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Simple Summary: This study conducted a cost–utility analysis comparing tenofovir alafenamide
(TAF) and entecavir (ETV) as first-line treatments for chronic hepatitis B. The TAF group exhibited
an incremental cost effectiveness ratio (ICER) of −NT$23,878 per quality-adjusted life year (QALY)
compared to the ETV group. Additionally, TAF demonstrated superior cost effectiveness, suggesting
potential annual savings of over NT$500 million (approximately US$18 million). These findings
support the consideration for expanding health insurance coverage for TAF in hepatitis B treatment.

Abstract: From the perspective of health economics, the evaluation of drug-related cost effectiveness
and clinical utility is crucial. We conducted a cost–utility analysis of two first-line drugs, tenofovir
alafenamide (TAF) and entecavir (ETV), in the treatment of chronic hepatitis B (CHB) patients. We
performed inverse probability of treatment weighting (IPTW) to match the independent variables
between the two treatment groups. The incremental cost effectiveness ratio (ICER) of the two
treatment groups was simulated using a decision tree with the Markov annual-cycle model. A total
of 54 patients treated with TAF and 98 with ETV from January 2016 to December 2020 were enrolled.
The total medical cost in the TAF group was NT$76,098 less than that in the ETV group, and TAF
demonstrated more effectiveness than ETV by 3.19 quality-adjusted life years (QALYs). When the
time horizon was set at 30 years, the ICER of the TAF group compared with the ETV group was
−NT$23,878 per QALY, suggesting more cost savings for TAF. Additionally, with the application of
TAF, over NT$366 million (approximately US$12 million) can be saved annually. TAF demonstrates
cheaper medical costs and more favorable clinical QALYs than ETV. To balance health insurance
benefits and cost effectiveness, TAF is the optimal treatment for CHB.

Keywords: chronic hepatitis B; tenofovir alafenamide; entecavir; inverse probability of treatment
weighting; cost–utility analysis

1. Introduction

Chronic hepatitis B (CHB) is a significant global health concern, with over 290 million
carriers worldwide, leading to more than 820,000 deaths annually and exceeding US$2
billion in associated costs [1]. In Taiwan, where over 10,000 individuals succumb to cirrhosis
or hepatocellular carcinoma each year, half of these cases are attributed to chronic hepatitis
B, indicating substantial health risks and economic burdens [2].
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The current pharmacological approaches for treating CHB involve long-acting inter-
feron and oral antiviral drugs [3,4]. Interferon, administered through injections, presents
challenges due to suboptimal rates of e antigen (HBeAg) seroconversion and surface anti-
gen (HBsAg) seroclearance, coupled with notable adverse effects [5]. Oral antiviral drugs,
such as tenofovir disoproxil (TDF), tenofovir alafenamide (TAF), and entecavir (ETV), offer
more sustained options. However, the long-term use of TDF is associated with potential
renal and skeletal issues, with TAF emerging as an alternative with a more favorable side
effect profile [6–10].

Although oral antiviral agents demonstrate efficacy in suppressing the hepatitis B
virus (HBV), the attainment of clinical significance typically requires a minimum of three
years. Additionally, CHB is characterized by a substantial relapse rate upon the discontinu-
ation of antiviral medications, requiring repeated treatment cycles. The cessation of TAF
therapy has demonstrated significantly earlier and higher clinical relapse rates compared to
ETV therapy [9,10]. This may necessitate lifelong medication for some patients, resulting in
substantial medical expenditures [11]. From a health economics perspective, the assessment
of drug-related cost effectiveness and clinical utility assumes paramount importance. A lim-
ited number of studies have undertaken an exploration of the health economics associated
with oral antiviral drugs in the treatment of CHB, and scant attention has been devoted to a
comparative analysis of the cost–utility relationship between TAF and ETV [6–8]. Moreover,
prior comparative investigations involving TAF and ETV have predominantly employed
simulated patient groups rather than individuals treated in real-world clinical settings.

