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Simple Summary: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and
deadliest cancers worldwide, with an overall survival rate of <10% at 5 years. For most patients with
unresectable or recurrent PDAC, few therapeutic options are available, with limited efficacy. Further-
more, there is an almost complete absence of validated predictive factors. At present, microRNAs
represent a promising diagnostic, prognostic, and predictive method for the clinical management of
patients, avoiding inappropriate treatments.

Abstract: Pancreatic ductal adenocarcinoma (PDAC), a neoplasm of the gastrointestinal tract, is
the most common pancreatic malignancy (90%) and the fourth highest cause of cancer mortality
worldwide. Surgery intervention is currently the only strategy able to offer an advantage in terms of
overall survival, but prognosis remains poor even for operated patients. Therefore, the development
of robust biomarkers for early diagnosis and prognostic stratification in clinical practice is urgently
needed. In this work, we investigated deregulated microRNAs (miRNAs) in tissues from PDAC
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patients with high (G3) or low (G2) histological grade and with (N+) or without (N−) lymph
node metastases. miRNA expression profiling was performed by a comprehensive PCR array and
subsequent validation by RT-qPCR. The results showed a significant increase in miR-1-3p, miR-31-5p,
and miR-205-5p expression in G3 compared to G2 patients (** p < 0.01; *** p < 0.001; *** p < 0.001).
miR-518d-3p upregulation and miR-215-5p downregulation were observed in N+ compared to
N− patients. A statistical analysis performed using OncomiR program showed the significant
involvement (p < 0.05) of two miRNAs (miR-31 and miR-205) in the histological grade of PDAC
patients. Also, an expression analysis in PDAC patients showed that miR-31 and miR-205 had the
highest expression at grade 3 compared with normal and other tumor grades. Overall, survival
plots confirmed that the overexpression of miR-31 and miR-205 was significantly correlated with
decreased survival in TCGA PDAC clinical samples. A KEGG pathway analysis showed that all three
miRNAs are involved in the regulation of multiple pathways, including the Hippo signaling, adherens
junction and microRNAs in cancer, along with several target genes. Based on in silico analysis and
experimental validation, our study suggests the potential role of miR-1-3p, miR-31-5p, and miR-205-
5p as useful clinical biomarkers and putative therapeutic targets in PDAC, which should be further
investigated to determine the specific molecular processes affected by their aberrant expression.

Keywords: pancreatic ductal adenocarcinoma; microRNAs; biomarkers; prognosis; diagnosis

1. Introduction

Pancreas is a gland of the digestive and endocrine systems with both endocrine and
exocrine functions [1]. Its key role is to maintain metabolic and energy homeostasis by
producing and releasing various endocrine hormones and digestive enzymes [2]. Pancreatic
dysfunctions can lead to several common diseases including diabetes [3], pancreatitis [4],
and cancer. The latter is still a highly lethal gastrointestinal cancer, currently the fourth
highest cause of cancer mortality worldwide, despite the rapid advances in modern medical
technology and the significant improvements in survival rates of many other cancers [5–7].
The incidence of pancreatic cancer varies significantly between regions and populations,
with the highest incidence rates in Europe, Northern America, and Australia/New Zealand,
and the lowest in Middle Africa and South-Central Asia [8]. Based on 2012–2018 reports
from Surveillance, Epidemiology, and End Results (SEER), the five-year survival rate is
only 11.5%. The pancreatic ductal adenocarcinoma (PDAC) subtype accounts for most
exocrine tumors and more than 90% of all pancreatic malignancies. PDACs are derived
from epithelial cells of the pancreatic duct and appear gland-like due to their origin. To
date, the causes of PDACs are still insufficiently clear, although behavioral factors and
genetic susceptibility have been identified [9–12]. Many hypotheses about its pathogenesis
have been proposed, and the evidence suggests that PDAC is the result of unpredictable
mutations coupled with alterations in the environmental factors [13–15]. An average of
63 gene mutations (mostly point mutations) have been identified in each tumor; they can
be organized into twelve known signal transduction mediators, whose alterations are
fundamental to the oncogenic process [16]. Many of these mutations involve the KRAS
oncogene (90–95% of cases), p16, and TP53 tumor suppressors, SMAD4\DPC4 [17,18], and,
more rarely, ARID1A, MLL3, and TGFBR2 [19–21].

The early-stage diagnosis and treatment of PDAC are difficult, accounting for the
poor clinical patient outcomes. There are no screening recommendations for pancreatic
cancer, and there is no reliable screening test with adequate sensitivity and specificity that
can have routine clinical use to screen the general population. Accordingly, PDACs are
often diagnosed after the occurrence of lymph node and/or liver metastases, resulting
in an estimated median survival as short as 4 months [22]. As for all other types of solid
cancer, the TNM classification system provides helpful information, suggesting the most
likely outcome and providing an estimate of life expectancy and the chance of a cure.
The TNM system is based on factors related to the primary tumor (T), the number of
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involved lymph nodes (N), and the possibility of cancer spreading to other organs or parts
of the body (M) [23]. Other factors are also important in determining prognosis. Tumor
grade describes how closely abnormal cancer resembles normal tissue under a microscope.
Specifically, Grade 1 (G1) refers to well-differentiated cancer cells, Grade 3 (G3) refers
to poorly differentiated cancer cells, and Grade 2 (G2) falls somewhere in between, with
moderately differentiated cancer cells. Low-grade cancers (G1) are less aggressive and tend
to grow and spread more slowly than high-grade (G3) cancers, while Grade 3 pancreas
cancers tend to have a poor prognosis compared to Grade 1 or 2 [24].

