising Epstein-Barr
virus (EBV), microsatellite instability (MSI), chromosomal instability (CIN), and genomi-
cally stable (GS) tumors [4]. In the past two decades, trastuzumab and chemotherapy were
used as the first-line treatment, and the combination of ramucirumab and paclitaxel was
used in second-line treatment [5]. However, the clinical applicability remains quite limited.
There is an urgent need to uncover more targetable pathways to develop more accurate
diagnosis makers against nonspecific symptoms in early-stage GC and optimize existing
therapy for precision medicine.

Since G protein-coupled receptors (GPCRs) were reported in cellular transformation in
1986, emerging evidence shows that these membrane-embedded receptors regulate many
biological processes and are crucial targets against several human malignancies [6]. The
involvement of GPCRs in GC is emerging due to the identification of genomic aberrations
that lurk at different stages and subtypes of GC and promote tumor initiation and pro-
gression [7]. This review recapitulated the current knowledge related to the aberrated
regulation of the GPCR pathway in GC, including the common tactic hijacked by tumor
cells for their growth, metastasis, and immune evasion. Moreover, we will discuss the
advances in the current treatment strategies and summarize the ongoing clinical trials that
attempt to translate biological findings into clinical applications.

2. Basic Knowledge of GPCRs

GPCRs comprise over 800 members accounting for about 4% of human genes. They
have various structures and signal transduction. Based on their specific characteristics,
GPCR members are further classified into different subgroups and participate in various
physiological processes, whereas the aberrant expression and abnormal activation of GPCRs
are associated with tumor progression.

2.1. Structure and Classification of GPCRs

GPCRs have seven transmembrane α-helices (TM1-7) that connect the N-terminal
extracellular domain (ECD), three extracellular and intracellular loops: ECL1-3, ICL1-3, and
the C-terminus (Figure 1). They are classified into six groups based on their structural and
functional similarities, whereas only four groups (A, B, C, and F) are found in vertebrates.
The Rhodopsin-like class A, which has 719 members, represents humans’ most common but
diverse group. Half of the class A members serve as sensor receptors primarily in smell and
vision. In contrast, diffusible ligands, such as peptides, lipids, hormones, and nucleotides,
can trigger the other receptors. Class B includes secretin and adhesion receptors, which have
a similar sequence in 7TM but different sequences in ECD. The secretin subgroup contains
receptors for polypeptide gut hormones, such as the GLP-1 receptor, glucagon receptor,
and parathyroid hormone receptor. Research has focused on the adhesion receptors by
defining the mechanisms of ligand binding sites and the GPCR autoproteolysis-inducing
domain (GAIN)-mediated receptor activation. The metabotropic glutamate family (class C)
is characterized by a large ECD, consisting of γ-aminobutyric acid B receptors (GABAB),
metabotropic glutamate receptors (mGluRs), and a calcium-sensing receptor (CasR). The
frizzled/taste family (class F) includes frizzled and smoothened proteins that can be
activated by the lipo-glycoproteins of the Wnt and Hedgehog families [8–10].
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Figure 1. The structure GPCRs and their dysregulation in GC (*, Conserved motifs). GPCRs are widely
expressed in the stomach. GPCRs participate in a variety of physiological and pathological processes.
The upregulated GPCRs, including PAR1, CXCR4 and P2YR, and BILF1, are identified in GC. The
five key sequence motifs in the class A GPCRs represent the most frequent mutant sites, which
are conserved and responsible for their structural integrity and essential function. Abbreviations:
GC, gastric cancer; PAR1, Protease-activated receptor 1; CXCR4, Chemokine CXC receptor 4; P2YR,
P2Y receptor.

Thrilling technologies, such as X-ray crystallography, cryo-electron microscopy (cryo-
EM) [11,12], and nuclear magnetic resonance (NMR) spectroscopy [13], are facilitating
the exploration of the structures of GPCRs and further boosting the structure-based drug
design. More extensive knowledge of GPCR biology, particularly on the function-related
conformational equilibria, such as allosteric coupling, biased signaling, and dynamic mod-
ulation, is required for developing new targets and minimizing the side effects. Although
structural studies reveal the direct impacts of stimulation on the receptor conformation
changes, the result of the GPCR signaling pathway is regulated by various factors, including
cell backgrounds, receptor expression levels, and agonists’ kinetic characteristics.

2.2. Signal Transduction of GPCRs

By binding to various extracellular ligands, GPCRs change their conformation, acti-
vate G-coupling proteins, and couple with other proteins, such as β-arrestins and GPCR
kinases (GRKs). However, the determinants of GPCR selective binding have not been fully
understood. Fundamentally, the G-protein barcode determines the selectivity between
GPCRs and G proteins, which contain variable residues on the conserved positions and
can be recognized by different GPCRs [14]. G proteins have long been recognized as the
primary transducers of GPCRs, and β-arrestins are suggested as essential modulators in
genome-edited cells [15]. β-arrestins can identify and bind to the GRK-phosphorylated
GPCRs and thereby outcompete the G proteins, functioning as scaffolds for other signal-
ings [16,17]. Therefore, the GRKs regulate the phosphorylation of ligand-bound GPCRs
and balance the G-protein-dependent and β-arrestin-dependent nodes of GPCRs [18].
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When the activated GPCRs bind with the heterotrimeric G proteins, the Gα subunits
dissociate from Gβγ after the exchange of GDP with GTP on the Gα proteins. This process
releases the heteromeric G proteins from the GPCRs and retains the plasma’s GTP-bound
Gα and Gβγ subunits [19]. One GPCR can activate multiple Gα proteins encoded by
16 genes. These genes are classified into four subfamilies based on sequence similarity: Gi,
Gq, Gs, and G12/13. Generally, the Gαs and Gαi respectively promote or inhibit adenylyl
cyclase, thus intervening in cyclic adenosine monophosphate (cAMP) production. The
accumulating cAMP behaves as a second messenger to activate protein kinase A (PKA).
Members of the Gi family also activate phospholipase (PIs) and phosphodiesterases (PDEs),
ultimately modulating the opening of numerous ion channels. PLC-β is the effector of the
Gαq and Gβγ subunits that elevate intracellular Ca2+ levels and activate protein kinase
C (PKC) by converting phosphatidylinositol 4,5-biphosphate (PIP2) into inositol 1,4,5-
triphosphate (PIP3) and diacylglycerol (DAG). Additionally, the Gβγ subunits trigger the
PI3K-γ/PI3K-β to catalyze the conversion of PIP2 to PIP3, which is a direct stimulator
of AKT. The Gα12/13 and Gαq family members regulate a group of Rho GEFs, which
harbor an RGS homology domain and activate Rho GTPase. As shown in Figure 2A, the
segregated Gα and Gβγ subunits evoke kinase cascades by activating various second
messengers [20,21].
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Figure 2. GPCR signaling and its crosstalk with other signaling pathways. (A) The most common
GPCR-related signaling pathways. Agonist-stimulated GPCRs undergo a conformational change and
facilitate the dissociation of Gα/Gβγ heterotrimer by replacing GDP with GTP on the Gα subunit.
Subsequently, Ga and Gβγ trigger several downstream effectors, including secondary messenger
systems, GEFs, Rho, and Ras GTPases, leading to a wide range of biological regulation. Besides the
regulators of the G protein, signaling proteins (RGS proteins) promote the heteromeric complex
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reassociation and the signaling termination by accelerating intrinsic GTPase activity. Notably, agonist-
activated GPCRs are also phosphorylated by GRKs and interact with β-arrestin, resulting in signaling
desensitization and GPCR endocytosis. The endocytic β-arrestin-GPCR complex can be modu-
lated by multiple factors and undergo degradation or recycling. (B) GPCR-associated crosstalk
on the membrane and GPCR-EGFR crosstalk contain EGFR ligand-dependent transactivation and
EGFR ligand-independent transactivation. The following pathways are the Wnt and Shh pathways.
(C) The main pathways targeted by the multiple effectors in (a) consist of the following signaling
pathways: Hippo pathway, MAPK pathway, Shh pathway, and Wnt pathway. Abbreviations: AC,
adenylyl cyclase; AKT, protein kinase B; CREB, cAMP response element-binding protein; EGF, epi-
dermal growth factor; EGFR, EGF receptor; ERK, extracellular signal-regulated kinase; GEF, guanine
exchange factor; GLI, glioma-associated oncogenes; GPCR, G protein-coupled receptor; GRK, G
protein-coupled receptor kinase; JNK, c-jun N-terminal kinase; LATS, large tumor suppressor kinase;
MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; PDEs, phospho-
diesterases; PI3K, phosphatidylinositol-3-kinase; PKA, Protein Kinase A; PLCβ, Phospholipase C
β; ROCK, Rho-associated protein kinase; Shh, sonic hedgehog protein; SMO, Smoothened protein;
SuFu, suppressor of fused; TAZ, transcriptional coactivator with PDZ-binding motif; TCF/LEF,
T-cell factor/lymphoid enhancer factor; TEAD, transcriptional enhanced associate domain; YAP,
yes-associated protein.