Building upon these research backgrounds and motivations, we undertook a phar-
macoeconomic analysis to scrutinize the treatment costs and clinical efficacy of TAF and
ETV in real-world CHB patients. The primary aim was to identify the optimal first-line oral
antiviral drug for practical implementation in clinical settings.

2. Materials and Methods
2.1. Research Samples and Study Design

This retrospective study enrolled CHB patients treated with TAF or ETV (covered
by the National Health Insurance), who visited a regional teaching hospital or a district
teaching hospital in southern Taiwan from January 2016 to December 2020. The inves-
tigators reviewed medical records to obtain the patients’ demographic data and disease
characteristics. The health insurance claims were also reviewed to collect the medical
costs for each patient after a one-year treatment of TAF or ETV. The exclusion criteria
included patients under 18 years old or with any malignant tumors. A total of 54 patients
(TAF group) and 98 patients (ETV group) were enrolled in this study (Figure 1). Before
the study’s initiation, approval was obtained from the Institutional Review Board of our
hospital (KSPH-2022-06).

2.2. Confounding Variables

By retrospectively reviewing the medical records of the patients, we identified
confounding variables associated with the demographic and clinical characteristics, in-
cluding age, sex, hepatitis B e antigen (HBeAg) (positive or negative), and viral loads
before treatment.

2.3. Economic Evaluation

This was a payer’s perspective pharmacoeconomic study, and data involving the
direct medical cost were retrieved from the health insurance claims of the National Health
Insurance Research Database (NHIRD). The total direct medical costs denote the one-
year outpatient and inpatient expenses per patient upon initiating either TAF or ETV
treatment. Specifically, outpatient costs consisted of fees for physicians, laboratory and
image diagnosis, medicines, and pharmacists, while inpatient costs included fees for
physicians, radiology image diagnosis, pharmacists, nursing care, accommodation charges,
laboratory testing, and medicines.
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IPTW, inverse probability of treatment weighting.

2.4. Cost–Utility Analysis

We used the cost–utility analysis to conduct the decision analysis and to investigate
whether the first-line drug TAF is more cost effective than ETV for CHB patients. The
Markov model utilized in this study was developed by integrating insights from local clini-
cal practices and referencing pertinent studies, as illustrated in Figure 2 [3–6]. This model
categorizes post-treatment conditions of patients receiving the first-line drug into four
distinct states: CHB, hepatocellular carcinoma (HCC), cirrhosis, and mortality. According
to local clinical experience, we set one cycle at one year and the research time horizon at
30 years. It is assumed that all the patients with hepatitis B were initially in a survival and
responding state; then, their original state is set based on the evaluation results. Afterward,
patients’ categories may vary depending on their updated states in each cycle. The state
could be transferred directly to the death stage, which remains the same, permanently,
without further transfers.
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2.5. Statistical Analysis

The unit of the analysis in this study was the individual patient with CHB. Continuous
variables, including age, medical costs, and viral loads, were described using the mean and
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standard deviation. Categorical variables, including sex and HBeAg, were described using
the frequency and percentages.

Inverse probability of treatment weighting (IPTW) was employed for variable match-
ing [12], and a decision tree with the Markov model was used for dynamic simulations
to conduct the cost–utility analysis of the TAF and ETV. We used IPTW to match the four
variables (age, sex, HBeAg, and viral load) before the intervention. The weight calculation
was as follows: exposed group (TAF group) = 1/propensity score; unexposed group (ETV
group) = 1/(1 − propensity score). In the present study, the differences between individual
variables in the two groups were described using standardized differences, and 10% was
considered as a significant difference.

