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Simple Summary: Hepatocellular carcinoma is a widespread cancer with complex molecular het-
erogeneity. Compared with invasive tissue sampling, the radiomics framework shows promise in
non-invasively decoding tumor heterogeneity. In this study, we utilized integrative analysis of ra-
diomics and genomics profiles to characterize hepatocellular carcinoma inter-tumor and intra-tumor
heterogeneity. We extracted multi-view imaging features from contrast-enhanced CT scans, and fused
features for potential radiomics subtypes identification. Differentiated immune pathway activity and
inflammatory tumor microenvironment between subtypes were obtained, and the predominant radio-
genomics association between texture-related and immune-related was demonstrated and validated
in independent cohorts. These findings could provide clues for non-invasive inflammation-based
risk stratification in hepatocellular carcinoma.

Abstract: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, and
the pronounced intra- and inter-tumor heterogeneity restricts clinical benefits. Dissecting molecular
heterogeneity in HCC is commonly explored by endoscopic biopsy or surgical forceps, but invasive
tissue sampling and possible complications limit the broadeer adoption. The radiomics framework
is a promising non-invasive strategy for tumor heterogeneity decoding, and the linkage between
radiomics and immuno-oncological characteristics is worth further in-depth study. In this study, we
extracted multi-view imaging features from contrast-enhanced CT (CE-CT) scans of HCC patients,
followed by developing a fused imaging feature subtyping (FIFS) model to identify two distinct
radiomics subtypes. We observed two subtypes of patients with distinct texture-dominated radiomics
profiles and prognostic outcomes, and the radiomics subtype identified by FIFS model was an
independent prognostic factor. The heterogeneity was mainly attributed to inflammatory pathway
activity and the tumor immune microenvironment. The predominant radiogenomics association was
identified between texture-related features and immune-related pathways by integrating network
analysis, and was validated in two independent cohorts. Collectively, this work described the
close connections between multi-view radiomics features and immuno-oncological characteristics
in HCC, and our integrative radiogenomics analysis strategy may provide clues to non-invasive
inflammation-based risk stratification.

Keywords: radiogenomics; radiomics; hepatocellular carcinoma; contrast-enhanced CT; tumor
heterogeneity; prognosis; data fusion
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1. Introduction

Hepatocellular carcinoma (HCC), also known as malignant hepatoma, is the third-
leading cause of cancer death worldwide [1]. Risk factors for HCC include chronic hepatitis
B/C infection, cirrhosis linked to alcohol abuse, diabetes, and obesity [2]. Unfortunately,
only 30% of cases could be diagnosed at early stages, with a 5-year recurrence rate as high
as 50% to 60% [3,4]. More patients diagnosed at advanced stages have limited clinical
benefit in chemotherapy and radiotherapy. The development of HCC is a multifaceted
process that involves an intricate interplay between altered signaling pathways, tumor
microenvironment, and diverse genetic profiles, which leads to high tumoral heterogeneity,
and ultimately poses a formidable obstacle to deciphering therapeutic strategies [5]. In
general, tumor heterogeneity can be categorized as inter-tumor (tumor by tumor) and intra-
tumor (within a tumor). Inter-tumor heterogeneity arises from altered phenotypes induced
by various environmental and etiological factors among patients [6], and intra-tumor
heterogeneity refers to the diversification of both malignant and nonmalignant components
(endothelial, stromal, and immune cells, among others) of the tumor microenvironment
within a single tumor lesion [7]. Given the complexity and heterogeneity, characterizing
the landscape of HCC is paramount. Recently, heterogeneity exploration based on multi-
omics molecular profiles, such as gene expression, methylation, and immunogenomics, has
been conducted [8,9] and brings insights for prognosis prediction and immune response
evaluation. However, invasive tissue sampling and possible complications limit the broader
adoption. Thus, the development of non-invasive diagnostic and prognostic methods or
markers is highly needed.

Imaging examination is a common tool for diagnosis, staging, treatment guidance,
and response monitoring in HCC [10]. In the era of personalized oncology, radiomics adds
layers of complexity and resolution to conventional imaging, which converted standard
radiographic medical images into a high-dimensional quantitative feature space, providing
valuable information on tumor pathophysiology and molecular subtyping [11–13]. A
previous systematic review of 54 included HCC studies has acknowledged the predictive
value of radiomics features [14]. For example, Asayama et al., Defour et al., and Xu et al.
demonstrated the good predictive performance of radiomics features in diagnosis [15],
prognosis [16], and microvascular invasion [17], respectively. For pathologic and molecular
correlation, Chen et al. uncovered features including the peritumoral region associated
with tumor-infiltrating lymphocyte population [18]. For treatment response, Kim et al.
revealed the predictive contribution of radiomic features in post-TACE overall survival [19].
Recently, the integrative analysis of imaging phenotypes with genomic-level information,
called radiogenomics [20], has gained increasing attention for revealing the relevance
to cancer development and progression. For instance, histopathological features and
genomics features have shown close associations with imaging features in several HCC
studies [21–23]. While these initial reports are promising, most of them are only focused
on clinical features and typical functional gene expression programs, and rarely dissect
the intra-tumor heterogeneity of immunobiology in the tumor immune microenvironment
(TIME). The information shared in phases and regions could also be overlooked by simply
utilizing single-phase images or coarsely merging multi-view imaging features. Therefore,
the biological significance of the radiomics signatures and the value of multi-view imaging
features for noninvasive prediction of immuno-oncologic characteristics and prognoses
require further investigation.

In this study, we aimed at dissecting inter-tumor and intra-tumor heterogeneity of
HCC based on integrative analysis of radiomics and genomics profiles. By utilizing a
multi-view fused imaging feature subtyping model, we identified radiomics subtypes
with distinct biological significance and inflammatory TIME status. Our study highlights
the radiogenomics linkages between multi-view CE-CT imaging features and immuno-
oncological characteristics, and could provide the theoretical rationale and feasibility for
non-invasive inflammation-based risk stratification.
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2. Materials and Methods
2.1. Data Collection

The CE-CT images of 40 HCC patients were collected from The Cancer Imaging
Archive (TCIA, https://www.cancerimagingarchive.net/, accessed on 1 April 2021) [24].
By excluding eight patients with missing images in the enhanced phase or with existing
metal artifacts and two patients without reference tumor location, a total of 30 patients with
complete imaging data and clinical information were eventually included for downstream
analysis. The corresponding transcriptomics data, exacted from The Cancer Genome Atlas
Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort, were downloaded from the GDC
data portal (https://portal.gdc.cancer.gov, accessed on 1 July 2021). Besides, 192 HCC
patients without images in TCGA-LIHC (https://portal.gdc.cancer.gov/projects/TCGA-
LIHC, accessed on 1 July 2021) and 142 HCC patients in Liver Cancer-NCC, JP (LINC-JP,
https://dcc.icgc.org/releases/current/Projects/LINC-JP#!, accessed on 1 July 2021) [25]
were obtained as two additional cohorts for further radiogenomics association validation
analysis. Table 1 shows detailed baseline characteristics, clinical data, and follow-up
information of all patients involved in our study.