Therapeutic options for PDAC, include surgical intervention, radiotherapy, chemother-
apy treatment, target therapies, and combination therapies [25–29]. However, the best
treatment choice for a single patient is still limited, and the clinical outcome not predictable
even in the case of operable patients. In fact, progress in therapy and predictive insights
are moderated by the inherent heterogeneity of PDAC at the molecular, pathological, and
clinical tiers. This heterogeneity restricts the potential to enhance survival [30]. Efforts
have been made to leverage genomic markers, molecular subcategories identified through
extensive transcriptomic analysis, histological subgroups based on the World Health Orga-
nization (WHO) classification, and the trajectory of disease advancement for therapeutic
and predictive purposes. Recently, the International Cancer Genome Consortium (ICGC)
carried out a comprehensive genetic study involving 456 patients with PDAC. This study
unveiled four distinct molecular subtypes within PDAC, each closely associated with
specific histopathological features. These subtypes are as follows: (i) squamous, (ii) pancre-
atic progenitor, (iii) immunogenic, and (iv) aberrantly differentiated endocrine exocrine
(ADEX) [31]. However, the results have fallen short of expectations [32–34]. This is pri-
marily attributed to a few main factors, including the presence of numerous genes, often
amounting to several hundred, within each subtype. This complexity poses challenges
in conducting transcriptomic profiling across all patients, particularly when dealing with
RNA sourced from paraffin-embedded tissues. Furthermore, the various endeavors in
molecular subtyping have led to individual classification criteria for identifying subtype(s)
linked to an unfavorable prognosis. As a result, a standardized gene panel for examination
in clinical scenarios is lacking due to the absence of a consensus. These considerations
push the scientific community to search for alternative molecular biomarkers that are easily
determined and have a strong role in regulating the biological and metastatic potential
of cancer cells. Among these markers, microRNAs (miRNAs) are attractive for several
reasons [35–38]. miRNAs post-transcriptionally regulate gene expression in animals and
plants by binding to the 3′ untranslated region (UTR), 5′ UTR, or/and coding regions of
their corresponding target mRNAs in a sequence-specific manner. The targeting of mRNAs
leads to the repression of protein synthesis using a mechanism that has yet to be fully
determined. They are involved in crucial processes, such as cell division, cell proliferation,
cell differentiation, programmed cell death (apoptosis), and blood vessel formation [39–43].
Their aberrant expression has been correlated with many human diseases, including cancer.
As a single microRNA (miRNA) can influence the expression of a multitude of target
genes, the notion arises that assembling a panel of miRNAs that regulate the expression of
candidate genes specific to each PDAC subtype might offer a more robust and clinically
significant signature. This approach is reinforced by the fact that previous investigations
have convincingly showcased the frequent disruption of miRNA expression in various
malignancies, including PDAC [44–50], and there is emerging evidence suggesting that
miRNAs could function as crucial biomarkers in PDAC patients [51–57]. Moreover, the
stability of miRNA expression across a range of clinical specimens enhances their appeal
as reliable substitutes in situations in which gene expression analysis presents challenges.
Additionally, the simplicity of detecting miRNAs in bodily fluids underscores their po-
tential as biomarkers for liquid-biopsy-based assays, facilitating a smoother translation
into clinical practice. In this study, we investigated a comprehensive miRNA expression
profile in PDAC tissue samples from patients undergoing surgical resection, followed by
a validation test employing quantitative reverse transcription PCR (RT-qPCR) to identify
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specific miRNA signatures reflecting two clinic-pathological features: PDAC histological
grading (G3 grade versus G2 grade) and lymph node metastases (N+ versus N−). The
research on miRNA signatures could also be useful in the development of new, reliable,
and specific molecular biomarkers for the definition of PDAC prognosis, the prediction
of lymph node metastases, the identification of new therapeutic candidates for either re-
placement therapy or miRNA inhibition, and for the identification of predictive factors of
response to treatments (Figure 1).
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Figure 1. Research design.

2. Materials and Methods
2.1. Clinical Samples

Tissue samples were collected from PDAC patients enrolled at the University of
Campania “Luigi Vanvitelli”, “Antonio Cardarelli” Hospital and Department of Anatomy
and Pathological Histology at the University of Sassari. Informed consent was obtained
from all patients. Across the three institutions, 58 clinical samples were enrolled and were
assigned to 4 groups according to two specific clinical–pathological features: lymph node
metastasis (N+ versus N− group) and tumor grading (G3 group versus G2 group). A total
of 15 patients were assigned to the N− group, 38 patients to the N+ group, 23 patients to
the G2 group and 29 patients to the G3 group. Patients’ clinical information is summarized
in Table 1.

Table 1. Clinical information for all enrolled PDAC patients.