The EQ-5D-3L scores extracted from the literature review were transformed to
utility values utilizing the time tradeoff (TTO) formula by incorporating the Taiwan
coefficient [13–15]. Within the TTO valuation process, respondents initially assessed whether
a given health state was superior to, equivalent to, or inferior to death. In instances where a
state was perceived as superior to death, respondents were subsequently queried about the
number of years (t) at which they would be indifferent between t years of life in optimal
health and 10 years of life in that specific state. The TTO value for that particular state was
computed as t/10 (0 < t ≤ 10). For states considered as unfavorable as death, the assigned
TTO value was 0. In situations where a state was regarded as worse than death, patients
were prompted to specify t at which they would be indifferent between a life of (10 − t)
years in that state followed by t years in full health and death. The TTO value for states
worse than death was then determined as −t/(10 − t). Each cost structure was adjusted to
the present value in 2021 according to Taiwan’s consumer price index (CPI), and the cost
and quality-adjusted life years (QALYs) in the decision-making model were discounted at
a rate of 2%. In addition, for the cost–utility analysis, the between-group difference in the
total direct medical costs and QALYs was expressed as the incremental cost effectiveness
ratio (ICER). The cost–utility in the TAF group compared with that in the ETV group was
used as the baseline. The ICER equals the incremental cost (i.e., the total direct medical
cost in the TAF group minus the total direct medical cost in the ETV group) divided by the
marginal QALYs (i.e., the QALYs in the TAF group minus the QALYs in the ETV group).

In addition to various costs, requisite parameters and non-parameters for the Markov
decision-tree model in this study included the clinical transfer probabilities between states
and the utility values corresponding to each state [14–16]. These values were meticulously
curated from pertinent research, with probabilities, costs, and utilities [17–21]. The optimal
path selection for the decision analysis was scrutinized employing the rollback method,
a technique facilitating the retrospective tracing of total costs and treatment outcomes
resulting from the implementation of distinct strategies.

The study devised a Markov decision-tree model with predetermined parameters
encompassing utility values, transfer rates, costs, and benefits for each state. Simulating
patient state transitions during the intervention and aggregating outcomes informed the
identification of the more cost effective alternative through Markov decision-tree analysis.
The probabilistic sensitivity analysis (PSA) comprised 1000 Monte Carlo simulations, yield-
ing ICER values. The graphical representation employed cost–utility acceptability curves
and scatter plots. A one-way sensitivity analysis, manipulating costs and outcomes by
±20%, discerned influential variables presented through tornado diagrams. Additionally,
the willingness to pay (WTP) was set at the gross domestic product (GDP) per capita in
2022, namely, NT$990,120.

We also used SPSS v. 23.0 (SPSS, Chicago, IL, USA) for the descriptive and inferential
statistics and used TreeAge Pro 2021 version (Tree-Age Software, Williamstown, MA, USA)
for the cost–utility analysis.

3. Results

Before the IPTW, the average age in the TAF group and the ETV group was 52.9 ± 11.2
and 60.3 ± 13.8 years old, respectively (Table 1). The between-group standardized difference
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was −58.8%, suggesting a significant difference. As for sex, the TAF group enrolled 75.9%
men and 24.1% women, while the ETV group included 75.5% men and 24.1% women. The
between-group standardized difference was 0.93%, indicating no significant difference.
After IPTW matching, the standardized differences of the demographics were reduced to
less than 10%, suggesting no statistical difference between the TAF and ETV groups.

Table 1. Study characteristics before and after IPTW matching.

Variable

Total (n = 152)
Mean ± Standard

Deviation or
Median (IQR)

Before IPTW After IPTW

TAF
(n = 54)

ETV
(n = 98)

Standardized
Difference

(%)
TAF ETV

Standardized
Difference

(%)

Age 57.66 ± 13.29
57.5 [46–67.75]

52.94 ± 11.02
50.0

[44.75–62.25]

60.27 ± 13.76
61

[47.75–72.0]
−58.78

56.52 ± 11.35
56.0

[46.0–66.0]

57.45 ± 13.78
58.0

[45.0–67.63]
−7.37

Gender Male 115 (75.7%) 41 (75.9%) 74 (75.5%) 0.932 71.8% 74.3% −5.62

Female 37 (24.3) 13 (24.1%) 24 (24.5%) 28.2% 25.7%

HBeAg Positive 50 (32.9%) 26 (48.1%) 24 (24.5%) 50.62 33.6% 32.9% 1.49

Negative 102 (67.1%) 28 (51.9%) 74(75.5%) 66.4% 67.1%

Log
Viral
Load

5.97 ± 1.85
6.12 [4.53–7.81]

6.27 ± 1.85
6.80

[4.97–7.89]

5.81 ± 1.84
5.97

[4.24–7.63]
25

5.89 ± 2.00
6.38

[4.45–7.80]

5.96 ± 1.83
6.11

[4.30–7.66]
−3.65

IPTW, inverse probability of treatment weighting; IQR, interquartile range; TAF, tenofovir alafenamide;
ETV, entecavir.

