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Simple Summary: Machine learning approaches, using both radiomic and deep-learning-based
features, were performed for an analysis of the breast parenchyma to identify women at risk of future
breast cancer. Results from this study demonstrate that the antecedent mammographic images can
potentially discriminate between women with a future-biopsy-proven cancer versus those with a
future-biopsy-proven benign lesion.

Abstract: The identification of women at risk for sporadic breast cancer remains a clinical challenge.
We hypothesize that the temporal analysis of annual screening mammograms, using a long short-term
memory (LSTM) network, could accurately identify women at risk of future breast cancer. Women
with an imaging abnormality, which had been biopsy-confirmed to be cancer or benign, who also
had antecedent imaging available were included in this case–control study. Sequences of antecedent
mammograms were retrospectively collected under HIPAA-approved guidelines. Radiomic and
deep-learning-based features were extracted on regions of interest placed posterior to the nipple
in antecedent images. These features were input to LSTM recurrent networks to classify whether
the future lesion would be malignant or benign. Classification performance was assessed using
all available antecedent time-points and using a single antecedent time-point in the task of lesion
classification. Classifiers incorporating multiple time-points with LSTM, based either on deep-
learning-extracted features or on radiomic features, tended to perform statistically better than chance,
whereas those using only a single time-point failed to show improved performance compared to
chance, as judged by area under the receiver operating characteristic curves (AUC: 0.63 ± 0.05,
0.65 ± 0.05, 0.52 ± 0.06 and 0.54 ± 0.06, respectively). Lastly, similar classification performance
was observed when using features extracted from the affected versus the contralateral breast in
predicting future unilateral malignancy (AUC: 0.63 ± 0.05 vs. 0.59 ± 0.06 for deep-learning-extracted
features; 0.65 ± 0.05 vs. 0.62 ± 0.06 for radiomic features). The results of this study suggest
that the incorporation of temporal information into radiomic analyses may improve the overall
classification performance through LSTM, as demonstrated by the improved discrimination of future
lesions as malignant or benign. Further, our data suggest that a potential field effect, changes in the
breast extending beyond the lesion itself, is present in both the affected and contralateral breasts
in antecedent imaging, and, thus, the evaluation of either breast might inform on the future risk of
breast cancer.

Keywords: breast cancer risk; radiomics; long short-term memory networks; artificial intelligence;
field effect
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1. Introduction

While agencies such as the American College of Radiology, American College of Physi-
cians, and American Cancer Society have different recommendations for breast screening
frequency guidelines, they all suggest mammographic screening with some frequency over
some portion of a woman’s lifetime [1–3]. Women who follow these guidelines produce,
over the years, temporal sequences of mammographic images. When interpreting screen-
ing exams, radiologists often compare current mammograms with prior mammograms
to qualitatively assess the interval change in breast tissue. Such a practice is conducted
because the interval change may indicate the development of a new cancer [4].

It has been demonstrated that comparing current and prior mammograms improves
specificity in breast cancer screening. A study that compared performance on over one
million images found that the use of comparison mammograms at screening resulted in
lower recall rates (6.9% with comparison mammograms vs. 14.9% without comparison
mammograms) and higher specificity (93.5% with comparison mammograms vs. 85.7%
without comparison mammograms) [4]. This suggests that in ambiguous cases, where
it is not obvious whether an abnormality poses a threat, the changes in mammograms
over time provide the radiologist with discriminatory information that helps inform the
decision of whether or not to send a patient for follow-up. For example, if a suspicious
region is judged to be visible and unchanged from prior mammograms, then the risk of
malignancy may be lower as evaluated by the radiologist. The utility of prior images in
radiologist review suggests the incorporation of prior images may also be informative in
artificial-intelligence-based cancer prediction systems aimed at assisting the radiologist in
detecting cancer risk.