Characteristics n. (%)

Age (year) ≥60 15 (25.4)
≤60 44 (74.6)

Sex Male 27 (45.8)
Female 32 (54.2)

Tumor grading G3 33 (57.9)
G2 24 (42.1)

LMN N+ 40 (70.2)
N0 17 (29.8)
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2.2. RNA Extraction

A formalin-fixed paraffin-embedded (FFPE) tissue block was selected for each patient.
Four unstained FFPE tissue sections were cut at 10 µM each for RNA extraction. Total RNA,
including miRNA, was extracted using miRNeasy FFPE Kit (Qiagen, Hilden, Germany),
according to the manufacturer’s instructions, with the following modifications: the RNA
extract was concentrated through a final elution in 30 µL of Nuclease Free-Water RNA.
RNA purity and quantity were measured by a spectrophotometer, using the 260/280 ratio,
with a NanoDrop ND-1000 (Thermo Scientific, Wilmington, NC, USA). RNA samples were
stored at −80 ◦C until further processing.

2.3. Comprehensive PCR-Array-Based Screening Assay

Total RNA purified from the tissues of 18 patients was used for miRNA screening
assay. The specimens of PDAC cohort were divided into four groups, i.e., 5 lymph node
metastases positive (N+), 5 negative (N−), 5 grade G3, and 5 grade G2 tissue samples. For
reverse transcription, an equal amount of RNA tissue from different patients was mixed
into 4 pools according to two specific clinical–pathological features: lymph node metastasis
(N+ versus N− group) and tumor grading (G3 group versus G2 group). N− group and G2
group were used as control groups. Starting from each RNA pool, cDNA was synthesized
with Megaplex RT Primers, Human Pool A v2.1 (Applied Biosystems, Foster City, CA,
USA), and TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, CA, USA),
according to the manufacturer’s instructions. miRNA expression profiling by TaqMan
Array Human MicroRNA A Cards v2.0 (Applied Biosystems, CA, USA) and the Ct value
determination were performed as previously described [58].

2.4. Real-Time Quantitative PCR

To confirm the findings obtained from PCR array screening, RT-qPCR analysis was
performed with a TaqMan miRNA assay as a validation set. For the validation of miRNA
candidates, tissue miRNA samples, originating from PDAC patients, were tested by qRT-
PCR. cDNA synthesis was performed with TaqMan MicroRNA Reverse Transcription Kit
(Applied Biosystems, CA, USA), according to the manufacturer’s manual. The expression
levels of miRNA candidates were detected using TaqMan Universal PCR Master Mix (2X)
(Applied Biosystems, CA, USA) under the control of the ViiA 7 real-time PCR system and
QuantStudio 5 Dx Real-Time PCR System (Applied Biosystems, CA, USA). Comparative
real-time PCR (RT-PCR) was performed in triplicate, including no template controls, and
relative expression was calculated using the comparative cross-threshold (Ct) method. Cy-
cle threshold (Ct) value was calculated using ViiA™ 7 Software v1.2 (Applied Biosystems)
and QuantStudio 5 Dx (Applied Biosystems) with the threshold set to 0.2. Subsequently,
for the normalization of target gene expression level, ∆Ct was derived by the following
formula: Ct of target gene—Ct of reference gene such as U6 snRNA (endogenous miRNA
reference). ∆∆Ct was calculated by the following formula: ∆Ct of interest group—∆Ct of
control group. Then, 2−∆∆Ct was derived as a fold change (FC) of target gene expression.

2.5. In Silico miRNA Target Gene Prediction

Target genes were predicted for each differentially expressed miRNA (DEMs), identi-
fied using PCR-array-based screening assay, using three different online gene prediction
tools, including TargetScanHuman Release 8.0 (https://www.targetscan.org/vert_80/, ac-
cessed on 1 March 2022) [59], DIANA microT-CDS v.5.0 (https://bio.tools/DIANA-microT,
accessed on 1 March 2022) [60], and mirDB (https://mirdb.org/, accessed on 1 March
2022) [61]. A gene predicted by all the three-prediction program for miRNA is considered
a predicted target. Furthermore, experimental target genes were identified using online
TarBase v8 [62]. Out of the total predicted and experimental targets that were identified,
target genes regulated by at least two out of three miRNAs from DEMs were considered
for the downstream analysis.

https://www.targetscan.org/vert_80/
https://bio.tools/DIANA-microT
https://mirdb.org/
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2.6. Pathway and Gene Ontology Enrichment Analysis

Functional annotation, including a pathway and gene ontology analysis for miR-
NAs, was performed using online DIANA-mirPath v3.0 (https://dianalab.e-ce.uth.gr/html/
mirpathv3/index.php?r=mirpath, accessed on 5 December 2022) [63]. The enrichment analysis
method used for the mirPath analysis is Fisher’s Exact Test (hypergeometric distribution).

2.7. Correlation Study between miRNA Expression Levels and PDAC Patient’s Survival and
Clinico-Pathological Features

To understand the involvement of three differentially expressed microRNAs (DEMs) in
PDAC patients, an overall survival analysis was conducted using The Cancer Genome Atlas
(TCGA) PDAC clinical datasets using online OncoLnc program (http://www.oncolnc.org/,
accessed on 1 June 2022) [64]. Furthermore, the involvement of dysregulated miRNA
with tumor progression and development is studied using TCGA clinical datasets using
the online program OncomiR (https://oncomir.org/oncomir/index.html, accessed on 1
June 2022) [65], with a p-value significance cut-off of 0.05. OncomiR uses TCGA miRNA
sequencing data from patients of different cancer types and conducts a statistical analysis
to identify miRNAs associated with multiple clinical parameters, such as different clinical
and pathological stages, different tumor grade, and different sex. Furthermore, tumor-
grade-wise expression profile graphs of the chosen potential biomarker miRNA candidate
in TCGA PDAC patients were derived from online web resource UALCAN [66].