The health insurance claims of the patients one year after initiating antiviral drugs for
hepatitis B were divided into outpatient costs, inpatient costs, and total one-year medical
costs. After IPTW matching, the mean outpatient costs per patient in the TAF and ETV
groups were NT$60,241 ± 8033 and NT$62,956 ± 13,867, respectively (Table 2). The mean
inpatient costs per patient in the TAF and ETV groups were NT$80,868 ± 33,999 and
NT$87,387 ± 101,745, respectively. The mean total direct medical cost from both the
outpatient and in-patient costs within 1 year was NT$141,109 ± 120,398 for the TAF group
and NT$150,343 ± 152,825 for the ETV group.

Table 2. Markov health-state transition probabilities, cost structure, and utility of TAF and ETV
treatments.

TAF ETV Distribution Reference

Transition probability
Chronic hepatitis B
Chronic hepatitis B 96.58% 94.38% Beta [16]

Cirrhosis 2.82% 2.82% Beta [16]
Hepatocellular carcinoma 0.30% 0.70% Beta [16]

Death 0.30% 2.10% Beta [16]
Cirrhosis
Cirrhosis 96.56% 95.16% Beta [17]

Hepatocellular carcinoma 2.20% 3.60% Beta [1]
Death 1.24% 1.24% Beta [17]

Hepatocellular carcinoma
Hepatocellular carcinoma 84.90% 84.90% Beta [18]

Death 15.10% 15.10% Beta [18]
Cost (NT$)

Outpatient (per cycle for 1 year)
Medicine 50,912 ± 6826 52,143 ± 12,492 Gamma This study
Physician 5374 ± 4540 6653 ± 4322 Gamma This study
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Table 2. Cont.

TAF ETV Distribution Reference

Laboratory 2928 ± 460 3098 ± 724 Gamma This study
Pharmacist 1008 ± 122 990 ± 198 Gamma This study

Total outpatient costs 60,241 ± 8033 62,956 ± 13,867
Hospitalization (per cycle for 1 year)

Medicine 10,730 ± 7181 12,876 ± 20,532 Gamma This study
Physician 20,609 ± 11,598 15,037 ± 11,156 Gamma This study

Laboratory 12,262 ± 4952 14,460 ± 13,337 Gamma This study
Ward 25,645 ± 17,678 30,160 ± 32,093 Gamma This study

Radiology 3748 ± 4069 7037 ± 14,222 Gamma This study
Therapy treatment 7874 ± 4788 4954 ± 8452 Gamma This study

Total hospitalization costs 80,868 ± 33,999 87,387 ± 101,745
Total direct medical costs 141,109 ± 120,398 150,343 ± 152,825

Utility
Chronic hepatitis B 0.85 (0.68–0.89) 0.85 (0.68–0.89) Beta [15]

Compensated cirrhosis 0.69 (0.66–0.71) 0.69 (0.66–0.71) Beta [2]
Decompensated cirrhosis 0.35 (0.32–0.37) 0.35 (0.32–0.37) Beta [2]
Hepatocellular carcinoma 0.38 (0.36–0.41) 0.38 (0.36–0.41) Beta [2]

Liver transplantation 0.57 (0.54–0.60) 0.57 (0.54–0.60) Beta [2]

TAF, tenofovir alafenamide; ETV, entecavir; NT$, New Taiwan Dollars.

The articulated Markov decision-tree model is visually represented in Figure 3. The
time horizon of the Markov decision-tree model simulation was delineated over a 30-year
trajectory. Within this temporal framework, the total costs for individuals within the TAF
group were registered at NT$1,241,822, corresponding to an effectiveness of 14.63 QALYs.
In contrast, the ETV group incurred total costs of NT$1,317,920, accompanied by an effec-
tiveness of 11.44 QALYs (Table 3). Significantly, the TAF strategy exhibited dominance over
the ETV strategy, manifesting heightened cost effectiveness and resulting in demonstrable
cost savings.
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Table 3. Summary of Markov decision-tree model simulation analysis.

Treatment Cost
(NT$)

Incremental
Cost (NT$) QALYs Incremental

QALYs
NMB
(NT$) CE ICER

(NT$/QALY)

TAF 1,241,822 −76,098 14.63 3.19 13,241,786 84,893 −23,878
ETV 1,317,920 11.44 10,010,058 1,151,926

TAF, tenofovir alafenamide; ETV, entecavir; NT$, New Taiwan Dollars; QALYs, quality-adjusted life years; NMB,
net monetary benefit; CE, cost effectiveness; ICER, incremental cost effectiveness ratio.

As presented in Figure 4, as the WTP increases, the net monetary benefit (NMB) in the
TAF group was utterly better than that in the ETV group. Additionally, the CUAC revealed
that when the WTP was between NT$0 and NT$990,120, the probability for the TAF group
being more cost effective than the ETV group was 100% (Figure 5).
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The scatter plot of the PSA obtained from the incremental cost–utility analysis revealed
that at a WTP of NT$990,120, all the parameters were centered in the fourth quadrant,
indicating that 100% of the TAF group was more cost effective compared with the ETV
group (Figure 6). Figure 7 shows the tornado diagram of the one-way sensitivity analysis.
The parameters were analyzed individually, and the parameters contributing to ICER value
are listed in their order of significance: the cost of the TAF for HCC, followed by the cost of
the TAF for hepatitis B, the cost of the ETV for hepatitis B, the cost of the ETV for cirrhosis,
and the cost of the TAF for cirrhosis.
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4. Discussion

This study, following IPTW matching and a simulation spanning a 30-year time
horizon, revealed that the TAF group displayed reduced total costs and enhanced QALYs
compared to the ETV group. These findings suggest that TAF proved to be a more cost-
saving option than ETV.

The National Health Insurance Plan in Taiwan initiated the coverages of ETV in 2016
and TAF in 2019. As a part of routine procedures, negotiations between the National
Health Insurance Administration and pharmaceutical companies occur annually to es-
tablish prescription drug prices. The initial cost of brand-name ETV was NT$152 per
pill, progressively reducing to NT$130 per pill in 2019, aligning it with the cost of TAF.
Following adjustments based on the annual consumer price index (CPI), the costs of ETV
and TAF became comparable. In contrast to international studies reporting TAF being
18.5%–56.4% more expensive than ETV in cost–utility analyses [22,23], the pharmaceutical
cost of TAF in Taiwan is notably economical. Consequently, within the Taiwanese context,
TAF presents the optimal cost–utility profile.

This study boasts several methodological strengths: (a) IPTW for variable matching:
A salient feature is the application of IPTW for meticulous variable matching. Notably,
substantial differences in age, HBeAg, and viral loads between the intervention groups, with
standardized differences surpassing 10%, were effectively rectified through IPTW matching.
This methodological choice not only serves to mitigate potential research bias but also
ensures the preservation of small, yet valuable, samples [24]. (b) Real-world medical costs
for analysis: A distinctive facet of this study lies in the utilization of real-world medical costs
for the analysis. By acknowledging the potential variability in outcomes from simulated
cost–utility analyses of TAF for hepatitis B patients in different clinical scenarios [22,23],
this study’s reliance on real-world data provides a more authentic basis for evaluating the
disparities in the actual costs and utility between TAF and ETV. (c) One-on-one comparison
of cost–utility profiles: This study represents a pioneering effort in conducting a direct
comparison of the cost–utility profiles of TAF and ETV. This methodological approach
enhances the precision and granularity in the assessment, yielding valuable insights into
the nuanced cost effectiveness and utility of these interventions.

In clinical settings, TAF has demonstrated superiority over alternative oral medica-
tions, showcasing effective viral response inhibition, viral load suppression, liver enzyme
regulation, resistance prevention, and kidney function preservation [10,25]. Despite its re-
cent market introduction, TAF’s effects are well documented [8–10]. A rigorous study across
ten U.S. medical centers, focusing on hepatitis B patients undergoing at least two years
of TAF treatment, revealed significant improvements in achieving HBV DNA ≤20 IU/mL
and reduced abnormal liver functions [26]. In contrast, a two-year course of ETV in the
same study showed no significant differences in viral loads or liver functions. Notably,
ETV-treated patients exhibited a higher risk of severe liver fibrosis compared to TAF-treated
counterparts. A crossover study demonstrated a substantial reduction in HBsAg in patients
transitioning from ETV to TAF [27]. In acute liver failure in-patients, TAF outperformed
ETV in preserving kidney functions [28]. A three-year retrospective study found that
TAF-treated patients experienced less significant kidney function deterioration compared
to ETV-treated patients [29]. The majority of the studies focusing on the cost–utility analysis
of antiviral hepatitis B drugs have primarily centered on TDF and ETV [30–32]. Given the
relatively recent introduction of TAF to the market, only a limited number of studies have
explored its cost–utility profile [22,23]. Notably, two studies employed Markov simulations
to evaluate TAF, TDF, and ETV, both concluding that TDF was the most cost effective
treatment. However, owing to TDF’s documented adverse effects on kidney functions and
bone-mass density [9,10], TAF is emerging as an alternative to TDF in clinical practice [26].
Consequently, a critical gap exists, necessitating a one-on-one comparative study between
TAF and ETV [33].

This study explores the economic burdens of hepatitis B in Taiwan, considering a 0.9%
annual increase in carriers, of which approximately 19% are eligible for medication [34].
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Transitioning from ETV to TAF as the first-line drug could yield annual savings exceeding
NT$366 million (approximately US$12 million). This estimation is based on the difference in
the total direct medical costs, population estimates, and the proportion eligible for treatment,
as represented by the following formula: ((NT$150,343 − NT$141,109) × 23,196,178 people
× 0.9% × 19% = NT$366,270,898) [35]. Globally, considering a 1.5 million annual increase in
hepatitis B carriers, adopting TAF instead of ETV could result in substantial annual savings
surpassing NT$2.6 billion (approximately US$88 million). This projection considers the
same cost differential, global population estimates, and the proportion eligible for treatment,
as expressed by the following formula: ((NT$150,343 − NT$141,109) × 1,500,000 people ×
19% = NT$2,631,690,000 = US$87,723,000). This study presents certain limitations. First,
the patient cohort is derived solely from one regional and one district hospital, omitting
data from medical centers and potentially limiting the representation of patient types and
intervention outcomes. Second, the study’s focus on TAF, a relatively recent addition to
National Health Insurance coverage for only the last two years, resulted in a relatively small
sample size. Consequently, stratification based on decompensated cirrhosis severity and
the inclusion of comorbidity data were not feasible. Future investigations, encompassing a
larger and more diverse patient population over an extended duration, are warranted for a
comprehensive assessment of TAF’s effects on cirrhosis and comorbidities, providing more
precise medical-cost and clinical-effectiveness data. Third, reliance on literature reviews for
transition probabilities and utility values highlights a need for future studies incorporating
real-world data for a more accurate understanding of hepatitis B transitions and the clinical
utilities of TAF and ETV.

5. Conclusions

Tenofovir alafenamide (TAF) emerges as a more economically efficient intervention
than entecavir (ETV) in the management of patients with chronic hepatitis B (CHB). This
observation underscores TAF’s fiscal feasibility as the preferred choice for enhancing pa-
tients’ well-being, offering guidance to hospital administrators, and informing the National
Health Insurance Administration. This study posits a compelling proposition for the aug-
mentation of health insurance coverage to encompass TAF within the spectrum of CHB
treatment modalities.
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