A number of studies have shown the utility of incorporating prior imaging exams in clinical
classification tasks. A study by Santeramo et al. [5] implemented a time-modulated long short-
term memory (LSTM) network to detect abnormalities in a database of 745,480 chest X-rays,
with the intent to classify abnormalities as either cardiomegaly, consolidation, pleural
effusion, or hiatus hernia. The study compared the performance of a convolutional neural
network (CNN Inception v3) trained on single images as a baseline to an LSTM network
using the single images plus prior longitudinal observations. Using the F-measure as a
figure of merit, the study observed, on average over the four abnormality types, that the
LSTM resulted in a 7% increase in F-measure and a 9% increase in PPV over the baseline,
single-image CNN. A study by Shao et al. [6] investigated the use of temporal radiomics to
interrogate normal appearing white matter (NAWM) in order to predict the development of
white matter hyperintensities (WMH) which are associated with cognitive decline among
elderly patients. This study constructed radiomic signatures on regions of interest among a
cross sectional cohort of cases with noted progression of WMH and aged-matched controls
without progression to WMH, each of which had undergone two or more MRI exams
on the same scanner with a time period of at least one year between scans. The study
reported an area under the curve (AUC) of 0.954 (95% confidence interval: 0.876–0.989)
for distinguishing between areas of NAWM that developed into WMH from those that
did not develop into WMH. In addition, in predicting the malignancy of breast lesions on
dynamic contrast-enhanced magnetic resonance images (MRI), LSTM has been used to
incorporate the multiple acquisition time-points within the dynamic imaging protocol [7].
Specifically, Antropova et al. demonstrated higher classification performance on lesion
characterization with MRI using LSTM than using a fine-tuned feed-forward network at a
single time-point [7]. These studies provide evidence that a computer analysis of temporal
images may improve the accuracy of predicting future disease.

Given the relevance of serial imaging in the diagnostic interpretation of mammo-
graphic findings and the emerging findings on the importance of incorporating temporal
data for the classification of a future disease state, we sought to test the hypothesis that a
computer analysis of multiple sequential antecedent mammograms could predict the future
risk of benign versus malignant breast lesions. Our study investigates both conventional
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human-engineered radiomic features and deep learning methods for the task of classifying
future lesions.

In order to incorporate information collected over a time series of full field digital
mammograms (FFDMs), we chose to use an LSTM network in this study, as it is capable of
learning long-term dependencies for data organized as a series [8]. As a recurrent neural
network (RNN), LSTM networks are able to retain information about previous time-points
in a series and use this information to inform decisions on the present time-points of that
same series [9,10]. LSTM networks can take in feature vectors from various sources, and
so this study explored the performance of an LSTM trained on features extracted from a
CNN and the performance of an LSTM trained on conventional human-engineered features
extracted from the same images. Additionally, we measured the performance obtained by
extracting features from a single time-point and merging features using a support vector
machine (SVM) classifier. In this way, an assessment was performed between deep features
and conventional human-engineered features as well as between time series data and
single-time-point data for classification.

2. Materials and Methods
2.1. Image Acquisition and Database Description

Mammograms were retrospectively collected from MD Anderson Cancer Center
and the University of Chicago Medical Center of women who had undergone screening
exams for two or more years prior to the detection of a mammographic abnormality.
Subjects identified at MD Anderson were part of a cohort of women recruited prospectively
evaluating blood and tissue biomarkers of breast cancer risk; the subset of subjects with
prior mammograms was included in this analysis. Subjects at the University of Chicago
were identified retrospectively from an imaging database of women undergoing both
screening and diagnostic mammograms. Images were acquired between 2006 and 2019 and
were collected for this analysis in compliance with the Health Insurance Portability and
Accountability Act (HIPAA) and under institutional-review-board-approved protocols at
each institution.

For each patient exam, the CC images of the left and right breast were used in analysis.
Each patient included in this study had ultimately undergone core biopsy of an imag-
ing abnormality with histopathologically confirmed findings of a malignant or benign
lesion. However, it is important to note that all the images analyzed in this study were
acquired prior to the detection of each mammographic abnormality (i.e., were antecedent
images). The laterality of each mammographic abnormality was noted, and the affected
and contralateral breasts were treated separately in the analyses.

The number of prior mammographic exams per participant ranged from 2 to 9
(Figure 1). Note that the period of time between subsequent screening exams was not
always constant for each patient. The average time between exams was 1.27 years. The
temporal mammograms for one patient, collected annually over a span of four years, are
shown in Figure 2.