2.8. Statistical Analysis

The construction of a clustered heatmap for microarray analysis was performed using
heatmap.2 function of gplots package contained in statistical analysis tool R (version 3.4.3).
To evaluate the difference in expression between the two groups, Student’s t-test was used
to calculate p-value. Graphs were obtained using GraphPad Prism (version 7.00) and
significant differences were determined at p ≤ 0.05 according to Student’s t test. ROC curve
analysis, using R (version 3.4.3), was performed as previously described [67]. Data are
expressed as the mean ± SD. p < 0.05 was considered statistically significant.

3. Results
3.1. Definition of Tissue miRNA Signature

We performed a comprehensive PCR-array-based screening, as described in Section 2,
to determine miRNA signatures in PDAC tissues. The clinical parameters of enrolled
patients are summarized in (Table 1). A high-throughput PCR array analysis was performed
on total RNA extracted from a cohort of 18 PDAC patients, divided into four groups, as
mentioned in the Materials and Methods. The statistical analysis of the obtained data set
allowed us to evaluate the significant difference in expression among the groups. Three
inclusion criteria were set—(1) mean Ct < 32.0; (2) mean fold change (Log2) < −1.8 or
>1.8; (3) p-value < 0.05—in order to select reliable dysregulated miRNAs. According to
the expression pattern, seven miRNAs were statistically deregulated (two up- and five
downregulated miRNAs) between N+ and N− cancers (Table 2). Among them, upregulated
miR-518d-3p and downregulated miRNAs miR-215-5p, miR519a-3p, and miR576-5p were
the most significant (Figure 2).

Comparing the G3 with the G2 group, 11 differently expressed miRNAs were observed,
associated with the most advanced grading (G3), as follows: 8 up-regulated miRNAs
and 3 down-regulated miRNAs (Table 3). miR-1-3-p, miR-31-5p, and mR-205-5p were
significantly upregulated in the G3 group compared to the G2 group (Figure 3).

https://dianalab.e-ce.uth.gr/html/mirpathv3/index.php?r=mirpath
https://dianalab.e-ce.uth.gr/html/mirpathv3/index.php?r=mirpath
http://www.oncolnc.org/
https://oncomir.org/oncomir/index.html
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Table 2. Significantly deregulated miRNAs among PDAC tissues in N+ pts compared to N− pts.

miRNA Regulation Fold Change
(Log2) S.D. p-Value

miR-138-5p Up 2.820362 0.896241 0.004896
miR-215-5p Down −1.94699 0.076042 0.018501

miR-518d-3p Up 2.045313 0.552661 0.013743
miR-519a-3p Down −2.51094 0.043237 0.010099
miR-522-3p Down −3.23667 0.039017 0.013339
miR-576-5p Down −2.45585 0.014635 0.026540
miR-147-5p Down −2.0902 0.112546 0.016185
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Table 3. Significantly deregulated miRNAs among PDAC tissues in G3 pts compared to G2 pts.

miRNA Regulation Fold Change
(Log2) S.D. p-Value

miR-1-3p Up 2.038468 0.129115 0.019909
miR-31-5p Up 3.134220 0.335566 0.000190

miR-133a-3p Up 1.890646 0.243735 0.004635
miR-137-3p Up 2.051514 0.123922 0.000221
miR-187-3p Up 5.908869 1.38753 0.010564
miR-205-5p Up 3.717156 0.910863 0.001044
miR-215-5p Up 3.113365 1.570617 0.013060
miR-380-3p Down −3.31882 0.052619 0.066883
miR-451-5p Down −2.64865 0.018094 0.000968
miR-490-3p Up 2.672909 0.490397 0.022821

miR-517b-5p Down −3.94387 0.029408 0.013197
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These results showed the significant modulation of several miRNAs in PDAC tissues,
thus suggesting their implication in biological processes such as carcinogenesis and malig-
nant metastasis, as well as their potential role in both neoplasm diagnosis and treatment.

3.2. Validation Study of Candidate miRNAs in PDAC Tissues

To confirm the findings obtained from the PCR array screening, we performed an
RT-qPCR analysis with a TaqMan miRNA assay as a validation set on the entire population
of enrolled patients. The results confirmed a significant upregulation of miR-1-3p, miR-
31-5p, and miR-205-5p in G3 pts compared to G2 (Figure 4A–C). On the other hand, only
the significant upregulation of miR-518d-3p and the downregulation of miR-215-5p were
confirmed for miRNAs deregulated in N+ versus N− patients (Figure 4D–G).

3.3. ROC Curve Analysis

To estimate the power of each validated miRNA in detecting PDAC, we used the
receiver operating characteristic (ROC) curve analysis, which provides a potent tool to
select optimal diagnostic markers. The results showed the ability of each miRNA to reveal
pancreatic cancer at G3 or with the involvement of lymph nodal metastases. Based on
the sensitivity, specificity, and area under the curve (AUC), we assessed a good predictive
performance for miR-31-5p and miR-205-5p as a molecular marker for the diagnosis of
PDAC patients with G3 tumor grade. Instead, from the comparison between N+ patients
and N− patients, ROC curves did not show significant predictive value for the analyzed
miRNAs, likely due to the low number of analyzed samples (Figure 5).