β-arrestins undergo conformational changes when recognizing the GRK-
phosphorylated GPCRs. Then, they enhance the process of desensitization, internalization,
and clathrin-mediated endocytosis of the activated GPCRs. As scaffold proteins, β-arrestins
facilitate GPCR-stimulated signal transduction. As one of the most prominent and earliest
examples, the GPCR-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) acti-
vation is a β-arrestin-dependent and G protein-independent signaling [16]. The genetic
ablation or inactivation of several G proteins induces a zero functional state for the G pro-
tein and abolishes the β-arrestin-mediated signaling in response to GPCR activation [22].
However, it was reported that β-arrestins are not required for ERK1/2 phosphorylation
despite their crucial roles in receptor internalization [23]. Indeed, the cumulative impact of
GPCR-induced ERK1/2 activation is tightly controlled by β-arrestins and G proteins [24].
Moreover, GPCRs scaffold several signaling proteins for Wnt [25], the hedgehog (Hh) [26],
and Notch [27] pathways (Figure 2B,C).

2.3. Diversification of GPCR Machinery

GPCRs are sophisticated dynamic machines rather than static on-and-off switches.
When they are engaged with different ligands, receptors, and regulatory partners, they
may exhibit specific conformations and undergo subcellular distributions. Exploring
the dynamic nature of GPCRs is vital to elucidate the mechanisms underlying allosteric
modulation, biased agonism, oligomerization, and sustained and compartmentalized
signaling. These mechanisms convey novel insights into drug discovery.

Allosteric ligand binding sites in GPCRs are potential new targets for modulating
GPCR functions and improving drug selectivity. These modulators augment (positive
allosteric modulators [PAMs]) or reduce (negative allosteric modulators [NAMs]) the
affinity and efficacy of endogenous agonists [28]. The discovery of allosteric modulators has
sparked interest in central nervous system (CNS) diseases, though with limited success [29].
MK-7622 is a PAM, selectively binding with the M1 muscarinic receptor in the CNS, which
has been stopped because it fails to improve recognition and increases adverse effects like
diarrhea [30,31].

Another ligand-receptor dynamic is biased agonism, a mechanism in which the active
conformational states of the receptors are stabilized by some ligands, resulting in distinct
cellular signaling profiles [32]. There are three different modes of biased signaling, includ-
ing the same receptor bound with other ligands adopting distinct conformations (ligand
bias), varying stoichiometric ratios of signaling effectors in distinguished cells (system bias),
and GPCR stimulation within divergent intracellular compartments (location bias) [17].
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However, substantial evidence on this is limited. The endogenous ligands, CCL9 and
CCL21, have been considered equipotent for activating CCR7-G protein coupling and
calcium mobilization. However, both ligands cause the distinct conformation of CCR7.
Only CCL9 can promote robust receptor desensitization after coupling the β-arrestins
and efficiently accelerating ERK1/2 phosphorylation, which CCL21 cannot achieve [33].
Besides, small molecules targeting TRV130 and PZM21 have been utilized to improve
analgesia with fewer side effects because of the biased receptor µ-OR activity, potent Gαi
signaling profile, and limited β-arrestin recruitment [34,35]. These two examples can partly
explain how ligands trigger the biased mechanism of GPCRs. Revealing the structural
features of GPCRs under multiple activation states and different cellular backgrounds may
be required to understand the biased signaling.

Receptor oligomerization conveys much more diversities in the function and phys-
iological roles of GPCRs. However, unlike the oligomer tyrosine kinase receptors and
ion channels, the formation of GPCR multimers remains controversial [36,37]. It has been
found that dimerization was necessary for some GPCRs, such as the class C members.
The first tangible evidence for GPCR dimerization was that the gonadotrophin-releasing
hormone (GnRH) antagonist-conjugated bivalent antibody played an essential role in
biphasic receptor formation [38,39]. The emergence of heteromers was associated with the
preferential pattern of receptors in different tissues and cell types [40]. The balance between
the monomers and heteromers of GPCRs may contribute to diseases [41,42]. Unraveling the
pattern of GPCR heteromers will provide pharmacotherapeutic targets to benefit disease
management.

Compartmentalized signaling may partly explain why the GPCRs can activate a typ-
ical profile of secondary messengers and kinases. In addition to locating the membrane,
the GPCRs might be desensitized and undergo β-arrestin-mediated endocytosis and intra-
cellular signaling [43–45]. Notably, some of the mechanisms are studied in the digestive
systems. Recently, PAR2 endosomal may underlie the sustained hyperexcitability of noci-
ceptors in patients with irritable bowel syndrome (IBS). The IBS supernatants and trypsin
could persistently activate PAR2 in the colonic mucosa in a clathrin-mediated, endocytosis-
dependent fashion [46,47]. The inhibitors of clathrin-mediated endocytosis and targeted
PAR2 antagonists suppressed PAR2 endosomal signal [48].

2.4. Dysregulated GPCR Signaling in Tumors

Based on the recent pan-cancer analysis, GPCR signaling was among the 55 path-
ways most significantly mutated. Mutations and the aberrant expression of GPCRs and
G proteins contribute to various diseases, including neurodegenerative, reproductive, im-
munological, and metabolic disorders, as well as cancers and infectious diseases [49,50].
The dysregulated GPCR signaling may exert a significant tumorigenic effect, as those
alterations frequently co-occur in well-characterized oncogenes, such as tyrosine and
serine-threonine kinase Ras-family members [51]. In-depth omics analysis approaches,
like MutSig2CV and GISTIC (Genomic Identification of Significant Targets in Cancers),
have comprehensively investigated the mutations and copy number variations (CNVs) of
GPCRs and G proteins in 33 TCGA patient groups. Remarkably, mutated GPCRs and G
proteins have been significantly identified in GI malignancies, even though these tumors’
mutation rates are not typically high [52]. Therefore, the relevance between these mutations
and biological outcomes is vastly underestimated [53,54].

2.5. GPCR Mutation and Abundant Expression

GPCRs are mutated in over 20% of all sequenced samples [55,56]. Unlike the mutated
hotspots in G proteins, GPCRs exhibit diverse mutations across different cancer types. The
three-dimensional structures of GPCRs and their interaction elements were evaluated to
acquire a mutational landscape of GPCRs in cancers [51]. The bulk of the alterations occurs
in the conserved 7TM via the visualization of the representative GPCR 3D structure, such as
the ionic lock switch E/DRY arginine motif, G protein-binding sites, and the tyrosine toggle
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switch motif NPxxY, and ligand-binding site. GPCR mutations impair GPCR signaling by
altering the basal activity, ligand binding affinity, G-protein interaction, and cell-surface
expression. As with thyroid-stimulating hormone receptors like HCRT2, P2RY12, LPAR4,
and GPR174, frequent mutations in the DRY motif may result in constitutive activation
due to conformational changes in TM3, TM5, and TM6 [51]. Mutations of the connection
between the NPxxY motif on TM7 and a conserved tyrosine in TM5 could stabilize the
inactive-state conformations of the α1B- and β2-adrenoceptors, which may account for lower
agonist potency in transducing the downstream IP1 and cAMP signaling, respectively [57].
Understanding the mutated structural features will shed new light on GPCR malfunctions
and devise possible therapeutic strategies [58].

