Next Issue
Volume 5, June
Previous Issue
Volume 4, December
 
 

Cancers, Volume 5, Issue 1 (March 2013) – 17 articles , Pages 1-319

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1166 KiB  
Review
Nanomaterials and Autophagy: New Insights in Cancer Treatment
by Elisa Panzarini, Valentina Inguscio, Bernardetta Anna Tenuzzo, Elisabetta Carata and Luciana Dini
Cancers 2013, 5(1), 296-319; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010296 - 21 Mar 2013
Cited by 64 | Viewed by 10529
Abstract
Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is [...] Read more.
Autophagy represents a cell’s response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles. Moreover, autophagy is involved in several diseases. Recent evidences support a relationship between several classes of nanomaterials and autophagy perturbation, both induction and blockade, in many biological models. In fact, the autophagic mechanism represents a common cellular response to nanomaterials. On the other hand, the dynamic nature of autophagy in cancer biology is an intriguing approach for cancer therapeutics, since during tumour development and therapy, autophagy has been reported to trigger both an early cell survival and a late cell death. The use of nanomaterials in cancer treatment to deliver chemotherapeutic drugs and target tumours is well known. Recently, autophagy modulation mediated by nanomaterials has become an appealing notion in nanomedicine therapeutics, since it can be exploited as adjuvant in chemotherapy or in the development of cancer vaccines or as a potential anti-cancer agent. Herein, we summarize the effects of nanomaterials on autophagic processes in cancer, also considering the therapeutic outcome of synergism between nanomaterials and autophagy to improve existing cancer therapies. Full article
(This article belongs to the Special Issue Autophagy and Cancer)
Show Figures

Figure 1

884 KiB  
Article
A Novel Three-Colour Fluorescence in Situ Hybridization Approach for the Detection of t(7;12)(q36;p13) in Acute Myeloid Leukaemia Reveals New Cryptic Three Way Translocation t(7;12;16)
by Abdulbasit Naiel, Michael Vetter, Olga Plekhanova, Elena Fleischman, Olga Sokova, Grigory Tsaur, Jochen Harbott and Sabrina Tosi
Cancers 2013, 5(1), 281-295; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010281 - 11 Mar 2013
Cited by 9 | Viewed by 8814
Abstract
The t(7;12)(q36;p13) translocation is a recurrent chromosome abnormality that involves the ETV6 gene on chromosome 12 and has been identified in 20–30% of infant patients with acute myeloid leukaemia (AML). The detection of t(7;12) rearrangements relies on the use of fluorescence in situ [...] Read more.
The t(7;12)(q36;p13) translocation is a recurrent chromosome abnormality that involves the ETV6 gene on chromosome 12 and has been identified in 20–30% of infant patients with acute myeloid leukaemia (AML). The detection of t(7;12) rearrangements relies on the use of fluorescence in situ hybridization (FISH) because this translocation is hardly visible by chromosome banding methods. Furthermore, a fusion transcript HLXB9-ETV6 is found in approximately 50% of t(7;12) cases, making the reverse transcription PCR approach not an ideal screening method. Considering the report of few cases of variant translocations harbouring a cryptic t(7;12) rearrangement, we believe that the actual incidence of this abnormality is higher than reported to date. The clinical outcome of t(7;12) patients is believed to be poor, therefore an early and accurate diagnosis is important in the clinical management and treatment. In this study, we have designed and tested a novel three-colour FISH approach that enabled us not only to confirm the presence of the t(7;12) in a number of patients studied previously, but also to identify a cryptic t(7;12) as part of a complex rearrangement. This new approach has proven to be an efficient and reliable method to be used in the diagnostic setting. Full article
(This article belongs to the Special Issue Leukemia)
Show Figures