Cancers 2024, 16, 824 9 of 21

Cancers 2024, 16, x FOR PEER REVIEW 10 of 24 
 

 

 

  
(A) (B) 

  
(C) (D) 

  
(E) (F) 

 

 

(G)  

Figure 4. Validation of candidate miRNAs expression in PDAC Tissues. The expression levels of (A) 
miR-1-3p, (B) miR-31-5p, (C) miR-205-5p, (D) miR-215-5p, (E) miR-518d-3p, (F) miR-519a-3p, and 
(G) miR-576-5p were validated in PDAC tissues and the paired control ones using RT-qPCR. For 
the normalization, U6 snRNA was used as the endogenous control. Each sample was run in 
triplicate. Error bars show mean ± SD. A t test was used for the calculation of p values. *** p < 0.005, 
** p < 0.05, * p < 0.05. 

Figure 4. Validation of candidate miRNAs expression in PDAC Tissues. The expression levels of
(A) miR-1-3p, (B) miR-31-5p, (C) miR-205-5p, (D) miR-215-5p, (E) miR-518d-3p, (F) miR-519a-3p, and
(G) miR-576-5p were validated in PDAC tissues and the paired control ones using RT-qPCR. For the
normalization, U6 snRNA was used as the endogenous control. Each sample was run in triplicate.
Error bars show mean ± SD. A t test was used for the calculation of p values. *** p < 0.005, ** p < 0.05,
* p < 0.05.
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Figure 5. ROC curve analysis of each validated miRNA for an evaluation of biomarker po-
tential. (A) miR-1-3p in G3 tissues compared to the G2 tissues (sensibility = 0.63; specificity
= 0.61; AUC = 0.62, p-value: 0.2242); (B) miR-31-5p in G3 tissues compared to the G2 tissues
(sensibility = 0.88; specificity = 0.47; AUC = 0.85; p-value: 0.0003); (C) miR-205-5p in G3 tissues
compared to the G2 tissues (sensibility = 0.77; specificity = 0.61; AUC = 0.72; p-value: 0.0194). (D) miR-
215-5p in N+ tissues compared to the N− tissues (sensibility = 0.79; specificity = 0.42; AUC = 0.65,
p-value: 0.1439); (E) miR-576-5p in N+ tissues compared to the N− tissues (sensibility = 0.57; speci-
ficity = 0.64; AUC = 0.64, p-value: 0.1306); (F) miR-519a-3p in N+ tissues compared to the N− tissues
(sensibility = 0.63; specificity = 0.54; AUC = 0.54, p-value: 0.6916); (G) miR-518d-3p in N+ tissues
compared to the N− tissues (sensibility = 0.57; specificity = 0.67; AUC = 0.58; p-value: 0.4036). The
red dashed line represents a classifier with the random performance level.
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3.4. Correlation Study between miRNA Expression Levels and PDAC Patients’ Survival and
Clinico-Pathological Features

The involvement of differentially expressed miRNAs (DEMs) associated with PDAC
was studied using Kaplan–Meier overall survival plots, derived using online OncoLnc
program [60]. OncoLnc derives survival correlations using TCGA PDAC RNA-Seq ex-
pression data. Kaplan–Meier plots for DEMs, derived using OncoLnc, are depicted in
Figure 6. An overall survival analysis showed a significant involvement of miR-205-5p
and miR-31-5p in PDAC (with a significant log-rank p-value < 0.05). It was also observed
that the overexpression of miR-205-5p and miR-31-5p was significantly associated with
decreased survival in PDAC patients. On the other hand, the overexpression of miR-1-3p
was associated with increased survival in TCGA clinical datasets. This corroborates the
finding of a significant association between these two miRNAs and PDAC occurrence,
suggesting their potential role as prognostic markers in PDAC patients. Furthermore,
OncomiR analysis showed a significant correlation between miR-31-5p expression and T, N,
and M status, and confirmed the significant association between miR-31-5p and miR-205-5p
and histological grade in PDAC (p-value ≤ 0.05). Detailed results of the OncomiR analysis
are represented in Table 4. Additionally, an analysis of the extent of DEM expression using
UALCAN showed an increased expression of miR-31 and miR-205, specifically in grade 3,
in comparison to normal and grade 1, 2, and 4 TCGA PDAC patients (Figure 7).
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Figure 6. Kaplan–Meier survival analysis. Kaplan–Meier survival analysis of PDAC patients express-
ing low or high levels of miR-1-3p (A), miR-31-5p (B), and miR-205-5p (C). *: hsa-miR-31-5p and
has-miR-205-5p were significantly associated with PDAC.