Table 1. Baseline patient characteristics.

Characteristics Discovery Cohort
(n = 30)

Validation Cohort 1
TCGA-LIHC

(n = 192)

Validation Cohort 2
LINC-JP
(n = 142)

p

Age (year) 66 (56, 68) 59.5 (51, 69) 69 (62, 75) <0.001
Gender 0.649

male 20 139 97
female 10 53 45

AFP (ng/mL) 73.5 ± 168.2 186.6 ± 496.6 NA 0.765
T stage 0.920

T1 23 148 NA
T2 7 43 NA

Tumor stage <0.001
stage I 23 149 36

stage II 7 43 106
Histology grade 0.006

G1 6 21 17
G2 14 93 83
G3 10 65 31
G4 0 11 0

Treatment methods <0.001
segmentectomy 19 103 2

lobectomy 8 70 0
extended lobectomy 3 7 0

total hepatectomy with
transplant 0 1 0

TACE 0 0 25
chemotherapy 0 0 1

Follow-up duration (day) 552.0 (383.5, 1459.0) 631.5 (381.2, 1289.0) 870.0 (570.5, 1132.5) 0.899

2.2. Volume of Interest Segmentation and Radiomics Feature Extraction

The multi-view VOIs consisted of tumor and peritumoral regions in the arterial
and venous phases. The tumor reference coordinates were obtained from the crowd-
sourcing website [26], which generated consensus tumor markups by radiologists partnered
with the Radiological Society of North America. The multi-view VOIs were divided into
four types: (1) tumor region in the arterial phase, (2) tumor region in the portal venous
phase, (3) peritumoral region in the arterial phase, and (4) peritumoral region in the
portal venous phase (Figures 1 and S1A). For tumoral VOIs, the lesion was manually
annotated on both arterial and portal venous phase images based on reference markups,

https://www.cancerimagingarchive.net/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://dcc.icgc.org/releases/current/Projects/LINC-JP#!
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and segmented using a threshold-based segmentation algorithm by 3d slicer software
(version 4.9.0, http://www.slicer.org, accessed on 1 April 2021). For peritumoral VOIs,
we performed a morphologic dilation operation to capture the peritumoral region of the
entire tumor VOIs using the open-source library OpenCV (version 4.4.0), with a radial
distance of 10 mm based on a previous study [27]. The area beyond the liver parenchyma
was removed, and large vessels, adjacent organs, and air cavities were also excluded.
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Figure 1. Schematic diagram of the study. We divide the workflow into three main steps. First, we 
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and venous phase, respectively), followed by extracting multi-view imaging features. Next, the FIFS 
model is developed for feature fusion and radiomics subtype identification. Based on the 

Figure 1. Schematic diagram of the study. We divide the workflow into three main steps. First, we
segment CE-CT images to acquire multi-view VOIs (tumor and peritumoral regions in the arterial
and venous phase, respectively), followed by extracting multi-view imaging features. Next, the
FIFS model is developed for feature fusion and radiomics subtype identification. Based on the
corresponding gene expression profiles and imaging features, we compare inter- and intra-tumor
heterogeneity between subtypes. Finally, radiogenomics association is demonstrated by integrating
feature–pathway network analysis and validated by inflammation-based risk stratification in two
independent cohorts.
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Image preprocessing and feature extraction were performed using the Pyradiomics tool
(version 3.0.1) in Python 3.7 [28]. Images were resampled to a voxel size of
1 × 1 × 1 mm to standardize the voxel spacing and discretized with a fixed bin width
of 25. The radiomics features in each VOI were exacted and comprised of three classes:
(1) first-order features (n = 18), (2) shape features (n = 14), and (3) texture features (n = 68).
First-order features describe the distribution of voxel intensities, and shape features de-
scribe the difference in the shape of tumors. Texture features describe the gray profile
and were further subdivided into the gray level co-occurrence matrix (GLCM), gray level
dependence matrix (GLDM), gray level run length matrix (GLRLM), and gray level size
zone matrix (GLSZM). Finally, we extracted multi-view radiomics features for each lesion.
A full list of the features is described in Table S1, and eigenvalues were standardized with
Z-score for further analysis.

2.3. Radiomics Feature Fusion and Subtype Identification

Owing to multi-view imaging features reflecting tumor heterogeneity from various
regions and phases, it is crucial to choose an appropriate method to fully use the knowledge
provided by multi-view features, instead of simple concatenation. Here, we developed
the fused imaging feature subtyping (FIFS) model to better distinguish intrinsic subtypes
in HCC patients. The FIFS model was built using the similarity network fusion (SNF)
algorithm in R package SNFtool (version 2.3.1) [29]. Specifically, we first constructed
the patient-by-patient similarity network for each type of multi-view radiomics feature,
respectively, obtaining a total of four networks. In these networks, the nodes represented
patients and the weighted edges represented patient–patient similarities. We then employed
a nonlinear network fusion method, called message-passing theory, to iteratively integrate
these networks. After iteratively updating, networks converged to a fusion network,
with low-weight edges in networks discarded and high-weight edges retained in the
fusion network. Finally, we used this fusion network to cluster the patients into different
radiomics subtypes.

To determine the optimal number of subtypes in the final clustering step, we ap-
plied the consensus clustering method using R package ConsensusClusterPlus (version
1.58.0) [30], which provides a quantitative assessment for determining the number of
possible clusters. We tested different cluster groups and performed 1000 iterations with
resampling of 80%. The optimal clustering number was determined according to consen-
sus matrices and cumulative distribution functions (CDFs), which are commonly used to
optimize clustering stability. Additionally, we calculated the silhouette score to measure
the homogeneity of the subtypes and calculated the log-rank test P to assess the prognostic
quality [29]. A higher silhouette score indicates that the patients are well matched to their
own cluster and poorly matched to neighboring clusters. The lower the log-rank test P, the
more significant the prognostic effect observed. Consequently, based on multi-view CE-CT
images, we applied the FIFS model to identify two distinct radiomics subtypes, named
FIFS1 and FIFS2.

2.4. Functional Enrichment Analysis and TIME Comparison between FIFS Subtypes

By integrative analysis of radiomics and genomics profiles, we dissected tumor hetero-
geneity from the perspective of intra-tumor and inter-tumor, respectively. To evaluate the
heterogeneity of biological pathways functions and TIME between two subtypes, we em-
ployed the transcriptomics data corresponding to the patients. DEGs were identified using
R package DESeq2 [31] (version 1.18.1) by comparing each pair of subtypes. The filtering
threshold for the DEGs was set as follows: log2 fold change > 1 or log2 fold change < −1,
with adjusted p < 0.05. The DEGs were used for functional enrichment analysis based on
the KEGG [32] and GO [33] databases using R package clusterProfiler (version 3.8.1) [34].
Hallmark pathways were collected from the MSigDB database [35] and used for GSVA by
R package GSVA (version 1.40.1) [36].
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The immune and stromal infiltration scores of tumor microenvironments were calcu-
lated using R package ESTIMATE (version 1.0.13) [37]. The tumor purity was inferred by
multiple algorithms based on previous research, including the ESTIMATE algorithm, the
LUMP algorithm, immunohistochemistry (IHC) qualitative estimation, and the consensus
measurement of purity estimation (CPE) algorithm [38]. The abundance of individual
immune cell types in TIME was inferred using the CIBERSORT interface [39], which es-
timated the relative fraction of immune cell types based on the deconvolution method.
The gene sets of immune-related molecules were compared by GSVA, including cell sur-
face immune-related molecules (costimulators, coinhibitors, and major histocompatibility
complex) and cytokines (interleukins, chemokines, interferons, and colony-stimulating
factors) [40]. Tumor immunogenicity was calculated by immunophenoscore (IPS) based
on the gene expression in effector cells, immunosuppressive cells, MHC molecules, and
immunomodulators [41]. Stemness indices (mRNAsi score) were calculated based on the
Malta TM method and the one-class logistic regression (OCLR) machine-learning algorithm
program [42].

2.5. Comparative Analysis with Previous Molecular Subtypes

To investigate the potential association between the subtypes identified by the FIFS
model and existing molecular subtyping systems, we compared our FIFS results to molec-
ular subtyping results derived from three prior studies. The first study was performed
by Hoshida et al. [43], which incorporated nine independent cohorts to identify three
distinct molecular subtypes correlated with clinical features (termed S1, S2, and S3). S1
was characterized by WNT pathway activation. S2 was characterized by poor differentia-
tion, a high level of AFP expression, and enrichment in MYC pathway and AKT pathway
activation. S3 was characterized by good differentiation and molecular program of dif-
ferentiated hepatocyte function. In the second study, TCGA research network integrated
multi-omics profiles to identify three subtypes of HCC (termed iCluster1–iCluster3) [8].
iCluster1 was characterized by an immune low signature, iCluster 2 was summarized
as having a non-proliferative status, and iCluster3 was classified as immune exhausted.
PanImmune was established in the third study to identify six immune subtypes, termed
wound healing (C1), IFN-gamma dominant (C2), inflammatory (C3), lymphocyte depleted
(C4), immunologically quiet (C5), and TGF-beta dominant (C6) [9]. The significance of the
overlap between our radiomics subtypes and other subtype systems was assessed using
the hypergeometric test.

2.6. Radiogenomics Association Identification and Validation

For evaluation of the radiogenomics association in our FIFS model, multiple steps
were performed as follows: (1) WGCNA was employed to identify the subtype-specific
co-expression modules based on R package WGCNA (version 1.71) [44]. In detail, a signed
weighted correlation matrix, which contained pairwise Pearson correlations between all
genes across patients, was generated using a soft threshold of β = 8 to reach a scale-free
topology. The dynamic hybrid tree-cut method was used to detect the network modules
of co-expressed genes with a minimum module size of 30. The FIFS subtyping results
were converted into a 0–1 phenotypic matrix to identify subtype-specific modules, (2) the
PRF-related modules were identified by filtering based on Cox regression analysis and
correlation analysis between the modules and radiomics features, (3) the biological function
of the PRF-related modules was assessed by GO and KEGG enrichment analysis, and
(4) we constructed pathway–feature pairs between the PRF-related modules and imaging
features based on the GSVA method and correlation analysis and identified the specific
pathway and gene for each feature. Cytoscape (version 3.9.1) was employed to visualize
the association network of imaging features and biological functions.
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For validation of the radiogenomics association, a gene-expression-based classifier
was constructed to predict the potential FIFS subtype on two additional cohorts using the
nearest shrunken centroid method by R package pamr (version 1.56.1) [45]. Specifically, we
applied two steps to obtain the most representative signature genes using 30 patients with
the FIFS subtyping information as the training set (16 FIFS1 and 14 FIFS2 patients). First, the
overlapped genes of DEGs between FIFS subtypes and the genes in PRF-related modules
were identified. Second, through 10-fold cross-validation with stratified sampling, we
filtered the overlapped genes based on the smallest preselected gene number and the lowest
misclassification rate. The retained genes were used to build the classifier. We applied
this classifier to two additional cohorts to classify patients into the FIFS subtype. Using
Kaplan–Meier survival analysis [46], overall survival was compared between patients. The
innate and adaptive immune-related pathways were collected from a previous study [47]
and immunocompetent status was evaluated using GSVA.

2.7. Quantification and Statistical Analysis

Continuous variables were compared using the Student’s t-test or Wilcoxon test, and
the Shapiro–Wilk test was used to test the normality of distributions. Categorical variables
were compared using Pearson’s chi-square test or Fisher’s exact test. Survival analysis
was conducted using the Kaplan–Meier method and compared with the log-rank test.
Regression analysis was performed to ascertain prognostic radiomics features using a
Cox proportional hazards model. All statistical tests were two-sided and the statistical
significance threshold was set at p < 0.05. The false discovery rate (FDR) correction was
used in multiple hypothesis testing to decrease false positive rates. Statistical analyses
were performed with R software (version 4.1.1, https://www.R-project.org/, accessed on
1 January 2022).

3. Results
3.1. Study Design

The overall experimental design is depicted in Figure 1, including three steps: (1) ra-
diomics feature extraction and fused imaging feature subtyping (FIFS) model construction,
(2) radiomics subtype identification and tumor heterogeneity comparison, and (3) radio-
genomics analysis (Figure 1). Specifically, based on CE-CT imaging of HCC patients, we
annotated and segmented the multi-view volumes of interest (VOIs). Then, we extracted the
features for each VOI and developed the FIFS model to fuse multi-view features followed
by radiomics subtype identification. Based on corresponding transcriptomics data, we com-
pared inter-tumor and intra-tumor heterogeneity between subtypes, and finally assessed
the radiogenomics association and validated our findings using independent cohorts.

3.2. Identifying HCC Imaging Subtypes Based on Multi-View Radiomics Feature Fusion

To dissect tumor heterogeneity based on radiomics in HCC, we first extracted multi-
view CE-CT imaging features of HCC patients collected from The Cancer Imaging Archive
(TCIA) database. After imaging quality screening, 30 HCC samples were included for
downstream analysis (Figure 2A). Multi-view VOIs were annotated and segmented based
on reference tumor location, including (1) type 1, the tumor region in the arterial phase;
(2) type 2, the tumor region in the portal venous phase; (3) type 3, the peritumor region
in the arterial phase; and (4) type 4, the peritumor region in the portal venous phase,
respectively (Figures 1 and 2A). For each type of VOI, a total of 100 radiomics features
comprised of three classes were extracted: (1) first-order features (n = 18), (2) shape features
(n = 14), and (3) texture features (n = 68). A full list of the features is described in Table S1.