A total of 318 mammographic exams from 99 patients were included in the study.
Of these, 49 patients were eventually diagnosed with a malignant finding and 50 were
diagnosed with a benign finding. The mean age was 57.6 years (standard deviation
9.4 years) for the 49 cancer patients and 54.6 years (standard deviation 8.8 years) for the
50 cancer-free controls. All images were acquired on Hologic systems with pixel sizes
of 70 µm × 70 µm and were processed according to the clinical standard at the patient’s
screening institution.
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Figure 2. Temporal mammograms for one patient, collected annually over a span of four years.

2.2. Radiomic Feature Extraction

Computer-extracted radiomic features were automatically calculated on square ROIs
of size 512 × 512 pixels, which had been manually placed in the central breast region
posterior to the nipple. From each region, 50 features were automatically extracted and are
summarized in Table 1. Additional details of these mathematical descriptors from feature
extraction have been described elsewhere [11–16]. Features were selected to describe the
intensity and spatial pattern of the texture in each image region.

Table 1. Summary of features included for analysis in the radiomics feature set.

Feature Category Number of Features

Box counting fractal dimension 6

Edge gradient 4

Histogram 10

Fourier 2

Neighborhood Gray-Tone Difference Matrix 5

Minkowski fractal dimension 1

Powerlaw beta 8

GLCM 14

Total 50



Cancers 2023, 15, 2141 5 of 12

2.3. Deep Feature Extraction

Deep-learning-based feature extraction was performed on the same ROIs used for
radiomic feature calculation. Features were extracted using the pre-trained VGG-19 neural
network [17]. A total of 1472 features were extracted from each image using the neural
network. Features were extracted from each max pooling layer of the network, and an
additional average pooling layer was added to reduce the dimensionality of the features.
This approach of transfer learning has been studied and implemented elsewhere [18–20].

2.4. Long Short-Term Memory Network

Recurrent neural networks (RNNs) are designed for making classifications and pre-
dictions based on a time series of data [10]. RNNs are composed of a series of identical
feed-forward neural networks. In this series of networks, each individual network is used
to analyze a single time-point and is known as an RNN cell. Each RNN cell produces a
recurrent output that is passed on to the next time step. Likewise, each RNN cell accepts a
prior state as input. In this way, information from prior time-points informs the output of
future time-points.

Mathematically, an RNN cell can be represented by Equation (1), where st is the current
state, st−1 is the prior state, xt is the current input, and f is the recurrent function. Thus, a
basic single-layer RNN can be written as in Equation (2), where φ is the activation function,
and W, U, and b are the weights and biases of the network.(

st
ot

)
= f

(
st−1
xt

)
(1)

st = φ(Wst−1 + Uxt + b) (2)

The general recurrent structure of an RNN is illustrated in Figure 3, where it is shown
that information from the RNN cell for one time-point in the series is passed along to the
cell for the next input from the series.
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represents the input, and ht represents the output value [8].

In order to avoid the potential pitfalls of information morphing and of the vanishing
gradient problem, LSTM cells are designed to contain three gates that are not typically
present in conventional RNNs: the input gate, output gate, and forget gate. These three
gates monitor the extent to which information is read in from an adjacent time-point, how
much of this information to write out, and to what extent the information is remembered
and passed on to the next time-point. The input gate (it), output gate (ot), and forget gate
(ft) are defined as:

it = σ(Wist−1 + Uixt + bi) (3)

ot = σ(Wost−1 + Uoxt + bo) (4)
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ft = σ
(

W f st−1 + U f xt + b f

)
(5)

where st−1 is the prior state, xt is the current input, σ is the sigmoid function, and W, U,
and b are the weights and biases of the network.

2.5. Classification and Evaluation

In order to evaluate the value of temporal information relative to single time-point
analysis, classifications were performed using both SVM (single time-point) and LSTM
(multiple time-points) in the task of predicting the histologic diagnosis of future lesions.
The same feature set was used for training the LSTM and SVM networks. In this experiment,
we decided to use SVM for comparisons as opposed to a feed-forward network in order to
reduce the likelihood of overfitting. To characterize repeatability, 5-fold cross validation
was used for each classifier, with folds kept consistent over each classifier along with
the same proportions of malignant and benign cases in each fold. This method ensured
that training and testing splits were kept consistent for pairwise comparisons between
classifiers. Each classifier was trained separately on the antecedent images of the affected
and contralateral breasts in the task of classifying the histologic diagnosis (cancer versus
benign) of a future lesion. Note that images of any given case were kept together in either
the training or testing fold.