Figure 1

617 KiB  
Review
Vitamin D: Pharmacokinetics and Safety When Used in Conjunction with the Pharmaceutical Drugs Used in Cancer Patients: A Systematic Review
by Deborah A. Kennedy, Kieran Cooley, Becky Skidmore, Heidi Fritz, Tara Campbell and Dugald Seely
Cancers 2013, 5(1), 255-280; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010255 - 11 Mar 2013
Cited by 15 | Viewed by 7593
Abstract
Vitamin D has reported anti-cancer and anti-inflammatory properties modulated through gene transcription and non-genomic signaling cascades. The purpose of this review was to summarize the available research on interactions and pharmacokinetics between vitamin D and the pharmaceutical drugs used in patients with cancer. [...] Read more.
Vitamin D has reported anti-cancer and anti-inflammatory properties modulated through gene transcription and non-genomic signaling cascades. The purpose of this review was to summarize the available research on interactions and pharmacokinetics between vitamin D and the pharmaceutical drugs used in patients with cancer. Hypercalcemia was the most frequently reported side effect that occurred in high dose calcitriol. The half-life of 25(OH)D3 and/or 1,25(OH)2D3 was found to be impacted by cimetidine; rosuvastatin; prednisone and possibly some chemotherapy drugs. No unusual adverse effects in cancer patients; beyond what is expected from high dose 1,25(OH)2D3 supplementation, were revealed through this review. While sufficient evidence is lacking, supplementation with 1,25(OH)2D3 during chemotherapy appears to have a low risk of interaction. Further interactions with vitamin D3 have not been studied. Full article
Show Figures

Figure 1

1408 KiB  
Review
The Role of the Immune Response in Merkel Cell Carcinoma
by Pierre L. Triozzi and Anthony P. Fernandez
Cancers 2013, 5(1), 234-254; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010234 - 28 Feb 2013
Cited by 31 | Viewed by 7217
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune [...] Read more.
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies. Full article
(This article belongs to the Special Issue Skin Cancer)
Show Figures

Figure 1

236 KiB  
Review
Histologic and Genetic Advances in Refining the Diagnosis of “Undifferentiated Pleomorphic Sarcoma”
by Fergal C. Kelleher and Antonella Viterbo
Cancers 2013, 5(1), 218-233; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010218 - 22 Feb 2013
Cited by 27 | Viewed by 7058
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can [...] Read more.
Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can often determine lineage of differentiation. Further attrition in the diagnostic frequency of UPS may arise by using array-comparative genomic hybridization. Gene expression arrays are also of potential use as they permit hierarchical gene clustering. Appraisal of the literature is difficult due to a historical perspective in which specific molecular diagnostic methods were previously unavailable. The American Joint Committee on Cancer (AJCC) classification has changed with different inclusion criteria. Taxonomy challenges also exist with the older term “malignant fibrous histiocytoma” being replaced by “UPS”. In 2010 an analysis of multiple sarcoma expression databases using a 170-gene predictor, re-classified most MFH and “not-otherwise-specified” (NOS) tumors as liposarcomas, leiomyosarcomas or fibrosarcomas. Interestingly, some of the classifier genes are potential molecular therapeutic targets including Insulin-like growth factor 1 (IGF-1), Peroxisome proliferator-activated receptor γ (PPARγ), Nerve growth factor β (NGF β) and Fibroblast growth factor receptor (FGFR). Full article
(This article belongs to the Special Issue Genomic Instability and Cancers)
Show Figures

Figure 1

726 KiB  
Article
Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting
by Jonathan Pagan, Beata Przybyla, Azemat Jamshidi-Parsian, Kalpna Gupta and Robert J. Griffin
Cancers 2013, 5(1), 205-217; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010205 - 18 Feb 2013
Cited by 9 | Viewed by 6046
Abstract
Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was [...] Read more.
Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm3) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the oxygenation and subsequent radiation response of tumors. We surmise that these cells are preferentially stimulated to divide in the tumor microenvironment, thereby inducing the significant increase in tumor growth observed and that the use of injected BOECs could be a viable approach to modulate the tumor microenvironment for therapeutic gain. Conversely, agents or approaches to block their recruitment and integration of BOECs into primary or metastatic lesions may be an effective way to restrain cancer progression before or after other treatments are applied. Full article
(This article belongs to the Special Issue Tumor Stroma)
Show Figures

Graphical abstract

1071 KiB  
Opinion
Increasing Melanoma—Too Many Skin Cell Damages or Too Few Repairs?
by Örjan Hallberg and Olle Johansson
Cancers 2013, 5(1), 184-204; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010184 - 18 Feb 2013
Cited by 6 | Viewed by 9562
Abstract
Skin melanoma rates have been increasing for a long time in many Western countries. The object of this study was to apply modern problem-solving theory normally used to clear industrial problems to search for roots and causes of this medical question. Increasing cancer [...] Read more.
Skin melanoma rates have been increasing for a long time in many Western countries. The object of this study was to apply modern problem-solving theory normally used to clear industrial problems to search for roots and causes of this medical question. Increasing cancer rates can be due to too many cell damage incidents or to too few repairs. So far, it has been assumed that the melanoma epidemic mainly is caused by increasing sun tanning habits. In order to explore this problem in more detail, we used cancer statistics from several countries over time and space. Detailed analysis of data obtained and a model study to evaluate the effects from increased damages or decreased repairs clearly indicate that the main reason behind the melanoma problem is a disturbed immune system. The possibility to introduce efficient corrective actions is apparent. Full article
Show Figures