Table 4. OncomiR analysis of DEMs’ correlation with PDAC grade. Results for statistical ANOVA and
Multivariate Cox analysis performed by OncomiR to evaluate the miRNAs closely associated with
tumor grade in TCGA PDAC datasets (p-value threshold used: <0.05). Out of three shortlisted DEMs,
miR-31-5p and miR-205-5p were found to be significantly associated with tumor grade, and miR-31-5p
was also found to be significantly associated with T, N, and M status in PDAC clinical patients.

miRNA Name Cancer
Abbreviation

Clinical
Parameter

ANOVA
p-Value ANOVA FDR

Multivariate
Log Rank
p-Value

Multivariate
Log Rank FDR

hsa-miR-31-5p PDAC Histologic
Grade 0.036400 0.203000 0.036432 0.203282885

hsa-miR-31-5p PDAC Pathologic N
Status 0.027600 0.297000 0.027573 0.297193659

hsa-miR-31-5p PDAC Pathologic
Stage 0.037100 0.203000 0.037058 0.203296320

hsa-miR-31-5p PDAC Pathologic M
Status 0.011100 0.089500 0.011058 0.089510893

hsa-miR-205-5p PDAC Histologic
Grade 1.23 × 10−4 1.45 × 10−3 0.220247 0.502556231
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Figure 7. UALCAN analysis of DEMs expression in different PDAC grades. Grade-wise expression
of miR-31 (A) and miR-205 (B), derived using UALCAN program. Analysis showed the highest
expression of these two miRNAs in grade 3, in comparison to normal and grades 1, 2, and 4.

3.5. Identification of Target Genes Associated with Differentially Expressed miRNA Signatures

A bioinformatic analysis was performed with the aim of deepening the precise molec-
ular context in which the oncogenic activity of DEMs occurs. For this investigation, we
included all three DEMs correlated with tumor grading. In fact, although no significant cor-
relations were found between miR-1-3p overexpression and PDAC pathological parameters,
nor was any significant predictive performance identified for this miRNA, its significant
upregulation emerged in both the discovery and the validation phase, represent a clear
indication that miR-1-3p could exert a non-negligible role, equally prominent to that of
miR-31-5p and mir-205-5p, in the molecular landscape of PDAC progression. Therefore, we
performed a broad evaluation of DEMs’ targets and inherent pathways to identify possible
commonly regulated genes as key mediators of the underlying mechanisms of action.

The results of a target gene prediction analysis using three different algorithms are
described in Figure 8. Only those targets which were predicted by all the three tools were
considered. A total of 328, 128, and 267 predicted targets were identified for miR-1-3p,
miR-31-5p, and miR-205-5p, respectively. Also, the experimental gene targets identified for
each miRNA are described in summary statistics (Table 5). A detailed list of predicted and
experimental target genes for DEMs is described in Supplementary Spreadsheet S1.
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Table 5. Summary statistics of predicted and experimental target genes for DEMs in G3 vs. G2 PDAC
patient samples.

DE miRNA DIANA-microT-CDS miRDB TargetScan_Human_v8.0
Count of Common Predicted

Gene Targets
(Predicted by All 3 Tools)

Count of
Experimental Gene

Targets (TarBase)

hsa-miR-1-3p 1121 945 698 328 117

hsa-miR-31-5p 603 594 474 128 19

hsa-miR-205-5p 1448 737 585 267 44

Specifically, we identified CLOCK, MAP3K, RSBN1, PAX5, SPRED1, CBL, HIAT1,
DICER1, and PIK3CA as potential common targets regulated by both miRNAs (miR-1-3p
and miR-31-5p) expressed in tissues with an advanced degree of differentiation. These genes
are known to regulate multiple cancer-related processes, such as angiogenesis, apoptosis,
proliferation, EMT, migration, and invasion.

3.6. Pathway and Gene Ontology Analysis of DEMs

A function enrichment analysis including the pathways and gene ontology terms
regulated by DEMs was carried out using DIANA-mirPath v3.0 [63] with p-value threshold
of 0.05. The KEGG pathways regulated by DEMs, along with the different target genes,
are showed in Figure 9. From the list of identified pathways, the ones associated with
the predicted and experimental target genes for input DEMs were identified. Further
analysis showed that pathways including Hippo Signaling, Adherens junction, MicroRNAs
in cancer, and the bacterial invasion of epithelial cells were regulated by all the three
DEMs, i.e., miR-1-3p, miR-31-5p, and miR-205-5p. Also, gene ontology terms, including
molecular function, cellular component, and biological process, were identified for DEMs
(Figures 9–12). Among the cellular components, the most significantly enriched were
“organelle” and “cytosol” (Figure 10), whereas “ion binding” and “enzyme binding” were
the molecular functions with the largest lists of associated genes (Figure 11). Concerning
the biological processes, we found significant GO terms, including “cellular nitrogen
compound metabolic process”, “TRK receptor signaling pathway”, and “mitotic cell cycle”,
to be the most enriched (Figure 12). Furthermore, we found multiple KEGG-significant
pathways that were enriched by DEMs, including “microRNAs in cancer”, “Hippo signaling
pathways”, and “Glycosphingolipid biosynthesis” (Figure 9).Cancers 2024, 16, x FOR PEER REVIEW 16 of 24 
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Figure 12. Heatmap of significant gene ontologies: biological processes predicted by DIANA-mirPath
v3.0, regulated by three differentially expressed miRNAs. The color code represents log (p-value),
where the most significant gene ontology term is colored in red.