ROI placement and radiomic feature extraction were performed on a dedicated work-
station developed in our lab [12–15]. CNN feature extraction and network training were
performed in Keras (Version 2.1.2) using a TensorFlow (Version 1.10.0) backend frame-
work [21,22].

2.6. Temporal Sequence Classification with LSTM Network

In order to evaluate classification performance with the inclusion of multiple mammo-
graphic time-points, features extracted from each image were used as inputs to the LSTM
network. To consider the value of the human-engineered radiomic features compared with
the CNN features, separate networks were trained using each of these two as input features,
as illustrated in Figure 4. Each classifier described was trained in the task of classifying
future lesions as malignant or benign using only the prior antecedent images.
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analysis. (a) Workflow for CNN-extracted features, and (b) workflow for radiomic features. Clas-
sifications were performed to predict the probabilities of future malignant lesions based only on
antecedent images.
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The LSTM network in this study was trained using a stochastic gradient descent (SGD)
optimizer [23]. In SGD, optimal weights are determined by choosing a random sample of
training vectors and using these to compute an estimate of the gradient at each step of the
training procedure. Given a random batch of training objects, the update by SGD is given
by Equation (6), where θ is the parameter to update, α is the learning rate, J is the objective
function, and (x(i),y(i)) are the training feature vectors.

θ = θ − α∇θ J
(

θ; x(i), y(i)
)

(6)

Hyperparameters were selected by performing a limited sweep of learning rate and
hidden dimension parameters. After sweeping over hidden dimensions of 512, 1024,
and 2048, and sweeping over learning rates of 10−3, 10−4, and 10−5, the combination of
parameters of hidden dimension of 512 and learning rate of 10−4 was selected for the task
of classifying future malignant lesions using antecedent images. Since each patient had
a different number of images across the dataset, the feature sequences were padded with
zeros to the length of the longest sequence, as typically conducted with LSTM. The padded
part of the sequences was not taken into account when calculating the binary cross-entropy
loss of the model [7]. For each LSTM network, 100 epochs were used in training.

2.7. Single Time-Point Classification with Support Vector Machine

To understand further the effect of multiple time-points, classification was also per-
formed using the image collected only one year prior to diagnosis in the task of classifying
the likelihood of malignancy of the future lesion. As only one single time-point is used for
classification, a 5-fold cross validation using a support vector machine (SVM) as a classi-
fier was performed [24]. To reduce dimensionality, principal component analysis (PCA)
was performed to reduce the feature space to 25 principal components prior to training
the SVM [25]. Training and classification were performed using the human-engineered
radiomic features as an input, as well as using features extracted by the pretrained CNN as
an input.

2.8. Statistical Evaluation

From receiver operating characteristic (ROC) analysis, the area under the curve (AUC)
was used as a figure of merit in the task of predicting malignancy using antecedent images,
and the statistical difference between the AUC values for different models was computed
using ROCKIT software [26,27]. Corrections were made for multiple comparisons following
the Holm–Bonferroni correction [28].

3. Results

The performance of each classification model for distinguishing a future benign state
from a future malignant state is summarized in Table 2. In general, classifiers incorpo-
rating multiple time-points with LSTM, based either on deep-learning-extracted features
or on radiomic features, tended to perform statistically better than chance (AUC = 0.5),
whereas those using only a single time-point failed to show improved performance com-
pared to chance, as judged by the area under the receiver operating characteristic curves
(AUC: 0.63 ± 0.05, 0.65 ± 0.05, 0.52 ± 0.06 and 0.54 ± 0.06, respectively) for each of
the affected breast and similarly for each of the contralateral breast (AUC: 0.59 ± 0.06,
0.62 ± 0.06, 0.52 ± 0.06 and 0.55 ± 0.06, respectively).

Note that we failed to show a significant difference in the AUC between the LSTM
network trained using CNN-extracted features and that trained using radiomic features
in the task of classifying future lesions as malignant or benign. This trend held for both
classifications using the affected breast (AUCs of 0.63 vs. 0.65, p = 0.6511, 95% CI of ∆AUC
[−0.1631, 0.1019]) and using the contralateral breast (AUCs of 0.59 vs. 0.62, p = 0.8083,
95% CI of ∆AUC [−0.1743, 0.1359]).
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Table 2. Performance of each classification model for distinguishing future benign state from future
malignant state.

Feature Type
LSTM Classifier
AUC (p-Value) *
[95% CI of AUC]

SVM Classifier
AUC (p-Value) *
[95% CI of AUC]

CNN (affected breast) AUC = 0.63 (p = 0.0231)
[0.5010, 0.7175]

AUC = 0.52 (p = 0.7103)
[0.3962, 0.6193]

CNN (contralateral breast) AUC = 0.59 (p = 0.1024)
[0.4791, 0.6982]

AUC = 0.52 (p = 0.7389)
[0.4083, 0.6320]

CNN (both lateralities) AUC = 0.64 (p = 0.0104)
[0.5184, 0.7336]

AUC = 0.54 (p = 0.5140)
[0.4138, 0.6372]

Radiomics (affected breast) AUC = 0.65 (p = 0.0042)
[0.5346, 0.7456]

AUC = 0.54 (p = 0.4425)
[0.4510, 0.6723]

Radiomics (contralateral breast) AUC = 0.62 (p = 0.0259)
[0.4998, 0.7161]

AUC = 0.55 (p = 0.3434)
[0.4439, 0.6672]

Radiomics (both lateralities) AUC = 0.63 (p = 0.0159)
[0.5122, 0.7263]

AUC = 0.54 (p = 0.5035)
[0.4216, 0.6454]

CNN + Radiomics (both lateralities) AUC = 0.65 (p = 0.0059)
[0.5109, 0.7282]

AUC = 0.52 (p = 0.7226)
[0.4190, 0.6422]

* p-value is estimated using z-score test by comparing classifier performance with chance (AUC = 0.5).
CI: confidence interval.

In clinical practice, it is unknown whether a future lesion will develop in the right or left
breast. Therefore, it is more clinically relevant to examine a merged classifier, which takes
into account the classifier output on each the left and right breast in the task of predicting
whether the future lesion will be malignant or benign. We failed to demonstrate significant
difference between classifiers trained using CNN features extracted from affected and
contralateral breasts (AUCs of 0.63 vs. 0.59, p = 0.7278, 95% CI of ∆AUC [−0.0898, 0.1286])
and radiomic features extracted from affected and contralateral breasts (AUCs of 0.65 vs.
0.62, p = 0.6273, 95% CI of ∆AUC [−0.0211, 0.0350]).

Furthermore, it is also of interest to explore the classification performance in the task
of characterizing future lesion malignancy when both the human-engineered and deep
learning methods were combined over both breasts, as presented in Table 2 and Figure 5.
Statistical comparisons were not performed on the merged classifier output in order to
maintain statistical power by limiting the quantity of pairwise comparisons performed.
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Figure 5. AUC values for each classifier compared, including merged classifiers. Each merged
classifier was constructed by taking the average classifier output from two different classifiers for
each individual case, and then performing ROC analysis on the averaged output values in the task of
characterizing future lesions as malignant or benign. Error bars show one standard error. Dashed
line is classification performance with guessing (AUC = 0.5).
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4. Discussion

The results from this study demonstrated that LSTM classifiers using multiple time-
points, based either on deep-learning-extracted features or on radiomic features, tended
to perform statistically better than chance, whereas those using only a single time-point
failed to show improved performance compared to chance, as judged by the area under
the receiver operating characteristic curves (AUC: 0.63 ± 0.05, 0.65 ± 0.05, 0.52 ± 0.06 and
0.54 ± 0.06, respectively). The classification performance in the task of predicting future
lesion malignancy was not observed to be statistically significantly different when an LSTM
network was trained using either CNN features or using radiomic features. This suggests
that, while these feature sets are different in their origin and how they are extracted, they
achieve similar results. Thus, either feature set may be appropriate for classifications with
temporal LSTM networks.

Similar classification performance was observed between the performance using
features extracted from the affected and contralateral breast in predicting the malignancy
of future unilateral lesions. Because only antecedent images were used in this analysis,
no mammographic abnormalities were present. Thus, while it is possible that the affected
breast had a precancerous texture change leading up to lesion detection, these results
suggest that a change also occurred in the contralateral breast that may indicate future
malignancy. Thus, this observation suggests that a field effect, changes in the breast
extending beyond the lesion itself, is present in both the affected and contralateral breasts
in antecedent imaging and, thus, the evaluation of either breast is informative for cancer
risk assessment.

This investigation into the use of temporal sequences of data for malignancy prediction
has several limitations. First, this study used a dataset of limited size compared with other
implementations of LSTM networks. The curation of large datasets is more challenging and
expensive in the medical domain compared with natural images, thus resulting in our small
number of cases included. Additionally, the data used in this study were collected at two
separate institutions, with slightly different cancer prevalence rates in the corresponding
datasets. While all images were acquired on Hologic units, differences in image acquisition
procedures may have varied between the two medical centers, resulting in some differences
in image characteristics.

Additionally, the intervals at which women underwent screening were not consistent.
While national agencies suggest screening at regular intervals of time, patient compliance
was not consistent in the data. Furthermore, women may have undergone screening at an
institution outside of the two involved in this study, and, therefore, this additional image
was omitted from this investigation. Collecting images from consistent time intervals may
affect, and potentially improve, the performance observed in this study.

The nature of screening exams involves repeat imaging on separate exam dates, thus
inherently involving the repositioning of the patient in the imager. As a result of this, images
are not spatially registered to one another. While this may be solved through deformable
registration methods, it is likely that such image processing would alter the radiomic
features extracted, potentially reducing the efficacy of such features. The approach taken
in this study was to manually align ROIs on undeformed images; however, this method
only results in approximate spatial registration across exam dates. While previous studies
have shown that radiomic features tend to be only minimally impacted by small changes
in spatial placement of an ROI, there may still be some effect present [29].

Finally, note that this study compared a new method, using LSTM networks to incor-
porate temporal information, with a conventional supervised learning approach (SVM)
that does not involve deep learning. The transfer learning approach of using SVM to merge
CNN-extracted image features has also shown promise in other FFDM studies [18,30].

This paper presents an image-based breast cancer prediction method that captures
temporal information about parenchymal texture on FFDM over time. These temporal
sequences are used to classify future lesions as either malignant or benign.
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Compared with the previous methods, this work allowed for the incorporation of
imaging information from multiple antecedent images, as opposed to just a single image.
Thus, this method evaluated not only the appearance of the parenchyma, but also changes
in the parenchyma over time. This work explored temporal network performance when
using features extracted either by conventional radiomics methods and from the pre-trained
VGG-19 network.

Based on the analyses performed in this study, LSTM networks based either on
deep-learning-extracted features or on radiomic features from either affected breast or
contralateral breast tended to perform statistically better than chance, whereas those using
only a single time-point failed to show improved performance compared to chance.

The main motivation for the selection of LSTM networks for use in characterizing
temporal image sequences is their ability to prevent vanishing or exploding gradients
during error backpropagation. Additionally, LSTM networks are well suited to handle
sequences of varying length, as women have varying numbers of screening mammograms
throughout their lifetimes.

The method used in this study was motivated by the fact that human experts compare
current screening mammograms with previous screening mammograms to assist in the
detection of abnormality. This suggests that prior images may provide additional informa-
tion to the current image [4]. Thus, changes in texture over time may be indicative of an
elevated probability of developing a malignant breast lesion.

The deep learning methods employed here captured temporal data patterns that
are not typically examined in conventional radiomics approaches. This work has shown
that the temporal data patterns of either breast capture clinically useful information in
evaluating the classification of future lesions based on screening mammography.

5. Conclusions

A long short-term memory (LSTM) network for the analysis of breast parenchyma,
using both radiomic and deep-learning-based features, was performed to identify women
predisposed to developing breast cancer. The findings from this study demonstrated that
the incorporation of temporal information into radiomic analyses may improve overall
classification performance through LSTM, as demonstrated by the improved discrimination
of future lesions as malignant or benign. Further, our data suggest that a potential field
effect, changes in the breast extending beyond the lesion itself, is present in both the affected
and contralateral breasts in antecedent imaging, and, thus, the evaluation of either breast
might inform on the future risk of breast cancer.
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