Figure 1

503 KiB  
Review
Mouse Genetic Models Reveal Surprising Functions of IkB Kinase Alpha in Skin Development and Skin Carcinogenesis
by Xiaojun Xia, Eunmi Park, Susan M. Fischer and Yinling Hu
Cancers 2013, 5(1), 170-183; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010170 - 15 Feb 2013
Cited by 4 | Viewed by 6677
Abstract
Gene knockout studies unexpectedly reveal a pivotal role for IkB kinase alpha (IKKa) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikka heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin [...] Read more.
Gene knockout studies unexpectedly reveal a pivotal role for IkB kinase alpha (IKKa) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikka heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKa deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikka floxed mice. On the other hand, transgenic mice overexpressing IKKa in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKa represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKa deletion mediated by a mutation, which generates a stop codon in the Ikka gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKa and Ikka mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKa in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside. Full article
(This article belongs to the Special Issue Skin Cancer)
Show Figures

Figure 1

389 KiB  
Review
Carcinoma-Associated Fibroblasts Are a Promising Therapeutic Target
by Shinsaku Togo, Urszula M. Polanska, Yoshiya Horimoto and Akira Orimo
Cancers 2013, 5(1), 149-169; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010149 - 31 Jan 2013
Cited by 133 | Viewed by 11770
Abstract
Human carcinomas frequently exhibit significant stromal reactions such as the so-called “desmoplastic stroma” or “reactive stroma”, which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified [...] Read more.
Human carcinomas frequently exhibit significant stromal reactions such as the so-called “desmoplastic stroma” or “reactive stroma”, which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified by myofibroblasts, are among the predominant cell types present within the tumour-associated stroma. Increased numbers of stromal myofibroblasts are often associated with high-grade malignancies with poor prognoses in humans. CAF myofibroblasts possess abilities to promote primary tumour development, growth and progression by stimulating the processes of neoangiogenesis as well as tumour cell proliferation, survival, migration and invasion. Moreover, it has been demonstrated that CAFs serve as a niche supporting the metastatic colonisation of disseminated carcinoma cells in distant organs. Their contribution to primary and secondary malignancies makes these fibroblasts a potential therapeutic target and they also appear to be relevant to the development of drug resistance and tumour recurrence. This review summarises our current knowledge of tumour-promoting CAFs and discusses the therapeutic feasibility of targeting these cells as well as disrupting heterotypic interactions with other cell types in tumours that may improve the efficacy of current anti-tumour therapies. Full article
Show Figures

Figure 1

346 KiB  
Review
Chemoprevention of Lung Cancer: Prospects and Disappointments in Human Clinical Trials
by Alissa K. Greenberg, Jun-Chieh Tsay, Kam-Meng Tchou-Wong, Anna Jorgensen and William N. Rom
Cancers 2013, 5(1), 131-148; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010131 - 24 Jan 2013
Cited by 18 | Viewed by 7419
Abstract
Decreasing the risk of lung cancer, or preventing its development in high-risk individuals, would have a huge impact on public health. The most effective means to decrease lung cancer incidence is to eliminate exposure to carcinogens. However, with recent advances in the understanding [...] Read more.
Decreasing the risk of lung cancer, or preventing its development in high-risk individuals, would have a huge impact on public health. The most effective means to decrease lung cancer incidence is to eliminate exposure to carcinogens. However, with recent advances in the understanding of pulmonary carcinogenesis and the identification of intermediate biomarkers, the prospects for the field of chemoprevention research have improved dramatically. Here we review the most recent research in lung cancer chemoprevention—focusing on those agents that have been investigated in human clinical trials. These agents fall into three major categories. First, oxidative stress plays an important role in pulmonary carcinogenesis; and therefore, antioxidants (including vitamins, selenium, green tea extracts, and isothiocyanates) may be particularly effective in preventing the development of lung cancer. Second, inflammation is increasingly accepted as a crucial factor in carcinogenesis, and many investigators have focused on anti-inflammatory agents, such as glucocorticoids, NSAIDs, statins, and PPARγ agonists. Finally, the PI3K/AKT/mTOR pathway is recognized to play a central role in tobacco-induced carcinogenesis, and inhibitors of this pathway, including myoinositol and metformin, are promising agents for lung cancer prevention. Successful chemoprevention will likely require targeting of multiple pathways to carcinogenesis—both to minimize toxicity and maximize efficacy. Full article
1133 KiB  
Review
Mouse Models of Gastric Cancer
by Yoku Hayakawa, James G. Fox, Tamas Gonda, Daniel L. Worthley, Sureshkumar Muthupalani and Timothy C. Wang
Cancers 2013, 5(1), 92-130; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010092 - 24 Jan 2013
Cited by 70 | Viewed by 18446
Abstract
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven [...] Read more.
Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. Full article
(This article belongs to the Special Issue Gastric Cancer)
Show Figures