4. Discussion

Pancreatic cancer is one of the leading causes of cancer mortality in developed coun-
tries and one of the most lethal malignant gastrointestinal neoplasms across the world [6].
Based on GLOBOCAN 2020 estimates, pancreatic cancer accounts for more than 495,773
new diagnoses and 466,003 deaths yearly worldwide, ranking as the seventh leading cause
of cancer death in both sexes [7,8]. The past two decades have seen a doubling in the annual
number of diagnosed pancreatic cancers worldwide. To date, the causes of pancreatic
cancer are still insufficiently known, although certain risk factors have been identified,
such as smoking, obesity, genetics, diabetes, diet, and inactivity [9,12]. The two main
histological types of pancreatic cancer are adenocarcinoma (more than 90% of cases), and
pancreatic endocrine tumors (less than 5% of all cases). Despite numerous advances in
pancreatic cancer therapy, radical surgery is currently the only option that is able to offer
a concrete advantage in terms of overall survival, but it is still an evolving field [26,30].
However, due to the absence of specific symptoms and reliable markers, PDAC is usu-
ally diagnosed in advanced stages, resulting in delayed treatment, a high frequency of
tumor recurrence, metastasis, and a worse prognosis. Therefore, alternative therapeutic
approaches are needed. Among all the treatments available for PDAC, the options for
locally advanced inoperable and/or metastatic disease usually include chemotherapy and
targeted therapies aimed at exploiting specific genetic or molecular targets on both tumor
and stromal cells. However, PDAC presents challenges in treatment selection and predict-
ing outcomes due to its molecular and clinical diversity. Efforts to improve therapy and
prediction are hindered by the complex variability in the disease’s genetics, pathology, and
clinical behavior. Various approaches, including genomic markers, transcriptomic analyses,
histological classifications, and disease progression patterns, have been used in an attempt
to guide treatment decisions. A genetic study involving 456 PDAC patients identified
four distinct molecular subtypes (squamous, pancreatic progenitor, immunogenic, and
aberrantly differentiated endocrine exocrine), each tied to specific histopathological fea-
tures. However, these efforts have not met expectations, partly due to the complexity of
genes within each subtype and the challenges in profiling patient tissues. The different
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classification criteria in these studies also contribute to the lack of a standardized gene
panel for clinical use.

As a result, researchers are exploring alternative molecular biomarkers with potential
roles in regulating cancer cell biology and metastasis, with microRNAs (miRNAs) standing
out as promising candidates. miRNA identification in the bloodstream or other biological
fluids, as well as in tissue samples, has generated great interest for their potential use
as clinical biomarkers. Circulating miRNAs are a new class of gene regulator, whose
role in cancer onset and progression has been deepened, opening new opportunities for
therapeutic application. They belong to the family of small non-coding RNA molecules of
~24 nt in length that can inhibit mRNA translation and/or negatively regulate its stability.
In the last years, an increasing number of dysregulated miRNAs in plasma or serum and
tissue have been considered a novel hallmark of cancer. A large body of evidence showed
aberrant miRNA regulation in PDAC tissues, demonstrating a strong relationship between
their expression levels and the main processes underlying tumor initiation and progression,
such as proliferation, migration, invasion, metastasis, tumor infiltration, and disease relapse.
Several reports have delineated a possible oncogenic or tumor-suppressive role for several
miRNAs in PDAC pathogenesis; however, the molecular mechanism is still unclear and
further insights are required for their use as diagnostic, prognostic, and therapeutic tools.

In this scenario, the objective of the present work was to determine a miRNA signature
for the definition of PDAC risk stratification. To achieve this aim, we performed a compre-
hensive PCR-array-based screening assay on total RNA extracted from a cohort of eighteen
PDAC patients, divided into four groups: five lymph node metastases positive (N+), five
negatives (N−), five grade G3, and five grade G2 tissue samples. The global miRNA expres-
sion profile allowed us to detect seven dysregulated miRNAs in the N+ group compared to
the N− group. Among them, we observed the significant upregulation of miR-138-5p and
miR-518d-3p, and significant downregulation of miR-215-5p, miR-519a-3p, miR-522-3p,
miR-576-5p, and miR-147-5p (Table 2). Moreover, in the comparison between the G3 group
and G2 group, we detected eleven dysregulated miRNAs and, specifically, a significant
upregulation of miR-1-3p, miR-31-5p, miR-133a-3p, miR-137-3p, miR-187-3p, miR-205-5p,
miR-215-5p, and miR-490-3p, and significant downregulation of miR-380-3p, miR-451-5p,
and miR-517b-5p (Table 3). Subsequently, based on statistical significance, we focused on
three upregulated miRNAs—miR-1-3p, miR-31-5p, and miR-205-5p—as possible markers
candidates for validation. The RT-qPCR analysis, performed on fifty-eight enrolled patients,
confirmed the significant upregulation of miR-1-3p, miR-31-5p, and miR-205-5p in G3 pts
compared to G2 (Figure 4A–C). On the other hand, only the significant upregulation of miR-
518d-3p and the downregulation of miR-215-5p was confirmed for miRNAs deregulated in
N+ versus N− patients (Figure 4D,E). These data are partly supported by a bioinformatic
analysis showing the correlation between the expression levels of upregulated miRNAs and
patients’ survival. For miR-1-3p no correlation was found. On the other hand, both miR-31-
5p and miR-205-5p showed a significant correlation between high expression levels and
decreased survival (Figure 6B,C). The latter findings agree with our experimental results,
highlighting the upregulation of the two miRNAs in the G3 group (with poor prognosis)
compared to the G2 group. Moreover, miR-31-5p was also significantly correlated with T,
N, and M stage, and especially with histologic grade. In addition, a significant correlation
with histologic grade was found for miR-205-5p (Figure 7 and Table 4).