Instead of coarsely merging features, we developed the FIFS model to identify poten-
tial radiomics subtypes. The FIFS model utilized all four types of multi-view radiomics
features (defined as combination pattern, CP1, Figure S1B) as input and learned a matrix
of similarities between features in each type by network fusion. After determining the
optimal number of clusters based on consensus matrices and cumulative distribution func-

https://www.R-project.org/
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tions (CDF, Figure S1D,E), we identified two distinct radiomics subtypes, FIFS1 and FIFS2
(Figure 2B). Principal component analysis of HCC samples based on fused features could
distinguish the two subtypes well (Figure 2C). To further evaluate whether our radiomics
subtyping results were prognostically relevant, we performed survival analysis and found
that lower overall survival rates (p = 0.004, log-rank test) and lower disease-free survival
rates (p = 0.039, log-rank test) were observed in FIFS2 compared with FIFS1 (Figure 2D,E).
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Figure 2. HCC patients stratified into two subtypes by multi-view radiomics features. (A) The process
of multi-view feature extraction. After patient screening and multi-view VOIs’ segmentation, multi-
view features are obtained from four types of VOIs. (B) Consensus clustering of HCC patients based
on CP1 fused features reveals two distinct subtypes. The strength of the blue color is proportional
to the frequency at which samples have been clustered together. (C) Principal component analysis
of HCC patients based on CP1 fused features separates FIFS1 and FIFS2. (D,E) Kaplan–Meier plots
show the prognosis association of subtypes with overall survival (D) and disease-free survival
(E) outcomes.

To examine whether all four types of multi-view features contribute to the FIFS model,
we compared three other alternative feature inputs, including (1) CP2, the features of tumor
in the arterial and the venous phase (type 1 and type 2); (2) CP3, the features of tumor and
peritumor in the venous phase (type 2 and type 4); and (3) CP4, the features of tumor and
peritumor in the arterial phase (type 1 and type 3) (Figure S1B). The consensus matrices
and CDF were also applied to optimize the clustering stability, and the silhouette score and
overall survival rate were used to evaluate the clustering effects (Figure S1C). As a result,
two clusters were determined as the optimal cluster number for each CP (Figure S1D,E).
In comparison with another three CPs, CP1 showed the highest silhouette score and the
most significant prognostic stratification (Table S2) and demonstrated that integrating CP1
based on the FIFS model was a desirable strategy. Altogether, we extracted and integrated
multi-view features by the FIFS model and identified two robust radiomics subtypes with
prognostic relevance for subsequent analysis.
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3.3. Radiomics Subtypes Describe Distinct Texture-Dominated Imaging Profiles

We compared the clinical features between FIFS1 and FIFS2 to dissect the clinical
relevance. Consequently, a high histologic tumor grade (G3) was found to be more common
in FIFS2, while FIFS1 displayed a lower histologic grade (G1, p < 0.001, Fisher’s exact test,
Figure 3A and Table S3). Moreover, serum alpha-fetoprotein (AFP) values were significantly
higher in FIFS2 than in FIFS1 (p = 1.1 × 10−3, two-sample Student’s t-test, Figure 3B).
Furthermore, we found that the radiomics subtype identified by the FIFS model was an
independent prognostic factor (Figure 3C, p = 0.014, HR = 0.146, Cox regression analysis).

Cancers 2023, 15, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 3. Clinical and radiomics characterization of radiomics-based subtypes. (A) The alluvial di-
agram shows the association between radiomics subtypes and histologic grades. (B) The violin plot 
outlines serum AFP values in FIFS1 and FIFS2, respectively. (C) The result of Cox regression analysis 
for the FIFS system and clinical risk factors. (D) Heatmap of the eigenvalues’ distribution of PRFs 
in FIFS1 and FIFS2. The rows are split by imaging feature types according to phase and region in-
formation. The representative images in the tumor region of the venous phase (Type 2) of FIFS1 and 
FIFS2 are presented, and grouped dot plots of PRF eigenvalues are indicated to the right of the 
heatmap. The eigenvalues of each PRF are row-normalized. ***, p < 0.001. (E) The distribution of 
three HCC molecular systems in FIFS subtypes. The bar in solid color is statistically significant and 

Figure 3. Clinical and radiomics characterization of radiomics-based subtypes. (A) The alluvial
diagram shows the association between radiomics subtypes and histologic grades. (B) The violin
plot outlines serum AFP values in FIFS1 and FIFS2, respectively. (C) The result of Cox regression
analysis for the FIFS system and clinical risk factors. (D) Heatmap of the eigenvalues’ distribution of
PRFs in FIFS1 and FIFS2. The rows are split by imaging feature types according to phase and region
information. The representative images in the tumor region of the venous phase (Type 2) of FIFS1
and FIFS2 are presented, and grouped dot plots of PRF eigenvalues are indicated to the right of the
heatmap. The eigenvalues of each PRF are row-normalized. ***, p < 0.001. (E) The distribution of
three HCC molecular systems in FIFS subtypes. The bar in solid color is statistically significant and
the bar in transparent color represents no statistically significant trend. The statistical significance is
estimated by hypergeometric tests. S/V ratio, surface–volume ratio.
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As previous studies have demonstrated the clinical and prognostic relevance of imag-
ing features, we also evaluate the prognostic significance of the subtype-specific radiomics
features. Based on eigenvalues of radiomics features, 142 differential features were obtained
between two subtypes (p < 0.05, two-sample Student’s t-test), and 18 of them were related
to prognosis (p < 0.05, Cox regression analysis), named prognostic radiomics features (PRFs)
1–18 (Table 2, Figure 3D, Figure S2). By observing the distribution of PRFs in four VOI types,
more than half fell into type 2 (Table 2). Furthermore, the PRFs were mainly distributed in
the venous phase (14/18) and tumor region (13/18), and most of them (15/18) belonged to
the texture class (Table 2). Compared with FIFS2, we found FIFS1 had significantly higher
eigenvalues in PRF1–10, which was characterized by a higher low gray value (PRF3, 4, 6, 7,
8) and lower local homogeneity (PRF12, 13), as well as a greater surface–volume ratio (PRF9,
S/V ratio) in the tumor region (Figure 3D). By contrast, FIFS2 had significantly higher
eigenvalues in PRF11–18, which was characterized by a stronger high gray value (PRF14,
15) and higher local homogeneity (PRF12, 13) in the tumor region (Figure 3D). In addition,
the heatmap showed that the weaker heterogeneity (PRF17, 18) and high gray value (PRF2,
5) profiles in the peritumoral region were observed in FIFS1, and stronger heterogeneity
(PRF17, 18) and low gray value profiles (PRF16) in the peritumoral region were presented
in FIFS2 (Figure 3D, Table 2). These results demonstrated the distinct texture-dominated
imaging profiles between FIFS1 and FIFS2.

To investigate whether the FIFS model may reflect inter-tumoral biological character-
istics in HCC, we compared the subtyping results based on FIFS and the three molecular
subtyping systems previously established (Figure 3E). Consistent with our findings in
clinical comparison, we found that FIFS2 had a greater proportion of Class S2 tumors in
Hoshida subtyping [43], characterized by high levels of AFP expression and enrichment
in MYC pathway (p = 0.034, hypergeometric test). Moreover, in iCluster subtyping [8],
FIFS1 had a higher proportion of iCluster2, characterized by non-proliferative, lower tumor
grade, and better prognosis (p = 0.015, hypergeometric test). In PanImmune subtyping [9],
the comparison revealed that FIFS1 had a higher proportion of C2 (IFN-gamma dominant),
showing strong CD8 signals and the highest M1/M2 macrophage polarization and the
greatest TCR diversity (p = 0.013, hypergeometric test). Meanwhile, FIFS2 had a higher
proportion of C4 (lymphocyte depleted), showing more M2 macrophage polarization infil-
trate and worse prognosis (p = 0.001, hypergeometric test). In summary, we uncovered the
difference in clinical characteristics and radiomics patterns between FIFS1 and FIFS2, and
demonstrated the association with the established molecular subtyping systems.

3.4. Distinct Biological Significance and Proinflammatory TIME Status of the FIFS Subtypes

To dissect the heterogeneity of biological function and TIME, we performed a com-
parative transcriptomics analysis of the FIFS subtypes. We identified 1966 differentially
expressed genes (DEGs) between FIFS1 and FIFS2 samples (Figure 4A, Table S4). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed
distinct biological function enrichment (p < 0.05, hypergeometric tests, Figure 4B and
Table S4). More specifically, FIFS1 was significantly enriched in proinflammatory functions,
including cytokine activity, chemokine signaling, and interleukin and interferon produc-
tion. Meanwhile, cell-cycle-related pathways, including developmental growth regulation,
nuclear division, and ubiquitin protein ligase activity, were significantly enriched by FIFS2.
Further confirmed by gene set variation analysis (GSVA) of the hallmark gene signatures,
we found FIFS1 was active for interferon, complement, inflammation, and signaling in
interleukin, while FIFS2 displayed enhanced expression of the G2/M checkpoint, DNA
repair, mTORC1 signaling, and targets to MYC and E2F pathways (Figure 4C). Notably,
inflammatory cytokines were reported to modify the tumor microenvironment by recruit-
ing immune cells to exert diverse immune functions [48], suggesting that proinflammatory
TIME tended to be formed in FIFS1. The cell cycle is regarded as a hallmark and thera-
peutics target of cancer [49], which stimulates limitless tumor cell division and perturbs
antigen presentation and cytokines’ secretion in FIFS2.
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Table 2. Characteristics of the subtype-specific prognostic radiomics features.

Feature Feature Name Subtype Type Phase Region Class HR (95% CI) p

PRF1 Minimum FIFS1 Type2 venous tumor first-order 0.17 (0.05–0.55) 0.008
PRF2 LargeAreaHighGrayLevelEmphasis FIFS1 Type3 venous margin texture-glszm 0.07 (0.02–0.24) 0.001
PRF3 LargeDependenceLowGrayLevelEmphasis FIFS1 Type2 venous tumor texture-gldm 0.28 (0.08–0.92) 0.043
PRF4 LowGrayLevelZoneEmphasis FIFS1 Type2 venous tumor texture-glszm 0.19 (0.06–0.61) 0.016
PRF5 ShortRunHighGrayLevelEmphasis FIFS1 Type4 artery peritumor texture-glrlm 0.09 (0.03–0.28) 0.003
PRF6 LowGrayLevelEmphasis FIFS1 Type2 venous tumor texture-gldm 0.20 (0.06–0.66) 0.021
PRF7 LowGrayLevelRunEmphasis FIFS1 Type2 venous tumor texture-glrlm 0.19 (0.06–0.61) 0.016
PRF8 SmallAreaLowGrayLevelEmphasis FIFS1 Type2 venous tumor texture-glszm 0.23 (0.07–0.76) 0.039
PRF9 SurfaceVolumeRatio FIFS1 Type2 venous tumor shape 0.06 (0.02–0.22) <0.001
PRF10 SurfaceVolumeRatio FIFS1 Type1 artery tumor shape 0.06 (0.02–0.21) <0.001
PRF11 Idmn FIFS2 Type1 artery tumor texture-glcm 3.74 (1.13–12.38) 0.035
PRF12 Idmn FIFS2 Type2 venous tumor texture-glcm 14.84 (4.45–49.53) 0.001
PRF13 Idn FIFS2 Type2 venous tumor texture-glcm 5.34 (1.63–17.50) 0.016
PRF14 LargeAreaHighGrayLevelEmphasis FIFS2 Type2 venous tumor texture-glszm 15.61 (4.65–52.40) <0.001
PRF15 LargeDependenceHighGrayLevelEmphasis FIFS2 Type2 venous tumor texture-gldm 6.28 (1.89–20.82) 0.007
PRF16 LongRunLowGrayLevelEmphasis FIFS2 Type4 artery peritumor texture-glrlm 4.88 (1.49–15.92) 0.024
PRF17 DifferenceVariance FIFS2 Type3 venous peritumor texture-glcm 4.73 (1.45–15.41) 0.028
PRF18 Contrast FIFS2 Type3 venous peritumor texture-glcm 5.34 (1.63–17.48) 0.016
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Figure 4. Radiomics subtypes reveal distinct tumor biological functions and TIME status. (A) The
volcano plot shows DEGs between subtypes. The top three significant DEGs are labeled. (B) The
dot plot represents the enriched gene sets by GO and KEGG enrichment analysis. (C) Differences
in hallmark signatures activities scored by GSVA between FIFS1 and FIFS2. The orange color
indicates significantly activated pathways in FIFS1, and the steel blue color indicates significantly
activated pathways in FIFS2. (D) Higher stromal scores and immune scores are observed in FIFS1.
Dots represent outliers. (E) Tumor purity score across subtypes inferred by the CPE algorithms.
(F) Distribution of immune cell infiltration between two subtypes. Dots represent outliers. (G) Kaplan–
Meier plot of overall survival rates in TCGA-LIHC samples stratified by M2 macrophages/M1
macrophages ratio. (H) The heatmap shows higher overall expression levels (GSVA scores) of
immune-related cell surface molecules (costimulators, coinhibitors, and major histocompatibility
complex) and cytokines (interleukins, chemokines, interferons, and colony-stimulating factors) in
FIFS1. *, p < 0.05. (I,J) Boxplots show the stemness index (I) and IPS scores (J) in FIFS1 and FIFS2.
Mø, Macrophages.
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The complex and dynamic TIME is recognized to be important in regulating tumor
growth, invasion, and metastasis [50]. We first estimated the relative fraction of stromal
and immune cells in tumor tissues and found that FIFS1 had higher degrees of stromal cell
(p = 0.024) and immune cell (p = 0.031) infiltration (Figure 4D). A further comprehensive
evaluation of tumor purity based on a previous study [38] confirmed that FIFS2 had higher
tumor purity compared with FIFS1 (p = 0.018, Figures 4E and S3A). By comparing immune
cell infiltration abundance in TIME, we found the differences in immune infiltration of the
two subtypes were mainly manifested in macrophages and CD8+ T cells. FIFS1 showed
more CD8+ T cell infiltration (p = 0.029, Figures 4F and S4B) and more M1 polarized
macrophages than FIFS2 (p = 3.6 × 10−3), while FIFS2 had more M2 polarized macrophages
(p = 5.2 × 10−3, Figure 4F). By comparing the prognosis of macrophage polarized pheno-
types (M1 as proinflammatory and M2 as anti-inflammatory) in the TCGA-LIHC dataset,
M1 polarization (p = 0.02, log-rank test, Figure S3B) significantly prolonged patient survival,
while M2 polarization (p = 0.001, log-rank test, Figure S3C) and a higher M2/M1 ratio
(p = 0.001, log-rank test) were prognostic risk factors (Figure 4G).