The large and ever-grossing body of sequencing by pan-cancer analysis suggests that
the frequently mutated GPCR families are adhesion-related GPCRs, such as the glutamate
metabotropic receptors (GRM1-8, class C) [59], lysophosphatidic acid (LPA) receptors
(LPAR1-6), sphingosine-1-phosphate (S1P) receptors (S1PR1-5), and muscarinic receptors
(CHRM1-5, class A). However, most adhesion receptors are orphan receptors with unknown
ligands and physiological functions [60,61]. GPCR genetic alternations were found in
melanoma by exon capture and massively parallel sequencing. GPR98 and GRM3 were two
of the most frequently mutated genes, with 27.5% and 16.3% mutation rates. GRM3 mutants
selectively mediate the MEK signaling that contributes to tumor growth in melanoma,
acting as an indicator for patient stratification and precision medicine [62]. MutSig2CV
analysis suggests the three most mutant GPCRs in colon cancer are GPR98 (21.25%), TSHR
(13.90%), and BAI3 (13.62%), while CELSR1 (11.20%), EDNRB (8.14%), and GPR45 (5.09%)
account for the three most frequently mutated GPCRs in GC. However, the functional roles
of these mutant GPCRs in GI cancers remain unknown.

Besides mutations, GPCRs, like chemokine and histamine receptors (HRH2), exhibit
significant copy number variations (CNVs) in tumors. Several broad-type GPCRs are
universally overexpressed throughout the GI tract, regulating digestive and pathophysio-
logical processes [54,63,64]. The upregulation of receptors like 5-HTRs, FFARs, HRs, PARs,
EPs, and TGRs plays pivotal roles in proliferation, invasion, metastasis, and inflamma-
tion in the small intestine and colon. It has been reported that the CNVs of chemokine
receptors, LPARs, and ARs contribute to the initiation and progression of hepatocellular
carcinoma [65,66]. Early studies have implicated numerous viruses that harbored open
reading frames and evolved to take advantage of the signaling network for replicative
success by encoding GPCRs [67]. In GC, the Epstein-Barr virus (EBV/HHV-4) encodes a
class A GPCR called BILF1, affecting multiple cellular pathways [68].

2.6. Widespread Mutations of G Proteins

As oncogenic drivers in multiple prevalent cancers, many G proteins are considered
part of the cancer-associated gene panels routinely employed by a wide range of clinical
oncology studies. MutSig2CV analysis indicates that GNAS is the most frequently mutated
G protein in TCGA cohorts, concordant with the sequence results of the catalog of somatic
mutations in the cancer (COSMIC) database. GNAS aberrations widely occur in tumors
originating from the pituitary (28%), pancreas (12%), thyroid (5%), colon (6%), and a few
other locations [69]. Previous studies revealed that the two most frequently mutated resi-
dents, Arg 201 [70,71] and Gln 227 [72], might be functionally important. The significance
of these two sites has been first confirmed in pituitary tumors [73]. The disease-causing
altered resident Arg 201 leads to the constitutive cAMP signaling by reducing the GTP
hydrolysis of the active GTP-bound Gαs. However, the conclusion was reshaped by a
recent structural study of GNAS, indicating that the stabilization of the intramolecular
hydrogen bond network (H-bond network) plays a pivotal role in mutation-mediated
constitutive activation [74]. These aberrations in GNAS are responsible for initiating and
progressing multiple types of GI cancer, such as colon neoplasia, GC, and pancreatic
adenocarcinomas (PDAs). In colon cancer, the GNAS can mediate the tumorigenesis of
inflammatory factors by stimulating the Gs-Axin-β-Catenin pathway axis [75]. In the rare
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gastric adenocarcinoma, GNAS mutations were tightly associated with deep submucosal
invasion and increased tumor size by activating the Wnt/β-catenin pathway [76]. Besides,
at the early onset of invasive PDAs, frequent GNAS mutations (~41–75%) suppressed the
PKA-mediated SIK and reprogrammed lipid metabolism in the precursor of PDAs [77,78].

Although GNAQ and GNA11 mutations were less studied in tumors than GNAS,
these mutations were well-established in Sturge-Weber syndrome [79] and leptomeningeal
melanocytosis, arising from the central nervous system (~50%) [80], and also in the blue
nevi and the primary uveal melanomas (UVM)/uveal melanoma metastases (83%) [81,82].
The somatic mutations are mainly located in the residues Q209 or R183, which are essential
for GTP hydrolysis and cause constitutive activation due to loss of GTPase activity. In uveal
melanoma (UVM), the more common Q209 mutations were more potent in tumorigenesis
assays in nude mice models [82]. Consistently, the mutant GNAQQ209L contributed to
MAPK pathway activation [81] and exhibited more significant activated ERK than the
GNAQR183Q [83,84]. The activated GNAS mutant can also stimulate YAP-dependent
transcription through a Trio-Rho/Rac signaling circuitry instead of the canonical Hippo
pathway in UVM [85]. Furthermore, GNA13 is upregulated in several solid tumors, such
as GC [86], nasopharyngeal cancer [87], breast cancer [88], squamous cell cancers [89],
and colorectal cancer [90]. Interestingly, both GNA13 and RhoA have shown relevance to
the transformation capacity and metastatic potential in epithelial cancer and fibroblasts,
but the axis appears to play a tumor-suppressive role in B-cell lymphomas [91]. Large-
scale sequencing of lymphoid and hematopoietic malignancies indicated that the mutant
residues could be found throughout the gene [92,93].

The cDNA library screening distinguished the functionally relevant mutations of
the Gβ proteins GNB1 and GNB2. The gain-of-function alterations of these proteins can
disrupt the interactions of Gα-Gβγ and constitutively stimulate the downstream signaling
effectors, conferring resistance to targeted kinase inhibitors [94,95]. Recently, emerging
variants in all five Gβ proteins have been reported, such as GNB2 Arg52Leu in familial
cardiac arrhythmia condition, Gly77Arg in neurodevelopmental disorder, and monoallelic
missense variants in developmental delay/intellectual disability (DD/ID) [96]. Emerging
evidence supports that Gβ mutants also occur in various cancer types and relate to distinct
cancer subtypes. GPCRs also transduce the signal through β arrestins instead of G proteins,
mediating GC cell invasion, migration, and epithelial-mesenchymal transition (EMT) [24].
For example, the protein kinase AKT exerts its oncogenic function through the signaling
complex GPR39/β arrestin1/Src upon obestatin stimulation [97].

Some mutations occur in oncogenic kinase alterations, such as BCR-ABL fusion protein,
ETV6-ABL1, JAKV617F, and BRAFV600K, to enhance the drug resistance of the corresponding
kinase inhibitors [95,98]. Nevertheless, further investigations are needed into how these
alterations influence tumorigenesis in different contexts. The potential roles of Gγ proteins,
the close partners of Gβ proteins, should be clarified.

3. Aberrant GPCR Signaling in GC

GPCRs play hierarchical roles in many signaling networks. Dysregulations of the
GPCRs extensively exist in tumor progression, metastasis, and immune response repro-
gramming. In recent years, aberrant GPCR members have been emerging in GC studies.
This section will outline the updated findings of the GPCR signaling pathway in GC
(Table 1).
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Table 1. The most reported GPCRs in GC.

GPCRs Ligand Expression Mechanisms Biological
Function References

Class A Receptors

Peptide/Protein Receptors

Protease-
activated

receptors (PAR)

Proteases, such
as Thrombin,

TFLLRN
(synthetic

PAR1-targeted
peptide)

PAR1/F2R:
upregulation
PAR2/F2RL1:
upregulation

PAR3/F2RL2: -
PAR4/F2RL3: -

H. pylori→ERK/PI3K-
AKT→α-

arrestin→PAR1→CXCL2
PAR2→MAPK→VEGF/

COX-2

Inflammation,
angiogenesis [99,100]

Angiotensin
receptors (ATR) Angiotensin II AT1R: upregulation

AT2R: upregulation AT1R→VEGF Angiogenesis,
metastasis [101,102]

Endothelin
receptors (ETR) Endothelin-1

ETAR: upregulation
ETBR: -
ETCR: -

ETAR→VEGF
ETAR→β

arrestin/Src→EGFR

proliferation,
metastasis [103]

Formyl peptide
receptors (FPR)

fMLF, capthespin
G

FP1R: -
FP2R/ALX:

upregulation
FP3R: -

FP1R→ALOX5/15, SPMs
(RvD1 and LXB4), SPM

receptors (BLT1,
ChemR23, GPR32)

FP2R→MAPK

FP1R: inhibiting
angiogenesis and

proliferation
FP2R: invasion
and metastasis

[104–106]

Cholecystokinin
receptors
(CCKR)

CCK, gastrin
CCK1R: upregulation

CCK2R/GR:
upregulation

gastrin/GR→PKC→IκB,
NF-κB proliferation [107]

Leucine-rich
repeat-

containing
receptors (LGRs)

group B

R-
spondin1/2/3/4

Lgr4: upregulation
Lgr5: upregulation

Lgr6

Lgr4/5/6→β catenin
Lgr6→PI3K/AKT/mTOR

proliferation,
metastasis [108,109]

Lipid receptors

Lysophosphatidic
acid receptors

(LPAR)

Lysophosphatidic
acid

LPA1/Edg-2: -
LPA2/Edg-4:
upregulation

LPA3/Edg-7: -

LPAR2→tyrosine
phosphorylation of c-Met

LPAR2→Gq11→p38
migration [110–112]

Sphingosine-1
phosphate

receptors (S1PR)

Lysophosphatidic
acid: S1P

S1P1R/Edg-1
S1P2R/Edg-5
S1P3R/Edg-3

: ubiquitously expressed
S1P4R/Edg-6
S1P5R/Edg-8

S1P1R→RAC-
CDC42→ERK

S1P→EGFR, c-Met

S1P1R & S1P3R:
promote

proliferation and
migration,

angiogenesis
S1P2R: inhibit

migration

[113,114]

Prostaglandin
receptors (EPR) PGE2

EP1R: -
EP2R: upregulation

EP3R: -
EP4R: -

PGE2→DNMT3B→5mC
enrichment (DNA
hypermethylation)
H. pylori→PGE2

upregulation→macrophage
infiltration

proliferation,
angiogenesis [115,116]
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Table 1. Cont.

GPCRs Ligand Expression Mechanisms Biological
Function References

Chemokine receptors

Chemokine CXC
receptors (CXCR)

CXCL12-
CXCR4/

CXCR7CXCL8-
CXCR1/

CXCR2CXCL16-
CXCR6

CXCR1: upregulated
CXCR2: upregulated

CXCR3
CXCR4: upregulation

CXCR5
CXCR6: upregulation

CXCR7

CXCL12/CXCR4→PI3K/
Akt/mTOR

CXCL12/CXCR4→ERK1/2
H. pylori→CXCL8→AKT/

ERK/cyclin D1/EGFR/
Bcl2/MMP9/MMP2

proliferation,
migration,
invasion,

angiogenesis,
metastasis

[117]

Chemokine CC
receptors (CCR)

CCL2-
CCR2CCL5-

CCR5CCL19/
CCL21-CCR7

CCR1/3/4/5/6/8/9: -
CCR2/7: upregulation CCR7→TGF-β1/NF-κB

migration,
invasion,
survival,

metastasis

[118]

Aminergic receptors

Muscarinic
acetylcholine

receptor

Acetylcholine,
carbachol,

M1R:
M3R: upregulation
M2R/M4R/M5R: -

M1R-TRPC6→PKC
M2R/M4R→PKA→

neurotransmitter release
M3R→EGFR→MAPK/ERK

M3R→Wnt
pathway→YAP

proliferation,
migration,
invasion,

[119]

β-adrenergic
receptor (β-AR) isoproterenol

β1-adrenergic receptor: -
β2-adrenergic receptor:

upregulation
β3-adrenergic receptor: -

ADRB2→NF-κB/AP-
1/CREB/STAT3/ERK/
JNK/MAPK→VEGF/
MMP2/MMP7/MMP9

proliferation,
invasion,

metastasis
[120]

Nucleotide receptors

P2Y receptors
(P2YR) ATP

P2Y4: upregulation
P2Y6: downregulation

P2Y1/2/11-14: -

P2Y6→β catenin→ c-Myc
P2Y2→Gaq→p38-
MAPK/ERK/JNK

proliferation [121]

Adenosine
receptors (AR) adenosine

A1/A3: -
A2aR: upregulation
A2bR: upregulation

A2aR→PI3K-AKT-mTOR
A2aR→PKA/PKC

proliferation,
metastasis [122,123]

Steroid receptors

Membrane-type
bile acid receptor
(M-BAR/TGR5)

Deoxyolate, bile
acids TGR5: upregulation TGR5→EGFR/MAPK proliferation [124]

Orphan receptors

GPR30 G1 GPR30: upregulation
GPR30→cAMP/Ca2+

GPR30→EGFR→PI3K/
AKT/ERK

invasion,
metastasis [125]

GPR39 Obestatin GPR39: -
GPR39→EGFR/MMP→AKT

GPR39/β-
arrestin/Src→EGFR→AKT

proliferation [97]
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Table 1. Cont.

GPCRs Ligand Expression Mechanisms Biological
Function References

Class B receptors

Hormone receptors

Growth
hormone-
releasing
hormone

(GHRH) receptor
(GHRHR)

GHRH GHRHR: upregulation GHRHR→PAK1→
STAT3/NF-κB

proliferation,
inflammation [126]

Class C receptors

Ion receptors

Calcium-sensing
receptor (CaSR) calcium ions CaSR: upregulation CaSR→Ca2+/TRPV4/

β-Catenin

proliferation,
migration,
invasion

[127]

Amino Acid receptors

γ-Aminobutyric
acid (GABA)

receptor
GABA GABAA: upregulation

GABAB: - GABAA→ERK1/2 proliferation,
invasion [128]

Metabotropic
glutamate
receptors
(mGluRs)

Glutamate

mGluR5: upregulation
mGluR1/5 (group I): -
mGluR2/3 (group II): -
mGluR4/6/7/8 (group

III): -

mGluR5→ERK1/2 proliferation [129]

Adhesion receptors

ADGRE5 (CD97) CD55, α5β1
integrin, CD90 ADGRE5: upregulation ADGRE5→MAPK proliferation,

metastasis [130]

Class F receptors

Fizzled receptors WNT, lipoglyco-
proteins

FZD2/6/7: upregulation
FZD1/3/4/5/8/9/10: -

FZDs→Wingless/Int-1
(WNT) proliferation [131,132]

Smoothened
receptors (SMO) cholesterol, sterol Smo: upregulation SMO→HH proliferation,

invasion [131,133]

Viral receptors

EBV-encoded
vGPCR metal ion (Zn2+) BILF1: upregulation BILF1→MHC class 1 proliferation,

immune evasion [68,134]

3.1. Proliferation and Apoptosis

Mounting evidence has unveiled the multilayered crosstalk between GPCRs and
proliferation- and apoptosis-related signaling circuits. The representative ones involve
EGFR transactivation, MAPK cascades, the PI3K-AKT-mTOR pathway, and the Hippo
signaling pathway [21,135].

3.1.1. Transactivation in the EGFR and MAPK/ERK Pathway

GPCRs share many similarities with the tyrosine kinase receptors, such as EGFR
and the MAPK/ERK signaling pathways [136], in regulating cell proliferation. The EGFR-
mediated signaling pathway can be ligand-dependent or independent [137–139]. The “three
membrane-passing signal (TMPS)” model is an EGFR ligand-dependent route. The acti-
vated RTKs are triggered by activated GPCRs and subsequently activate the extracellular
signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. On the
other hand, GPCR-mediated Src activation contributed to EGFR phosphorylation more di-
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rectly. Both modes have been uncovered in GC. S1P could mediate the progression of GC via
Gi- and matrix metalloprotease (MMP)-independent c-Met- and EGFR-transactivation [113].
However, the S1P- or LPA-induced transactivation of ERBB2 (also known as HER2) re-
quired the activation of MMP and the tyrosine kinase activity of EGFR [110]. In addition,
the knockdown of the membrane-type bile acid receptor (M-BAR)/TGR5 suppressed
the deoxycholate (DC)-induced phosphorylation of EGFR, and DC transactivates EGFR
through M-BAR- and ADAM/HB-EGF-dependent mechanisms [124]. Infection with H.
pylori boosted the expression of interleukin-8 (IL-8), which promoted cell proliferation by
inducing EGFR transactivation [140]. Due to oncogenic activation and PGE2-EP4 path-
way induction, the ubiquitous overexpression of the EGFR ligands and Adams have been
identified in mouse gastric tumors [141]. PGE2-induced uPAR expression has also been
implicated in the activation of Src, c-Jun NH2-terminal kinase (JNK), extracellular signal-
regulated kinase (Erk), and p38 mitogen-activated protein kinase (p38 MAPK) [142,143].
GPCRs may also directly trigger MAPK cascades, establishing a connection between the
external stimuli and their effect factors. These effectors may be further subdivided into
four core categories: ERK1/2, JNK1-3, p38α-δ MAPKs, and ERK5. The LPAR2 inhibitor
suppressed the proliferative and migration abilities of GC cell line SGC-7901 through the
LPAR2/Gq11/p38 pathway, suggesting that LPAR2 might be a potential target for GC
treatment [112]. Protease-activated receptor family (PAR1-4) also exerted pro-carcinogenic
effects via the overactivated ERK1/2-MAPK pathway. For example, the reduction of EPCR
impeded PAR1 activation, thus resulting in the downregulation of phosphorylated ERK1/2
and the suppression of the proliferation and migration of GC tumor cells [144].

3.1.2. Activation of the PI3K-AKT-mTOR Pathway

PI3K is stimulated by the activated RTKs or GPCRs, ultimately leading to the syn-
thesis of PIP3 and the recruitment of oncogenic effectors such as the serine/threonine
kinase AKT. The PH domain in AKT permitted its binding with PIP3, contributing to the
membrane accumulation and subsequent phosphorylation at T308 and S473 by PDK1 and
mTORC2 [145]. Even though over 100 AKT substrates have been discovered in different
settings, the associated mechanisms for most substrates have not been fully delineated [145].
mTOR is one of the AKT subtracts that is well-established to promote biosynthetic processes
for cell growth. Since PI3K/AKT/mTOR signaling has also been identified as an ideal
drug target for gastric carcinoma, the regulators may have a role in improving treatment
design [146]. Indeed, some GPCRs have been proven to influence the activity of AKT in
GC cells, such as the leucine-rich repeat-containing receptor Lgr6, adenosine receptor A2a,
and the orphan receptor GPR39. Lgr6 was identified to empower GC cell proliferation by
activating the PI3K/AKT/mTOR pathway [109]. Another GPCR, adenosine receptor A2a,
was engaged in PI3K/AKT-regulated proliferation and migration in GC [123]. Additionally,
GPR39 provided GC cells with a growth advantage by boosting the activity of AKT in an
EGFR-dependent manner [97].

3.1.3. Regulation of the Hippo Pathway

The canonical Hippo pathway kinase cascade is a critical tumor suppressor pathway,
and its dysregulation has been widely implicated in organ size modulation and carcinogen-
esis [147]. The core components of the Hippo pathway are composed of STE20-like protein
kinase 1/2 (MST1/2) and large tumor suppressor 1/2 and the major functional output
Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein
1 (WWTR1, also known as TAZ). Because there is a lacking DNA binding site in YAP/TAZ,
TEF1-4 (TEAD1-4) is characterized as a bona fide transcription enhancer factor [147,148].
GPCRs have been found to control the Hippo pathway positively and negatively as a sig-
nificant regulator of the intracellular pathway. The initial implication that GPCRs modulate
Hippo signaling through LATS1/2 came from the study in serum starvation cells [149].
Two components, LPA and S1P, have been identified as the effective factors in serum that
are responsible for YAP/TAZ activation through the recognition of the corresponding
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GPCRs. The LPA/S1P-mediated GPCR activation facilitates YAP/TAZ dephosphoryla-
tion via the G protein-cytoskeleton circuit. This study has laid the foundation for how
YAP/TAZ senses the diffusible extracellular signals. However, several questions have also
been raised after the initial discovery. Given that GPCRs constitute ~800 members and
each GPCR can be coupled to diverse G proteins [19], the integrated effects on YAP/TAZ
modulation remain elusive. The case can be more complicated when the dysregulation
of G proteins and GPCRs is frequently determined in cancers [54]. Moreover, different G
proteins stimulate the dephosphorylation of YAP/TAZ to various degrees. GPCRs can
trigger YAP/TAZ activation by interacting with Gα12/13, Gαi/o, and Gαq/11 or suppress
YAP/TAZ by binding with Gαs. However, which of these that Rho is involved with has not
yet been identified; it is also unclear how the actin cytoskeleton regulates Lats1/2 phospho-
rylation. Emerging findings have revealed how specific GPCRs may fine-tune YAP/TAZ in
given cellular surroundings [150]. The triggered LPA receptors have been demonstrated to
play crucial roles in activating YAP/TAZ, causing tumor progression in the colon, ovarian,
prostate, and breast [151,152]. The S1P-mediated S1P receptors contribute to hepatocellular
carcinoma by coupling to Gα12/13 and stimulating YAP [153], connecting GPCR signaling
to the Hippo pathway. Except for LPARs and S1PRs, the other GPCR-initiated signals can
influence YAP/TAZ activity, including polypeptides (Angiotensin II, Thrombin, glucagon,
etc.) [154,155], metabolites (purines, fatty acids, epinephrine, glutamate, etc.) [156,157],
and hormonal factors (estrogen, endothelin-1, etc.) [158,159]. These signals have been
widely indicated in human malignancies and are critical cell niche or microenvironment
components. Recent studies pointed out that the mesenchymal niche manipulated the
initiation of colorectal cancer by the rare peri-cryptal Ptgs2-expressing fibroblasts, and these
fibroblasts exhibited paracrine control over tumor-initiating stem cells via the PGE2-EP4-
Yap signaling axis [160]. The GPCR-Hippo crosstalk was also identified in GC stem-like
cells: PAR1 stimulated the Hippo-YAP pathway and affected invasion, metastasis, and
multidrug resistance [161]. As such, the GPCR regulation of YAP/TAZ has emerged as a
driver, or as a potential therapeutic target, in gastric neoplasia. However, another study
has found that AMOT, rather than Lats1/2, serves as the bridge between GPCR-mediated
cytoskeleton changes and YAP/TAZ modulation in uveal melanoma cells, with an acti-
vated mutation at Arg183 and Gly209 in GNAQ (encoding for Gαq) and GNA11 (encoding
for Gα11), respectively [85]. As a result, the findings provide novel explanations for the
alternations in actin dynamics induced by GPCR signals, which are somewhat different
from previous studies. Therefore, this warrants exploring the interplay between AMOT,
Lats1/2, and the actin cytoskeleton in GC, as the mechanic stress is context-dependent.

3.1.4. GPCR-Signaling Integration and Crosstalk with Other Pathways in GC

Besides the above signaling circuits, other pathways have also been linked to GPCR-
mediated oncogenicity in GC. These pathways involve the Notch pathway [162], hedgehog
(Hh) signaling [163], and the Wnt/β-catenin pathway [164]. The Hh pathway is crucial for
GC cell growth and cancer stem cell maintenance, and its activation has been highlighted
in diffuse-type GC [165,166]. Smoothened (Smo, a member of class F) and Gpr161 (an
orphan member) can function as positive and negative regulators in the Hh pathway,
respectively [167]. The Wnt/β-catenin pathway is involved in tissue homeostasis and em-
bryonic development. As Wnt (Wingless/Int1) stimulates the frizzled receptor (FZD, class F
GPCRs), both G-protein independent and dependent signaling can be established [164,168].

3.2. GPCRs-Driven Metastasis of GC

Metastasis is how cancer cells establish ‘bench-heads’ in other organs or anatomical
sites instead of the initial lesion, and it is responsible for more than 90% of cancer-related
mortality [169] (Figure 3A). The most prevalent sites for GC metastasis are the liver, lung,
bone, and lymph nodes [170]. Since Paget’s ‘seed and soil’ hypothesis laid the fundamental
basis for metastasis, many investigators have contributed to a better understanding of
the process. Several studies have identified the sequential multistep in GC metastasis:
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invasion into the surrounding tissue and the degradation of the basement membrane (BM),
intravasation into the blood vessels or lymphatic systems, survival and translocation to
distant tissues, extravasation into the foreign environment, and finally, colonization to
proliferate and form a macroscopic secondary neoplasm [170–172]. As the complexity and
relevance of metastasis have previously been widely reviewed, we will focus mainly on the
roles and mechanisms of GPCRs during the invasion, BM degradation, and angiogenesis
processes in GC.
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Figure 3. GPCR-mediated metastasis and tumor microenvironment remodeling in GC. (A) The TME
of GC consists of blood vessels, lymph vessels, immune cells, stromal cells (including fibroblast,
pericytes, and adipocytes), extracellular matrix (ECM), and secreted soluble factors, such as proteins,
RNAs, and small organelles. (B) GPCRs control the process of angiogenesis and metastasis. GPCR
activation drives the production of stimulatory angiogenic factors like VEGF and EGF. These factors
promote the development of new blood vessels by modulating the mitogenesis, migration, and
sprouting of endothelial cells (ECs). Moreover, several GPCRs regulate the metastasis process by
influencing ECM, degrading the status of cancer cells (EMT, migration, and invasion), and colonizing
foreign sites. (C) Chemokine–chemokine receptors modulate immune responses. The chemokines are
secreted by tumor cells, immune cells, and stromal cells. The interaction of chemokine and specific
chemokine receptors recruits antitumor immune cells and immunosuppressive immune cells into the
tumor microenvironment.

3.2.1. Inducing Epithelial-Mesenchymal Transition (EMT), Migration, and Invasion

Epithelial-to-mesenchymal transition (EMT) is regarded as the initial step for invasion,
featuring a loss of cell polarity and integrity and the acquisition of motile mesenchymal
characteristics. The pathologic activation of the EMT program is primarily executed by
transcription factors (including SNAI1/2, TWIST1/2, and ZEB1/2) and microRNAs, ulti-
mately resulting in the accumulation of the genes associated with mesenchymal properties,
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such as vimentin, fibronectin, and N-cadherin [173]. Though the above-mentioned molec-
ular mechanisms are still lacking regarding GPCR-driven EMT in GC, GPCR signaling
dysregulation is still frequently connected to EMT, migration, and invasion processes via
dynamically regulating the downstream effectors and downstream cascades [174].

Although chemokines are tiny polypeptides (8-14kDa), they display pleiotropic effects
in cancers. The chemokine system comprises nearly 50 chemokines that bind to 20 different
chemokine receptors or four atypical chemokine receptors (ACKRs) [175]. This superfamily
is distinguished by a substantial degree of redundancy, inferring that these chemokines can
bind to different clusters of receptors and vice versa [176]. Intrinsic genetic or epigenetic
regulators governed their expression and environmental cues such as hypoxia, microbiota,
and metabolic [176]. For example, epigenetic regulator histone deacetylase 1 (HDAC1)
suppressed CXCL8 expression by antagonizing the active nuclear transcription factor
NF-κB [177]. Hypoxia has been revealed to induce the expression of CXCR4, CXCR7,
and CXCL12 in different cancer cells, with the binding sites of hypoxia-inducible factor 1
(HIF1) as the promoters of these genes [178–180]. In GC, the elevated CXCL8 concentration
was proved to be tightly correlated with the tumor stage instead of H. pylori infection,
as shown in previous studies [181–183]. Several clinical investigations have suggested
that the upregulation of chemokines and receptors was associated with GC pathogenesis,
indicating that the specific chemokines might serve as potential diagnostic and therapeutic
targets [184,185].

Chemokine receptors have attracted considerable attention due to their involvement
in GC metastasis. A notable correlation was found between CCR7 expression and gastric
carcinoma lymph node metastasis via stepwise regression analysis [186,187]. Strikingly,
about 67% of primary gastric tumors exhibited CXCR4-positive expression [188]. The
high concentration of the CXCR4 ligand CXCL12 has been validated in the malignant
ascitic fluids from peritoneal carcinomatosis, and elevated CXCL12 is tightly correlated
with the dissemination of GC cells to distant organs [188]. CXCL12-stimulated CXCR4
enhanced NF-κB and STAT3 signaling activation and, in turn, led to its transcriptional
upregulation, which formed a positive feedback loop. This loop is linked to EMT, migration,
and invasion in GC [189]. In response to CXCL12, CXCR4 also conferred the GC cell EMT
and metastasis process via stimulating mTOR and some well-known oncogenic kinases:
EGFR, SRC, or c-MET [190,191]. The crosstalk between TGF-β1 and the NF-κB pathway
was triggered by the CCL2-CCR2 axis, leading to EMT-related protein upregulation [192].
Besides, chemokine receptors also induced organ-specific metastasis. CXCR4 and CCR7 are
the primary receptors guiding the metastasizing cells, including GC cells [193]. Moreover,
the high levels of CCR9 in melanoma, breast, and ovarian cancer make them efficiently
translocate to the highly CCL25-expressing small intestine [194–196].

Many other GPCRs also govern the development of GC invasion. For example, GPER1
inhibition blocked EMT in GC cells by inhibiting the PI3K/AKT pathway [197]. Similar
regulation that is mediated by adenosine receptor 2 (A2aR) or GPR30 could also be observed
in GC [122,123]. In addition, the MAPK cascades were activated by the formyl peptide
receptor 2 (FP2R), S1P2R, muscarinic acetylcholine receptor 3 (M3R), P2Y receptors (P2YR),
and γ-Aminobutyric acid receptor A (GABAA), thus contributing to the invasion and
metastasis in GC [104,105,114,119,121,128]. Many other GPCRs have also been linked
to GC metastasis, while the underlying mechanisms are unknown. For instance, the
angiotensin II receptor type 1/2 (AT1R/AT2R) has been locally upregulated and indicated
to carry a much higher risk of nodal spread [101].

3.2.2. Degrading the Barriers to Invasion

BM, a specialized extracellular matrix (ECM), plays a critical role in normal epithelium
tissue architecture. BM disruption is a must for cancer cells leaving the primary location,
controlled by the balance between the expression of MMPs and their tissue inhibitors
(TIMPs) [198,199]. The expression of MMPs was upregulated by a histamine-H2 receptor
or Thrombin-PAR1 signaling [143]. H. pylori was reported to be crucial during the invasion
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by upregulating cyclooxygenase-2 (COX-2) through ATF2/MAPK stimulation. The COX-2
inhibitor or EP2 receptor antagonist repressed angiogenesis and tumor invasion via the
uPA system, which is a determinant factor in transforming the zymogen plasminogen into
plasmin for degrading the ECM constituents [200]. Furthermore, the bacterial pathogen
of H. pylori’s consistent infection manipulated a variety of extracellular proteases [201],
but the exact mechanisms need further exploration. The interactions between microbial
metabolites and GPCRs may provide new insights into the complicated process [202].

3.2.3. Driving Angiogenesis

Angiogenesis is the process of vessel splitting from pre-existing vessels and is essential
for tumorigenesis and progression, especially for those solid tumors exceeding 1–2 mm in
diameter, as it provides oxygen and nutrients [203,204]. Many GPCRs exerted pro-tumor
effects by promoting tumor-associated angiogenesis, notably Thrombin receptors, S1PRs,
lysophosphatidic acid receptors (LPARs), and Prostaglandin receptors (Figure 3B). PAR1
is necessary for physio-pathological angiogenesis since poor vasculature development
results in animal embryos dying after PAR1 deprivation. Thrombin-mediated PARs cleav-
age upregulates the transcription of many proangiogenic genes, such as VEGF and its
receptor VEGFR, MMP2, angiopoietin-2 (Ang-2), and others [99,100,205,206]. Moreover,
endothelial differentiation gene 1 (Edg1)/S1P1R is the first reported GPCR in blood vessel
formation. Furthermore, the intrauterine death of Edg1 ablation mice happened mainly
due to abnormal angiogenesis [207,208]. The Gα12/Gα13-coupled receptors LPA4 and
LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation,
which mediates sprouting angiogenesis [209]. Moreover, H. pylori-induced VEGF upregula-
tion was activated through p38 MAPK COX2-PEG2-EP2/4 signaling [210]. Other orphan
receptors are also involved in tumor angiogenesis, such as KSHV-GPCR, GPR124, ELDT1,
and GPER [211].

3.3. Remodeling the Tumor Microenvironment (TME) to Promote Immune Escape

TME acts as a unique niche populated by multiple cell types (including cancer cells,
immune cells, and stromal cells), ECM, and diverse secreted factors (such as exosomes
and microRNAs) [212,213]. The altered TME landscape is related to tumor progression,
metastasis, and therapeutic responses [214]. Recently, the sophisticated TME infiltration
pattern of GC (termed as TMEscore) has been defined based on the assessment of 22
immune cell types and cancer-associated fibroblasts (CAFs), which were correlated with
genomic characteristics and pathologic features [212]. The biology and function of CAFs
have emerged as an area of active investigation and have been reviewed elsewhere [215,216].
The compositions of infiltrated immune cells within TME varied greatly, and one of the
most important mechanisms involved the chemokines and their receptors [176].

It is noteworthy that chemokines and chemokine receptors can be ubiquitously ex-
pressed in tumor cells, immune cells, and stromal cells [217]. Alternations in chemokines
and their receptors shaped the TME immune cell constitution and remodeled the immune
responses, some of which are hijacked by tumor cells to avoid immune surveillance and
elimination [218]. The antitumor immune responses were driven by the recruiting immune
cells, mainly including dendritic cells (DCs), CD8+ T cells, natural killer (NK) cells, and M1
macrophages. GC with a high CXCR3 expression level was shown to have increased DC
and T cell infiltration. The CXCR3/CXCL4 or CXCR3/CXCL4L1 axis is necessary to recruit
DCs as they elicit potent antitumor functions through substantially stimulating T cells and
activating the related humoral response [219,220]. Similarly, CXCR3 also plays a vital role
in CD8+ T cell infiltration that directly damages the tumor cells after being differentiated
into cytotoxic CD8+ T cells [221,222]. In addition, NK cells represent professional killer
cells, whose accumulation in the TME is the consequence of upregulated CXCL10 and
CXCL12 signaling through CCR7 or CXCR3 [223,224].
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On the other hand, chemokine signaling is also involved in the formation of immune-
suppressive TME, where tumors evolve to escape recognition and clearance. This process
has been largely linked to the infiltration of diverse protumor immune cell populations, such
as regulatory T (Treg) cells, the M2 macrophages, monocytic myeloid-derived suppressor
cells (M-MDSCs), and granulocytic (or PMN-) MDSCs [176,225]. CCL22, mainly produced
by tumor cells (or macrophage-mediated), causes an abundance of Treg cells in TME
via interacting with the receptor CCR4 on the surface of Treg. Another receptor, CCR10,
in Treg cells also facilitated their migration in response to CCL28 [226,227]. Moreover,
the nonpolarized macrophages (M0) originating from the recruited monocytes can be
differentiated into two main subtypes, M1 and M2 macrophages, exhibiting extremely
distinct functions toward cancers. These transitions depended on a large spectrum of
chemokine signals. Active monocyte recruitment required tumor-derived chemokine
releases, such as CCL2, CCL3, CCL4, CCL5, CCL20, and CCL18. Additionally, the blockade
of the CCL2-CCR2 circuit led to M2 macrophage accumulation, whereas CCL11 skewed
macrophages toward an M2 phenotype [228–233]. MDSCs were subdivided into two
major groups: polymorphonuclear MDSCs (PMN-MDSCs) and mononuclear MDSCs (M-
MDSCs). CXCR2 specifically mediated the migration of PMN-MDSCs to the tumor site by
binding with CXCL1/CXCL2/CXCL5, whereas the accumulation of M-MDSCs requires
CCL2-CCR2 interaction. Functionally, MDSCs employed diverse mechanisms to suppress
T cell functioning, mainly through releasing high levels of arginase 1 (Arg1), reactive
oxygen species (ROS), and nitric oxide (NO). Further research also suggested additional
mechanisms, including the upregulation of COX2 and PGE2 in these MDSCs [234,235]
(Figure 3C).

Other GPCRs are also involved in the regulations of immune responses. For example,
prostaglandin (PG) production can mediate inflammation through its cognate GPCR EP1-
EP4 (PTGER1-4). PGs, especially the PGE2, were produced by the cyclo-oxygenases COX-
1and COX-2, the inhibitors (nonsteroidal anti-inflammatory drugs (NSAIDs)) of which have
been utilized to comfort pains and reduce the incidence of a broad range of cancer types.
The role of PGE2 has been extensively studied for inducing inflammation by stimulating
other signaling pathways, including the Toll-like receptor (TLR)/MyD88 pathway [236],
Wnt, and EGFR signal [237]. PAR1-deficient mice infected with H. pylori may suffer from
severe gastritis due to lacking suppressing macrophage cytokine secretion and cellular
infiltration [238]. In addition, TGR5 antagonized gastric inflammation by inhibiting the
transcription activity of NF-κB signaling [239].

The involvement of GPCRs in immune remodeling is summarized in Table 2.

Table 2. Immune cell infiltration induced by chemokine and related receptors.

Cell Type Receptors Chemokines Mechanisms Underlying
Recruitment

Effects on Tumor Cells after
Recruitment References

Anti-tumoral immune cells

Dendritic
cell

CXCR3,
CXCR6

CXCL4,
CXCL1,

CXCL16,
CXCL17,
CCL20

IFN-γ-induced
chemokines production, H.

pylori involvement

The most potent professional
antigen-presenting cells,

activation of cellular immunity,
and T cell-dependent humoral

immunity

[219,220]

CD8 T cell CXCR3
CXCL9,

CXCL10,
CXCL11

CAFs-mediated IL6
secretion, tumor cell

chemokines secretion,
adhesion molecules
(ICAM-1, VCAM-1)

Differentiated into cytotoxic CD8+
T cells to destroy tumor cells or

memory CD8+ T cells to
recirculate in the blood

[221,222]
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Table 2. Cont.

Cell Type Receptors Chemokines Mechanisms Underlying
Recruitment

Effects on Tumor Cells after
Recruitment References

NK cell

CXCR1,
CXCR2,
CXCR4,

CX3CR1,
CCR5, CCR10

CXCL10,
CXCL12,
CCL21,

CX3CL1, CCL5,
CCL27

Chemokine signaling
regulated by HLA-G and

CD47; stromal barriers

Cytokine production and
cytotoxicity on tumor cells

through STAT3; regulating DC
maturation; modulating T cell

activity

[223,224]

M1
macrophage CCR2, CCR5 CCL2, CCL5

Disrupting NF-κB
signaling or interacting

with TNF-α;

High capacity to present antigens;
proinflammatory cytokines

(IL-1β, IL-1α, IL-12, TNF-α, and
GFAP) production; stimulation of

type-I T cell responses

[232,233]

Tumor-promoting immune cells

Treg CCR4, CCR10 CCL17, CCL22

Stimulation of JAK-STAT3
signaling pathway;

remodeling of gastric
microbiota by H.pylori.;

stimulation of DCs due to
H.pylori. infection

Suppressing CD4+ T cells, CD8+
cells, antigen-presenting cell

(APC), monocytes, and
macrophages; inhibitory

cytokines like IL10, IL35, and
TGF-β; inducing apoptosis by

perforin/ granzyme production

[226,227]

M2
macrophage

CCR2, CCR5,
CXCR3,
CXCR4

CCL2, CCL5,
CXCL9,
CXCR12

STAT3 activation;
PI3K/AKT/mTOR
signaling pathway

Growth factors (FGF, VEGF, and
IL-6) production; secreting

matrix-degrading enzymes and
cytokines

[230,231]

Monocytic
MDSC

CCR2, CXCR2,
CXCR4

CCL2, CXCL5,
CXCL12

IL-6 production,
JAK-STAT3 signaling,

High amounts of NO, Arg1, and
immune-suppressive cytokines;
suppression of nonspecific T cell

responses

[234]

Granulocytic
(or PMN-)

MDSC

CXCR1,
CXCR2

CXCL8,
CXCL1,

CXCL12,
CXCL5, CXCL6

HGF/TGF-β/MCP-1
production, JAK-STAT3
signaling, IRF-8, NF-κB

pathway, hypoxia

Large amounts of O2−, H2O2, and
PNT (ROS) production; blocking

T cell proliferation; depleting
entry of CD8+ T cells to tumors

[234,235]

4. Therapeutic Strategies for Targeting GPCRs in GC

Despite the improving clinical outcomes, advanced GC patients benefit little from tradi-
tional surgery or chemotherapy and suffer from painful lives [240]. Personalized medicine
and targeted therapy have been introduced to clinical applications for over two decades. For
instance, trastuzumab has been integrated into the treatment for HER2-expressing patients,
and ramucirumab has been utilized for VEGFR2-positive GC individuals [241]. Immune
checkpoint inhibitors (ICI) also have been investigated as a frontline treatment [242–245].
Meanwhile, biomarkers and novel targeted therapies have been intensely investigated for
advanced GC [246]. Substantial progress has been made by deciphering the functions of
GPCR members in GC progression. However, only a handful of drugs that target GPCRs
have been conducted in clinical trials for GC treatment (Table 3).
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Table 3. Drugs and antibodies against GPCRs in GC clinical trials [6,135,247].

Drug Name Targeted GPCRs Types of Drugs Tested Cancer Types Status NCT

Mogamulizumab CCR4 mAb
Cataneous/Peripheral T-cell

lymphoma; Adult T-cell
lymphoma

Phase I: complete NCT02946671

Vismodegib SMO small molecule Basal-cell carcinoma; Head
and neck cancer

Phase II: complete
Phase II: complete
Phase II: recruiting

NCT03052478
NCT00982592
NCT02465060

Sonidegib SMO small molecule Basal-cell carcinoma Phase I: recruiting
Phase I: complete

NCT04007744
NCT01576666

Lutathera
(Lutetium Lu 177

dotatate)
SSTR peptide

Gastroenteropancreatic
neuroendocrine tumors

(GEP-NETs)
Most on recruiting

NCT04949282
NCT04727723
NCT04609592
NCT04524442
NCT02736500
NCT02489604
NCT04614766
NCT01860742

Lanreotide SSTR peptide Advanced prostate cancer Phase III:
recruiting

NCT04852679
NCT03043664
NCT03017690
NCT02730104
NCT02736448

In order to accelerate the GPCR-targeted drug development for GC, many groups
have identified potent compounds to inhibit or enhance the activity of GPCRs. However,
the structures are only available for small partial GPCRs (~50 GPCRs), and 54% of GPCRs
are orphans that are under-exploited. Machine learning approaches may be employed for
predicting the interaction between immersed compounds and GPCRs based on established
high-quality structural models [248]. With the evolving knowledge of GPCR pathways,
we will be able to identify more effective drugs in formats, tissue-specific drug delivery
systems, and appropriate treatment periods. Small molecules are the most prevalent
GPCR modulators, while biologics are receiving more and more attention because of their
versatility and specificity [249]. Antibodies, including antibody fragments and variable
antibody domains, function with great penetration traits and are attracting considerable
interest in drug development. Downregulated targeted GPCRs via RNA interference
(RNAi) can represent potential approaches to gene therapy [250].

More efficient drug delivery systems with enhanced solubility and stability, lower
dosages, and less toxicity have been developed, such as nanomaterials, nanocarriers,
nanoconjugation, and nanoencapsulation techniques [251,252]. Furthermore, several solid
tumors have well-established patient-derived xenografts (PDX) and xenograft-derived
organoid models. These preclinical platforms recapitulated the genotypic and phenotypic
landscape, endowed with a high predictive value for high-throughput drug screening.
Nevertheless, they still have limitations, such as intratumor heterogeneity, compromised
immune systems, and diverse tumor environments in GC [253].

5. Summary and Future Perspectives

GPCRs govern multiple signaling pathways and regulate GC development in various
aspects. The heterogeneous and complicated characteristics of GPCRs contribute to GC
heterogeneity and result in the current untimely diagnosis and inefficiency of therapeutic
applications. Not only can GPCRs transduce the extracellular changes to the intracellular
signaling circuits, but the conformational changes of GPCRs can also continuously influence
intracellular events. Aberrant GPCR activation and mutated GPCRs/G proteins can fuel
cancer cell proliferation, migration, invasion, angiogenesis, and metastasis. In addition,
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the dysregulation of GPCRs affords advantages for immunosuppressive TME and drug
resistance to malignancies.

Although much progress has been made on novel biomarker identification and molec-
ular mechanism investigation, the current GPCR-based diagnosis and therapy in GC are far
from clinically available. It is urgent that GPCR signaling-targeted therapy be developed.
In future studies, several issues need to be addressed. First, as the mutation rates of GPCRs
and G proteins are prominent in some cancer types, the development of small molecules
that target the driver mutations is urgent. Second, because of the heterogeneity of the cancer
cells and tumor microenvironment, we need to comprehensively appraise the activation of
GPCR signaling and its crosstalk by using cutting-edge techniques such as scRNA-seq or
scDNA-seq. Last but not least, more preclinical models based on patient-derived samples,
such as organoids or xenografts, need to be developed to evaluate the efficacies and side
effects of the screened drugs. With the deep investigation of the molecular mechanisms
of GPCR signaling and the multicenter clinical trials, more therapeutic strategies will be
delivered for targeting GPCR signaling, which will benefit GC patients.
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resonance; NO, nitric oxide; NSAIDs, nonsteroidal anti-inflammatory drugs; PAMs, positive al-
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kinase C; PMN-MDSCs, polymorphonuclear MDSCs; RNAi, RNA interference; ROS, reactive oxygen
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