To obtain a better understanding of the molecular pathways regulated by miR-1-3p
and miR-31-5p, we carried out in silico prediction assays to identify potential miRNA
target genes, interrogating three different algorithms of miRNA target prediction (Figure 8
and Table 5). The target genes predicted by all three tools were selected for the subse-
quent in silico detection of commonly regulated genes by both miRNAs, identifying the
following commonly regulated genes: CLOCK, MAP3K1, RSBN1, PAX5, SPRED1, CBL,
HIAT1, DICER1, and PIK3C2A. MAP3K1 is a member of the mitogen-activated protein
kinase kinase kinase (MAP3K) family of serine/threonine kinases. The full-length form
regulates cell migration and contributes to pro-survival signaling, while the cleaved form
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promotes apoptosis. The critical function of MAP3K1 in cell fate decisions suggests that it
may be a target for deregulation in cancer [68]. SPRED1 is an important negative regulator
of the Ras-MEK-ERK signaling pathway [69]. C-Cbl is a key negative regulator of cell
signaling. Its downregulation in gastric carcinoma (GC) tissues plays an important role
in GC development and progression. In addition, c-Cbl expression levels correlate with
GC subtype, histological type, histological differentiation, and lymph node metastasis [70].
PAX5 is a member of the paired box (PAX) family of transcription factors containing a
highly conserved DNA-binding domain, known as the paired box. The PAX proteins are
important regulators in early cancer development, differentiation, migration, invasion, and
proliferation. Therefore, its aberrant alterations are thought to contribute to neoplastic trans-
formation [71,72]. PAX5 is extensively studied in lymphoma and lymphocytic leukemia,
working as an oncogene related to developmental defects in B cells [73]. Dicer is an enzyme
involved in the process of biogenesis and maturation of miRNAs. Its overexpression is
positively correlated with advanced PDAC and acquired resistance to gemcitabine [74]. The
function enrichment analysis shown in Figure 9 suggests that the Hippo signaling pathway,
adherens junction, and microRNAs in cancer are regulated by all three miRNAs. The list
of genes regulated by miRNAs was analyzed with the DIANA-mirPath v3.0 for pathway
and molecular function enrichment. The main molecular functions that were identified
included “ion binding” and “enzyme binding” (Figure 11). Instead, among the biological
processes, the most significantly enriched included “cellular nitogen compound metabolic
process”, “TRK receptor signaling pathway”, and “mitotic cell cycle” (Figure 12). Bott et al.
demonstrated that GLUL-mediated glutamine synthesis plays a critical role in converging
the TCA cycle and nitrogen metabolism to promote nitrogen-dependent anabolic processes
in pancreatic cancer, and they observed a positive correlation between GLUL expression
and human pancreatic cancer progression [75]. Likewise, preclinical studies showed that
the inhibition of TRK receptor signaling could affect pancreatic cancer cell invasion, sur-
vival, and chemotherapy response [76]. Finally, there are different genes involved in the cell
cycle pathway, whose mutations can interfere with apoptosis, proliferation, and migration
mechanisms, thus correlating with PDAC progression and prognosis [77–79].

Collectively, our findings, based on both experimental and bioinformatics results,
suggest the potential capacity of miR-1-3p, miR-31-5p, and miR-205-5p as useful clinical
biomarkers, which are able to discriminate PDAC risk. Finally, they are potential therapeu-
tic targets in PDAC, having commonly regulated genes that are strongly involved in cancer
biology regulation.

5. Conclusions

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-associated mor-
tality. New effective therapeutic and diagnostic approaches are still lacking, and the
prognosis remains poor, even for resectable patients. Furthermore, there is an almost com-
plete absence of validated predictive markers for risk stratification. This gap needs to be
urgently reduced so that patients’ survival and quality of life can be improved. Currently,
prevention or early diagnosis at a curable stage is very difficult; patients exhibit symptoms
only later, and tumors do not show sensitive and specific markers to aid in detection. For
more effective clinical management, robust biomarkers for early diagnosis and prognostic
stratification are needed in clinical practice, especially in the context of neoadjuvant and
adjuvant settings. The advancements in molecular and genetic technologies allow for the
identification of molecular factors endowed with a diagnostic and/or prognostic role, show-
ing their biomedical potential for application in personalized medicine and the treatment
monitoring of PDAC patients. Many studies revealed a pivotal role of non-coding RNAs,
mainly miRNAs, in cancer initiation and progression, as well as in chemo-resistance mecha-
nisms, suggesting their use as clinical biomarkers. Our study highlighted, for PDAC cancer
patients, possible miRNA signatures reflecting two clinical and pathological characteristics:
node metastases’ occurrence and tumor grading. In tissue samples from PDAC patients
with advanced grading (G3), the significant upregulation of three miRNAs—miR-1-3p, miR-
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31-5p, and miR-205-5p—was observed and validated. In addition, through bioinformatic
studies, the expression of two of these miRNAs was significantly correlated with survival,
while all three miRNAs were significantly correlated with four clinical parameters—TNM
status and histological grade—supporting our experimental evidence. Taken together,
these data suggest their promising function as prognostic biomarkers. Using bioinformatic
analyses, we also predicted a series of possible target genes that are likely responsible for
the downstream oncogenic effects of both miR-1-3p and miR-31-5p. In conclusion, these
data provide a strong rationale for the further investigation of miRNA involvement in
PDAC onset and progression.
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