The interaction between surface molecules and immune cells regulates the anti-tumor
immune response [51], and cytokines’ production can activate both the innate and adaptive
immune responses against tumor immune escape [52]. Subsequent enrichment analysis
on gene sets of immune-related cell surface molecules and cytokines also confirmed the
immune activation in FIFS1 (Figure 4H). In addition, we found that FIFS2 had higher
stemness indices than FIFS1 (p = 0.008, Figure 4I), corresponding to the greater ability of
tumor motile and self-renewal. The significantly lower IPS score was also observed in
FIFS2, suggesting a worse immune checkpoint inhibition response and immune stimulation
(p = 0.021, Figure 4J). Overall, we performed transcriptomics analysis to compare
inter- and intra-tumor heterogeneity between two subtypes, and revealed that FIFS1 dis-
played stronger immune pathway activity and formed a proinflammatory tumor
microenvironment via well-orchestrated reciprocal interactions between tumor cells and
surrounding cells.

3.5. Close Radiogenomics Association between Imaging Features and Immune Response as Well as
a Cell Cycle Modulating Function

We employed a network-based approach to comprehensively explore the relationship
between imaging features and biological functions. First, we conducted weighted gene
co-expression network analysis (WGCNA) to construct a co-expression network based on
the transcriptome of the HCC patients. After determining the soft thresholding power
as 8 and minimum module size as 30 (Figure S4A), we identified 27 co-expression mod-
ules. By calculating the subtyping correlation and prognostic significance, eight modules
were filtered and identified to be significantly associated with subtypes and had prog-
nostic implications (Figures 5A and S4B). Among them, five of eight (green, darkorange,
darkgreen, yellow, and red, named as PRF-related modules) were significantly correlated
with radiomics features (PRF1–18, Figures 5B and S4C). Intriguingly, the green module
was correlated with most of the PRFs (16 out of 18) and the yellow module was the only
module positively correlated with FIFS2-specific PRFs (PRF11–18). To explore the potential
biological functions, we performed functional enrichment analysis for PRF-related mod-
ules (Figure S5A). As a result, immune-related pathways including regulation of immune
cell, chemokines, cytokines, and T cell differentiation regulation were enriched by the
green module (Figure 5C), while cell cycle regulation, nuclear division, and chromosome
segregation were enriched by the yellow module (Figure 5D and Table S5).
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are significantly associated with FIFS phenotypes and harbored prognostic values are indicated with
an asterisk. *, p < 0.05; **, p < 0.01. (B) Correlations between PRFs and the PRF-related modules are
displayed as a heatmap. *, p < 0.05. (C,D) Enrichment analysis results of genes within the green
module (C) and the yellow module (D). (E) An association network of the top five pathway–feature
pairs for each PRF. The circles in orange and steelblue indicate FIF1-specific and FIF2-specific PRFs,
respectively. The squares in green, yellow, and orange indicate the specific biological functions of
corresponding color-coded modules. (F,G) The PRFs are significantly correlated with biological
functions in FIFS1 (F) and FIFS2 (G). The points in blue indicate the correlation between the most
relevant biological pathway and PRFs and the points in red indicate the correlation between the
PRF-related genes and PRFs. The correlation coefficients are indicated in the upper left corner of
the graph. (H) The forest plot shows the Cox regression result of the PRF-related genes. The genes
in orange color indicate the FIFS1-specific PRF-related genes and the genes in steelblue color are
FIFS2-specific. Squares are color-coded based on corresponding module color information in (A) and
indicate the modules to which PRF-related genes belong.

We next determined the specific biological functions correlated with radiomics features.
Pathway enrichment scores of the PRF-related modules were calculated in each patient, and
we then performed correlation analysis between enrichment scores and PRF eigenvalues to
identify pathway–feature pairs. As a result, 5898 pathway–feature pairs were identified,
and the pathways in pairs were dominated in the green module (77.92%, Figure S5B and
Table S6). Consistently, except for PRF17 and PRF18, the association network based on
the top five pairs of each PRF displayed predominantly immune correlations (Figure 5E),
including immune cell differentiation as well as antigen-presenting and proinflammatory
cytokines’ release, suggesting that radiomics features were highly correlated to anti-tumor
activity such as immune response stimulation, tumor recognition, and recruitment of
immune cells.

Furthermore, we identified the specific correlated genes for these PRFs. For each
pathway–feature pair of the network, we calculated the correlation coefficients between the
expression of genes in the pathway and the eigenvalues of the PRF. As a result, 14 genes
were significantly associated with PRFs, and are hereinafter referred as PRF-related genes.
The PRF-related genes were mainly distributed over the green and yellow modules and
contributed to immune and cell-cycle-regulation-related functions, respectively (Table 3,
Figure S5C). For instance, SLAMF6 was identified to be positively correlated with PRF6
(r = 0.73, p < 0.001, Pearson correlation analysis) and was presented in the T helper 17
cell differentiation pathway. SLAMF6 is a member of the signaling lymphocyte activated
molecule subfamily, which enhanced Th17 cell function by increasing T-cell adhesiveness
through the activation of the small GTPase Rap1 [53]. LY9, another gene in that pathway,
was positively correlated with PRF10 (r = 0.54, p < 0.001, Pearson correlation analysis),
and it was reported to co-participate in IL-17 production with SLAMF6 [54] (Figure 5F).
Meanwhile, CDC26 was positively correlated with FIF2-related PRF11 and was presented
in the pathway of anaphase-promoting complex (APC). APC initiates the metaphase–
anaphase transition by inducing the degradation of cyclin B and securin [55]. UBE2S was
positively correlated with PRF12 (r = 0.66, p < 0.001, Pearson correlation analysis) and is
involved in the regulation of the ubiquitin protein ligase activity pathway. UBE2S is a
master regulator of mitosis by interacting with APC and promotes cell chemoresistance
through PTEN-AKT signaling in HCC [56] (Figure 5G).

We also investigated the prognostic values of the PRF-related genes and revealed the
significant prognosis or progression relevance in the HCC patients of the TCGA-LIHC
dataset (Table S7 and Figure 5H). In brief, we used a network-based approach to investigate
the relationship between radiomics features and biological functions, and demonstrated
that texture-related features were mainly related to the regulation of immune response and
cell cycle and the specific genes associated with these features had significant prognostic
values in HCC patients.
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Table 3. Characteristics of the PRF-related genes.

PRF-Related Gene Imaging
Feature Subtype Specific Pathway Module Correlation Coefficient p

IRS1 PRF1 FIFS1 Positive Regulation of Cellular Carbohydrate Metabolic Process Darkorange 0.534 0.003
TBX21 PRF2 FIFS1 T Cell Differentiation Involved in Immune Response Green 0.592 0.001
CCR7 PRF3 FIFS1 Regulation of JNK Cascade Green 0.679 <0.001

SLAMF6 PRF4 FIFS1 CD4 Positive or CD8 Positive Alpha Beta T Cell Lineage Commitment Green 0.611 0.001
IL6ST PRF5 FIFS1 JAK-SKAT Signaling Pathway Green 0.556 0.002

SLAMF6 PRF6 FIFS1 T Helper 17 Cell Differentiation Green 0.595 0.001
NFIL3 PRF7 FIFS1 Natural Killer Cell Differentiation Green 0.577 0.001
SPN PRF8 FIFS1 CD4 Positive or CD8 Positive Alpha Beta T Cell Lineage Commitment Green 0.518 0.004

PRKCQ PRF9 FIFS1 Positive Regulation of Interleukin 17 Production Green 0.581 0.001
LY9 PRF10 FIFS1 Positive Regulation of Interleukin 17 Production Green 0.54 0.003

CDC26 PRF11 FIFS2 Anaphase Promoting Complex Yellow 0.578 0.001
UBE2S PRF12 FIFS2 Regulation of Ubiquitin Protein Ligase Activity Yellow 0.662 <0.001
BAG2 PRF13 FIFS2 Regulation of Ubiquitin Protein Ligase Activity Yellow 0.601 0.001
UBE2S PRF14 FIFS2 Positive Regulation of Ubiquitin Protein Transferase Activity Yellow 0.527 0.004
UBE2S PRF15 FIFS2 Regulation of Ubiquitin Protein Ligase Activity Yellow 0.623 <0.001

MAD2L1BP PRF16 FIFS2 Regulation of Mitotic Cell Cycle Spindle Assembly Checkpoint Yellow 0.539 0.003
SIRT2 PRF17 FIFS2 Positive Regulation of Meiotic Cell Cycle Yellow 0.486 0.008
SIRT2 PRF18 FIFS2 Regulation of Meiotic Nuclear Division Yellow 0.584 0.001
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3.6. Independent Validation for the Immunocompetent Status and Prognostic Relevance Based on
the FIFS System

For further validation of the predominant radiogenomics associations between imag-
ing features and immune-related pathways, we generated a gene-expression-based classifier
based on the nearest shrunken centroid method [45] to predict the potential FIFS subtypes
for HCC patients with only gene expression data. Specifically, 427 genes were selected as
candidate genes by comparing the overlap of DEGs between two subtypes and the genes in
PRF-related modules (green, darkorange, darkgreen, yellow, and red; Figure 6A). Based on
internal 10-fold cross validation, the optimal shrinkage threshold of 1.096 was determined,
and a list of 183 signature genes discriminating the FIFS subtypes was finally selected, with
the lowest misclassification error of 9% (Figure 6B and Table S8). In addition, we observed
the distribution of the 183 signature genes in the modules and found that nearly half of
those belong to the green module (43.1%, Figure S6A). The putative biological functions
of the signature genes were summarized (Table S8) and mainly enriched in immunologic
pathways. Notably, except for NFIL3, 13 out of 14 PRF-related genes overlapped with the
signature genes of the classifier (Figure S6B).
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Figure 6. Independent validation for the immunocompetent status and prognostic relevance based on
the FIFS system. (A) Venn diagram shows the overlapping genes between DEGs and the genes of PRF-
related modules. (B) The line chart shows the number of candidate genes and misclassification errors
at different thresholds. (C,D) Kaplan–Meier survival plots show the overall survival of HCC patients
stratified by classifier prediction in the TCGA-LIHC (C) and LINC-JP datasets (D). (E,F) Heatmaps
show the innate- and adaptive-immunity-related pathway enrichment scores for patients of FIFS1 and
FIFS2 in TCGA-LIHC cohort (E) and the LINC-JP cohort (F). Rows show immune-related pathway
enrichment scores (z-scores) and columns show the patients stratified by the classifier.
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We then applied the classifier to two independent datasets, TCGA-LIHC and LINC-JP
cohorts. As a result, patient stratification based on the predicted FIFS subtype showed
distinct survival outcomes. FIFS1 had significantly better survival than FIFS2 (Figure 6C,
p = 0.006, Figure 6D, p = 0.012, log-rank tests), corresponding to our prognosis observation
in the training cohort. To evaluate the immunocompetent status of the stratified patients,
we generated enrichment scores using the innate- and adaptive-immunity-related gene
sets in a previous study [47] and performed hierarchical clustering based on the scores
(Figure 6E,F). Compared with FIFS2, higher scores were observed in FIFS1, which suggested
that robust immune responses against tumors were more prone to be generated in FIFS1
(Figure 6E,F). Taken together, we generated a gene-expression-based classifier to predict
the potential radiomics subtypes of HCC patients, and patient stratification based on
the predicted subtypes showed distinct survival outcomes and immunocompetent status,
which offered the potential for inflammation-based risk stratification based on immune-
related radiogenomics.

4. Discussion

Radiomics represents a broadly applicable framework for decoding tumor hetero-
geneity, and the linkage between imaging features and tumor biology functions is worthy
of further exploration. In this study, we utilized integrative analysis of radiomics and
genomics profiles to characterize HCC inter-tumor and intra-tumor heterogeneity. We
developed a multi-view fused imaging feature subtyping model for radiomics feature
fusion and patient stratification. Based on the FIFS model, two distinct radiomics subtypes
that carried prognostic value were identified. Differentiated immune pathway activity and
inflammatory TIME between subtypes were obtained, and the predominant radiogenomics
association between texture-related and immune-related was demonstrated. These results
suggested that CE-CT imaging features may aid in inflammation-based risk stratification
of HCC patients.

To the best of our knowledge, the FIFS model was the first attempt to uncover putative
radiomics subtypes of HCC using multi-view CE-CT feature fusion. Compared with the
plain CT scan, CE-CT images generate diverse phases rather than a single one. The tumor
enhancement patterns across phases and the extent of contact between the tumor and
blood vessels can be highly informative in revealing the pathological diversity, location,
and vascular association of the tumor [57]. Hence, we opted for CE-CT images in our
study. Our FIFS model was developed based on the SNF algorithm, which is an acceptable
method for radiomics subtyping by integrating multi-view radiomics features through the
fusion of multiple networks [29]. Ross et al. applied the SNF method to integrate structural
T1-weighted magnetic resonance imaging (MRI), single-photon emission computed tomog-
raphy and clinical-behavioral assessments, and identified putative subtypes of Parkinson’s
disease [58]. Han et al. uncovered potential subtypes of obsessive-compulsive disorder
by integrating structural and functional MRI data [59]. In this study, we extracted tumor
features in both the arterial and venous phases as the characteristics of liver dual blood
supply and CE-CT multiple-phase imaging [60]. We also obtained peritumoral features as
peritumoral areas tended to be altered under the influence of tumor biological aggressive-
ness [27]. Of note, our FIFS model distinguished two radiomics subtypes with different
prognostic outcomes, although the HR value of OS and PFS was not stable enough, which
was partly owing to the small sample size. In addition, the subtyping result of FIFS showed
a certain relevance of the established molecular subtyping systems, suggesting that this
fusion model could effectively integrate complementary multi-view imaging information
and provide more clues for radiomics subtyping.

We compared the clinical differences and characterized the radiomics profiles between
the FIFS subtypes. The clinical differences between subtypes were mainly AFP level
and histological grade. High serum levels of AFP are associated with pathologic grade
and survival across the stages of the disease [61], and histological grade is considered
as a significant risk factor for HCC postoperative recurrence and is highly correlated
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with radiographic features [62,63]. Furthermore, by comparing radiomics profiling in
two subtypes, 18 PRFs were found to be associated with prognosis, and the majority
of PRFs were distributed in the tumor region of the venous phase. It was perhaps not
surprising that microvascular invasion and prognostic stratification were reflected in the
texture patterns of the portal venous phase [17], while tumor vascularization patterns could
be reflected in the texture patterns of the arterial phase [64]. Moreover, the PRFs mainly
belonged to the texture class, which reflected differences in gray level and local homogeneity.
Texture features are generally considered as independent prognosis predictors in HCC
patients [27,65]. Ji et al. constructed a risk prediction model to predict tumor recurrence in
HCC based on 18 texture features from wavelet transforms [65], and Meng et al. established
a combined radiomics clinic (CRC) model containing six texture features to predict survival
in HCC patients undergoing trans-arterial chemoembolization [27]. Hence, distinct texture-
dominated radiomics profiles may reflect the clinical differences in FIFS1 and FIFS2.

Previous studies have never examined the immuno-oncological characteristics of ra-
diomics subtypes, which motivated us to elucidate the linkage between radiomics and
biological function and uncover the distinct TIME status in subtypes. First, we found
that pro-inflammatory pathways were significantly enriched in FIFS1. Inflammatory
cytokines including TNF-α, IL-6, IFN-γ, and chemokines could exert antiproliferative
and pro-apoptotic effects on tumor cells, or indirectly modulate the TIME [66,67]. The
complement system is tightly functionally interlinked with inflammatory cytokines and
chemokines, which co-regulated T-cell responses [68]. In turn, cell cycle and MYC pathway
were activated in FIFS2. Cell cycle is regarded as a hallmark and therapeutics target of
cancer, and cell cycle dysregulation in tumor cells promotes immune evasion and perturbs
antigen presentation and cytokines secretion [49,69]. Moreover, MYC, one of the elevated
oncogenic signaling in immunotherapy-resistant ‘cold’ tumors, has been reported to reg-
ulate the tumor microenvironment through effects on both innate and adaptive immune
effector cells and immune regulatory cytokines [70]. Besides, a higher immune infiltration
level was observed in FIFS1, which was mainly reflected in infiltrating immune cells of
T cells and macrophages on different polarization states. The central antitumor role of
T cells has been well established [71]. As previous studies have shown, classically acti-
vated (M1) macrophages and alternatively activated (M2) macrophages were in opposite
polarization states on tumor-associated macrophages. M1 macrophages exerted inflamma-
tory and anti-tumorigenic effects through upregulated immune responses and immune
surveillance on the secretion of cytokines and chemokines, while M2 macrophages exerted
pro-tumorigenic, immunosuppressive effects [72,73]. Furthermore, higher immune-related
cell surface molecules, cytokines, and more active immunogenicity status were observed
in FIFS1, which can lead to the conclusion that FIFS1 harbors more active TIME with
the characteristic of ‘hot’ tumors and is more susceptible to immunotherapy [74]. Taken
together, subtypes identified by the FIFS model showed a clear distinction in immuno-
oncological characteristics.

Moreover, we used integrated network analysis to investigate the potential radio-
genomics linkages and uncovered the predominant association between texture-related
features and immune-related pathways. For instance, SLAMF6 gene was identified to
be positively correlated with PRF6 and was presented in the T Helper 17 Cell Differen-
tiation pathway. SLAMF6 is a member of the signaling-lymphocyte-activated molecule
subfamily, which enhanced Th17 cell function by increasing T-cell adhesiveness through
activation of the small GTPase Rap1 [53]. LY9, another gene in that pathway, was positively
correlated with PRF10 and has been reported to co-participate in IL-17 production with
SLAMF6 [54]. Consistently, previous studies have also supported the linkage between
immuno-oncological characteristics and texture features in HCC. Hectors et al. found that
texture features could reflect immune status in HCC patients, and were highly correlated
with mRNA and protein expression of PDL1 and the markers of macrophages (CD68) and
T cells (CD3) [23]. Su et al. developed a radiomics model for tumor-infiltrating lymphocyte
status based on GLCM and GLSZM texture features [40]. Ming et al. also revealed that
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cell cycle pathway exhibited significant associations with SurfaceVolumeRatio (PRF9 and
PRF10 in our study) [75,76]. Hence, these results demonstrated the credibility of links be-
tween immuno-oncological characteristics and imaging features. Furthermore, we applied
external datasets to validate the radiogenomics association. The gene-expression-based
classifier stratified patients into two validation cohorts with distinct prognostic outcomes
and immunocompetent status, suggesting that the immunodominance ‘hot’ tumors pheno-
type could be identified based on radiogenomics linkages in the FIFS model. Accordingly,
radiogenomics associations provided important information regarding prognosis status
and immuno-oncological characteristics.

Of course, there were still some limitations in this study. First, the relatively small
sample size and non-readily available radiogenomics HCC datasets limited our ability to
detail the characterization of the FIFS subtypes and rigorous validation of radiogenomics
association. To verify our conclusion as much as possible, we conducted comparisons
between the FIFS system and molecular subtyping systems with large sample sizes to
verify the credibility of our subtyping results. Besides, we conducted leave-one-out cross-
validation using the random forest classifier based on 18 PRFs, with an accuracy of 92.9%
in our discovery cohort (Figure S6C), and trained a gene-expression-based classifier to
validate the radiogenomics linkage. Future studies of HCC radiogenomics with larger
sample sizes may be able to more definitively address this shortcoming. Second, images
obtained with CT scanners of different manufacturers in TCIA may result in a bias in
generalizability. We performed a batch effect correction during data pre-processing in order
to reduce the deviation. Finally, the preliminary radiogenomics association needs to be
further validated in more multicenter prospective cohorts. Considering that radiomics
has unique non-invasive advantages for dissecting tumor heterogeneity, we also hope
that comprehensive consensus HCC subtypes could take radiomics features into account;
after all, imaging examination is still one of the most common methods for HCC, as is the
serologic test.

5. Conclusions

In conclusion, we developed a multi-view fused imaging feature subtyping model for
dissecting immuno-oncological characteristics and prognoses of HCC from a non-invasive
perspective. We identified two radiomics subtypes with clinical relevance and harbored
distinct texture-dominated radiomics profiles, coupled with differential inflammatory
pathway activity and TIME status. The predominant radiogenomics association between
texture-related features and immune-related pathways was elucidated and followed by
independent validation. Our study delineated the potential associations between radiomics
features and immuno-oncological characteristics, and CE-CT multi-view features may serve
as non-invasive predictors of inflammation-based risk stratification among HCC patients.
We hoped that our study could provide the theoretical rationale and feasibility for precision
treatments of HCC in the future.
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functions of the 183 signature genes in the classifier.
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