Figure 1

302 KiB  
Review
Molecular Targeted Agents for Gastric Cancer: A Step Forward Towards Personalized Therapy
by Esther Una Cidon, Sara G. Ellis, Yasir Inam, Sola Adeleke, Sara Zarif and Tom Geldart
Cancers 2013, 5(1), 64-91; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010064 - 21 Jan 2013
Cited by 44 | Viewed by 8179
Abstract
Gastric cancer (GC) represents a major cancer burden worldwide, and remains the second leading cause of cancer-related death. Due to its insidious nature, presentation is usually late and often carries a poor prognosis. Despite having improved treatment modalities over the last decade, for [...] Read more.
Gastric cancer (GC) represents a major cancer burden worldwide, and remains the second leading cause of cancer-related death. Due to its insidious nature, presentation is usually late and often carries a poor prognosis. Despite having improved treatment modalities over the last decade, for most patients only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and its signaling pathways, offers the hope of clinically significant promising advances for selected groups of patients. Patients with Her-2 overexpression or amplification have experienced benefit from the integration of monoclonal antibodies such as trastuzumab to the standard chemotherapy. Additionally, drugs targeting angiogenesis (bevacizumab, sorafenib, sunitinib) are under investigation and other targeted agents such as mTOR inhibitors, anti c-MET, polo-like kinase 1 inhibitors are in preclinical or early clinical development. Patient selection and the development of reliable biomarkers to accurately select patients most likely to benefit from these tailored therapies is now key. Future trials should focus on these advances to optimize the treatment for GC patients. This article will review recent progress and current status of targeted agents in GC. Full article
(This article belongs to the Special Issue Gastric Cancer)
338 KiB  
Review
Gastric Cancer: Current Status of Diagnosis and Treatment
by Tsunehiro Takahashi, Yoshiro Saikawa and Yuko Kitagawa
Cancers 2013, 5(1), 48-63; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010048 - 16 Jan 2013
Cited by 161 | Viewed by 17890
Abstract
Gastric cancer is the second leading cause of death from malignant disease worldwide and most frequently discovered in advanced stages. Because curative surgery is regarded as the only option for cure, early detection of resectable gastric cancer is extremely important for good patient [...] Read more.
Gastric cancer is the second leading cause of death from malignant disease worldwide and most frequently discovered in advanced stages. Because curative surgery is regarded as the only option for cure, early detection of resectable gastric cancer is extremely important for good patient outcomes. Therefore, noninvasive diagnostic modalities such as evolutionary endoscopy and positron emission tomography are utilized as screening tools for gastric cancer. To date, early gastric cancer is being treated using minimally invasive methods such as endoscopic treatment and laparoscopic surgery, while in advanced cancer it is necessary to consider multimodality treatment including chemotherapy, radiotherapy, and surgery. Because of the results of large clinical trials, surgery with extended lymphadenectomy could not be recommended as a standard therapy for advanced gastric cancer. Recent clinical trials had shown survival benefits of adjuvant chemotherapy after curative resection compared with surgery alone. In addition, recent advances of molecular targeted agents would play an important role as one of the modalities for advanced gastric cancer. In this review, we summarize the current status of diagnostic technology and treatment for gastric cancer. Full article
(This article belongs to the Special Issue Gastric Cancer)
Show Figures

Figure 1

234 KiB  
Review
Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors
by Florence Schaffner, Anne Marie Ray and Monique Dontenwill
Cancers 2013, 5(1), 27-47; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010027 - 15 Jan 2013
Cited by 152 | Viewed by 11751
Abstract
Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also [...] Read more.
Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors. Full article
(This article belongs to the Special Issue Adhesion and Integrins)
809 KiB  
Review
The Critical Impact of HIF-1a on Gastric Cancer Biology
by Yoshihiko Kitajima and Kohji Miyazaki
Cancers 2013, 5(1), 15-26; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010015 - 10 Jan 2013
Cited by 92 | Viewed by 11137
Abstract
Hypoxia inducible factor-1 (HIF-1) monitors the cellular response to the oxygen levels in solid tumors. Under hypoxia conditions, HIF-1a protein is stabilized and forms a heterodimer with the HIF-1β subunit. The HIF-1 complex activates the transcription of numerous target genes in order to [...] Read more.
Hypoxia inducible factor-1 (HIF-1) monitors the cellular response to the oxygen levels in solid tumors. Under hypoxia conditions, HIF-1a protein is stabilized and forms a heterodimer with the HIF-1β subunit. The HIF-1 complex activates the transcription of numerous target genes in order to adapt the hypoxic environment in human cancer cells. In gastric cancer patients, HIF-1a activation following extended hypoxia strongly correlates with an aggressive tumor phenotype and a poor prognosis. HIF-1a activation has been also reported to occur via hypoxia-independent mechanisms such as PI3K/AKT/mTOR signaling and ROS production. This article argues for the critical roles of HIF-1a in glucose metabolism, carcinogenesis, angiogenesis, invasion, metastasis, cell survival and chemoresistance, focusing on gastric cancer. Full article
(This article belongs to the Special Issue Gastric Cancer)
Show Figures

Figure 1

263 KiB  
Reply
A Comment on Qi et al. An Estimation of Radiobiological Parameters for Head-and-Neck Cancer Cells and the Clinical Implications—Authors' Reply
by X. Sharon Qi, Qiu Hui Yang, Steve Lee, X. Allen Li and Dian Wang
Cancers 2013, 5(1), 12-14; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010012 - 27 Dec 2012
Viewed by 4839
Abstract
We appreciate the thoughtful comments from Dr. Jack Fowler on our recent manuscript of an estimation of radiobiological parameters for head and neck cancer (HNC) and the clinical implications [1]. [...] Full article
Show Figures

Figure 1

608 KiB  
Article
Clinical Significance of CK19 Negative Breast Cancer
by Mamiko Fujisue, Reiki Nishimura, Yasuhiro Okumura, Rumiko Tashima, Yasuyuki Nishiyama, Tomofumi Osako, Yasuo Toyozumi and Nobuyuki Arima
Cancers 2013, 5(1), 1-11; https://0-doi-org.brum.beds.ac.uk/10.3390/cancers5010001 - 21 Dec 2012
Cited by 18 | Viewed by 7575
Abstract
Analysis of sentinel lymph nodes (SLNs) by means of One-Step Nucleic Acid Amplification (OSNA) is gaining widespread use as a quick and accurate method. This assay detects the expression level of cytokeratin 19 (CK19) which is present in some but not all breast [...] Read more.
Analysis of sentinel lymph nodes (SLNs) by means of One-Step Nucleic Acid Amplification (OSNA) is gaining widespread use as a quick and accurate method. This assay detects the expression level of cytokeratin 19 (CK19) which is present in some but not all breast tumors. In this study, the clinical significance of negative CK19 was investigated in 219 cases of primary breast cancer. In 179 patients with clinically negative nodes, OSNA and imprint smear cytology of SLN were performed simultaneously. The OSNA revealed a node-positive rate of 24.6%. Negative CK19 correlated significantly with negative ER/PgR and higher Ki-67 values, and marginally with higher nuclear grade and p53 overexpression. The triple negative subtype showed lower CK19 expression. OSNA revealed that one of the negative CK19 cases was actually a false negative but this was corrected with the use of the imprint smear cytology. In conclusion, CK19 negativity reflected the aggressiveness of primary breast cancer. OSNA assay used to analyze SLN was useful, but there is a possibility that it will mistakenly detect false negatives in CK19 negative tumors. Therefore, in tumors with negative CK19, the imprint smear cytology may be more useful in cases with macrometastasis. Full article
(This article belongs to the Special Issue Breast Cancers: Pathology and Biomarkers)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop