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Abstract: Glioblastomas are considered to be one of the most radio resistant tumors. 

Despite new therapies, the prognosis of this disease remains dismal. Also, the mechanisms 

of radiation resistance in mammalian cells are more complex than once believed. 

Experimental studies have indicated that some human cell lines are sensitive to low radiation 

doses of <1 Gy. This phenomenon has been termed low-dose hyper-radio-sensitivity (HRS), 

and is more apparent in radio resistant cell lines, such as glioblastoma cells. Sensitivity 

may result from the inability of low dose radiation to efficiently induce repair mechanisms, 

whereas higher doses cause enough damage to trigger repair responses for radio resistance. 

In vitro studies have demonstrated this phenomenon using various human malignant 

glioma cell lines: (1) daily repeated irradiation of cells with low doses compared to 

irradiation using a single biologically equivalent dose resulted in significantly higher cell 

killing; (2) experiments conducted on glioma xenografts demonstrated that repeated 

irradiation with low doses was more effective for inhibiting tumor growth than a single 

dose. In order to confirm and validate these promising studies on HRS, a few phase II trials 

were developed. For translating the experimental observations into the clinic, ultra 

fractionation protocols (with three daily doses) were tested in glioblastoma patients. 

Tolerance and toxicity were the primary endpoints, with overall survival as a secondary 

endpoint. These protocols were initiated before concomitant radio chemotherapy became 

the standard of care. For these trials, patients with an unfavorable clinical prognostic factor 

of newly unresectable GBM were included. When comparing the results of these trials with 

international literature using multivariate analysis for both progression free survival and 

overall survival, ultra fractionated irradiation showed superiority over radiotherapy alone. 

In addition, it was found to be equivalent to treatment using radiotherapy and temozolomide. 
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Therefore, ultra fractionated protocols may prolong survival of glioblastoma patients. In 

this review, we describe the main experimental data regarding low-dose hypersensitivity as 

well as the findings of clinical trials that have investigated this new radiotherapy regimen. 

Keywords: glioblastoma; radiotherapy; low-dose radiation therapy; ultra fractionated regimen 

 

1. Introduction 

Malignant gliomas account for approximately 60% of all primary brain tumors [1,2. Glioblastoma 

(GBM) is the most aggressive type of primary brain tumor in adults and is characterized by a high rate 

of local recurrence due to intrinsic radioresistance [1,2. The prognosis of GBM patients remains 

dismal, and the reported median overall survival (OS) rarely exceeds 12 months [1–3. Treatment 

consists of neurosurgical resection to the maximal feasible extent, which is followed by combined 

conformal brain radiotherapy and adjuvant chemotherapy using temozolomide (TMZ) when  

possible [1–4. In a randomized trial conducted by the European Organization for Research and 

Treatment of Cancer (EORTC) and the National Cancer Institute of Canada (NCIC), Stupp et al. 

showed that GBM patients who received adjuvant radio chemotherapy (TMZ) followed by six courses 

of TMZ had a better survival compared to patients receiving adjuvant radiotherapy alone [4. In fact, a 

significant increase in OS was observed in the radio chemotherapy group compared to the radiotherapy 

alone group (respective survival rates: 14.6 and 12.1 months). 

Conformal radiation therapy remains the backbone of care for GBM. The target for irradiation is 

usually the tumor bulk, as visualized on cranial magnetic resonance imaging (MRI) with a wide 

margin of 2–3 cm. Although radiotherapy is not a curative treatment for GBM, it results in longer 

survival and optimized quality of life [1–3. It is unclear whether clinical radio resistance in GBM is a 

result of intrinsic resistance at the cellular level. Therefore, future studies aimed at defining the 

molecular basis for radio resistance will be essential. The mechanisms involved in radiation resistance 

in mammalian cells are more complex than once believed. A few in vitro studies have shown that some 

human tumor cell lines can be sensitive to low radiation doses of <1 Gy, a phenomenon that has been 

termed low-dose hypersensitivity [5–11. Strikingly, this ―radio-sensitivity‖ is more apparent in radio 

resistant cell lines, such as glioma cells [5–11. 

In this review, we discuss the 3-times daily ultra fractionated irradiation regimen for GBM. We not 

only describe the principal experimental results on low-dose hypersensitivity, but also report findings 

from phase II trials that have assessed ultra fractionated irradiation protocols in the clinic. 

2. Experimental Studies 

2.1. In Vitro Studies 

The Gray Laboratory for Cancer Research was the first to identify increased X-ray sensitivity 

following very low doses per fraction in murine skin and kidney lines [5–11. The V79 murine 

fibroblast line was irradiated at low doses, and cell survival was measured using a Dynamic 

Microscopic Imaging Processing Scanner (DMIPS) [5–11. The results revealed hypersensitivity after 
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very small doses (<0.3 Gy), followed by an enhancement in survival when the doses were increased 

(0.3–1 Gy) [5–11. Wouters et al. confirmed the hyper-radio-sensitivity (HRS) phenomenon using a 

flow cytometry (FC)-based method for measuring survival, verifying that HRS was not merely an 

artifact associated with the DMIPS assay [5–11. HRS was also observed in a human lung epithelial 

cell line (L132) as well as a Chinese hamster cell line [5–11. Low-dose hypersensitivity could be seen 

on survival curves as an undeniable downward ―kink‖ for doses <1 Gy, whereas doses >2 Gy 

increased the radio resistance phenomenon ―IRR‖ [5–11 (Figure 1). Although it might be expected 

that the Linear Quadratic model could underestimate the amount of HRS, it seems to correlate with the 

data for doses ranging from 2 to 5 Gy [5–11. 

Figure 1. Low-dose hypersensitivity was represented as an undeniable downward ―kink‖ 

on survival curve for doses below 1 Gy, followed for doses superior to 2 Gy by ―IRR‖ or 

―increased radio-resistance‖ phenomenon.  

 

While Lambin et al. demonstrated HRS in a human colorectal tumor cell line (HT 29) treated with 

low radiation doses, they failed to observe HRS in the same cell line after neutron irradiation at a dose rate 

of 0–20 Gy/min [12,13. Furthermore, in another study, Lambin et al. irradiated several human tumor 

cell lines, including MeWo derived from melanoma, SW 48 from a colorectal tumor, and HX 142 from 

a neuroblastoma (considered radiosensitive) using low doses of radiation; however, they did find HRS 

(surviving fraction [SF] at 2 Gy ranging from 3 to 29%), [14. Nevertheless, the failure to observe HRS in 

radio-sensitive cell line, HX 142, could be explained by decreased thresholds for inducible repair 

responses [14. 

Among the radio-resistant tumors, GBM is considered as one of the most resistant. For this reason, 

Short et al. investigated the affect of low-dose irradiation on five human GBM cell lines (T98G, A7, 

U87MG, U138, and HGL21) and one anaplastic astrocytoma-derived cell line (U373) [15,16. Survival 
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time was calculated using the DMIPS method for T98G, A7, and U373, whereas the FC method (as 

modified by Wouters et al.) was utilized for U87MG, U138, and HGL21 [15,16. The authors were 

able to demonstrate the HRS phenomenon in all five GBM cell lines, with the most dramatic results 

obtained for the A7, U138, and TG98G lines. However, U373 cells did not show HRS [15,16. 

Employing a linear accelerator that was routinely used on patients, a French team delivered  

low-dose radiation, which ranged from 0.2 to 2 Gy, to five human malignant glioma cell lines that 

were established in their laboratory (G5, CL35 [a clone from G5 cell line], G111, G142, and  

G152) [17. Cell survival was calculated with the colony formation assay (CFA), and HRS was 

observed for doses <1 Gy for G5, G111, G142, and G152 cell lines; however, the sub-clone of G5 

failed to show HRS [17 (Figure 2). Similarly, using doses <1 Gy, these same authors demonstrated 

HRS in four human melanoma tumor cell lines (M4Be, A375P, MeWo, and SKMe12) and MRC5 

human fibroblasts, [17. Through analysis of >26 different human cell lines, HRS had now been 

reported by several laboratories, which have used DMIPS and/or CFA to assess survival [12–24. 

Taken together, HRS has been observed in colorectal carcinoma, bladder carcinoma, melanoma, 

prostate carcinoma, cervical squamous carcinoma, lung adenocarcinoma, neuroblastoma, and glioma 

cell lines, as well as a non-malignant lung epithelial line and a primary human fibroblast line [12–24. 

Figure 2. Survival of human glioma cells following irradiation. Cells were irradiated with 

0–2 Gy. G5, G111, G142 and G152 glioma cell lines display HRS at doses below 1 Gy, 

except CL35. 

 

Short et al. investigated the affect of repeated low radiation doses on the human T98G GBM cell 

line. In the study, cell survival was calculated by DMIPS after delivering 15 fractions of 0.4 Gy at  
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3 times a day (spaced by 4-h intervals) for five consecutive days, and the results were compared to the 

cumulative dose (1.2 Gy) given once daily for five successive days [25. The repeated regimen led to a 

significant enhancement (p < 0.0002) in tumor cell killing, with lower cell survival occurring with the  

3-times daily dose compared to the once-daily total dose [25. Moreover, the authors treated two 

additional human GBM cell lines (A7 and U87) with repeated low doses, and found that the lowest cell 

survival occurred when doses were administered in intervals (i.e., 4 and 6 h for A7 and 1 and 5 h for 

U87) [25. Collectively, these experiments demonstrated that repeated low radiation doses could 

increase cell killing by enhancing the HRS phenomenon. This protocol of multiple low doses per 

fraction, per day, spaced at appropriate intervals (4 h), was termed ―ultra fractionated regimen‖ [25. 

Beauchesne et al. also studied the cumulative effect of low radiation doses on cell survival using the 

G5, CL35, and G152 GBM cell lines. For two consecutive days, three fractions of 0.8 Gy were spaced 

at 4-h intervals and compared to a single dose of 2 Gy. The ultra fractionated regimen produced a 

marked increase in cell killing in both G5 and G152 cell lines, but not in the CL35 line [17,26. The 

irradiations were administered with a linear accelerator that was used daily for clinical patient 

therapies [17,26. 

2.2. In Vivo Studies 

Beck-Bornholdt et al. described the first study testing ultra fractionated irradiation in an animal 

model, which involved use of the rat rhabdomyosarcoma R1H, and 126 fractions of radiation over  

six weeks [27. Notably, top-up irradiations were not given and different doses per fraction were  

applied (between 0.43 and 0.71 Gy) [27. The results were compared to a ―historical control‖, and the 

authors found that the ultra fractionated regimen was slightly more effective than the conventional 

approach [27. 

Krause et al. also developed an animal model. The A7 cell line, which displays HRS, was 

transplanted into the right hind legs of mice, and the irradiation protocol was initiated when the mean 

diameter of tumors reached 5 mm (a volume of 57 mm
3
) [28. The ultra fractionated irradiation 

consisted of 126 fractions over six weeks (0.4 Gy per fraction; 3 fractions per day; 21 fractions per 

week; 6-h intervals), whereas the conventional treatment consisted of 30 fractions over six weeks  

(1.68 Gy per fraction; once daily; five fractions per week). A local irradiator was used with a dose rate 

of 0.2–0.4 Gy/min [28. Surprisingly, it was found that the ultra fractionated regimen was less 

effective than the conventional regimen. The growth delay was significantly shorter in ultra 

fractionated irradiation compared to standard radiation (p = 0.047) [28. 

In addition, Beauchesne et al. tested fractionated low-dose irradiation in a glioma animal model that 

was previously developed in their laboratory using the G152 cell line [17,26. G152 xenograft tumors 

were grown for 17 days, and the mice were then exposed to either 0.8 Gy per fraction (3 times per day; 

spaced at 4-h intervals; four days per week; two consecutive weeks) or a single dose of 2 Gy (once per 

day; four days per week; two consecutive weeks) [17,26. Irradiation was delivered by a clinical linear 

accelerator, and the mice were immobilized in plastic tubes so that only the tumor was exposed to the 

radiation [17,26. The regimen of repeated low-doses had a therapeutic effect on tumor growth. In fact, 

at week 12, tumor volume in the ultra fractionated group was half that of the mice receiving standard 

therapy (p = 0.0022) [17,26 (Figure 3). Furthermore, a second experiment was conducted to compare 
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irradiation regimens for the same total doses. For this part of the study, at 17 days post grafting, the 

mice were exposed to either 0.8 Gy 3 times per day (4-h intervals; five days per week; two consecutive 

weeks; total of 24 Gy) or to 2.4 Gy once daily (five days per week; two consecutive weeks; total of  

24 Gy) [17,26. As previously demonstrated, the ultra fractionated regimen resulted in dramatic 

inhibition on tumor growth. Importantly, comparing the two experimental conditions indicated that 

regardless of whether the mice were irradiated with 2-Gy or 2.4-Gy fractions, they displayed similar 

tumor growth [17,26. Taken together, these experiments showed that ultra fractionated irradiation 

provided a marked benefit compared to classical irradiation regimens. 

Figure 3. Inhibition of glioma tumor growth following repeated irradiation with low doses. 

G152 glioma cells injected into the interscapular region of 4-week-old female nude mice 

(Swiss nu/nu). Seventeen days after grafting, mice were exposed either to 0.8 Gy  

3-times/day spaced by 4 h 5 days/week for two consecutive weeks or to 2 Gy once/day  

5 days/week for two consecutive weeks. 

 

2.3. Mechanisms of HRS 

The mechanisms underlying the cell-type specific expression of HRS are still being investigated, 

but appear related to defective DNA repair systems and cell cycle regulation [11. HRS is more likely 

to affect early-responding proliferating tissues, such as skin, and Harney et al. have demonstrated a 

response consistent with HRS in human skin [29. Clearly, more molecular-based experiments are 

needed using whole-animal models to characterize the mechanisms of HRS in normal tissue radiation 

injury. Clinical data obtained so far are also consistent with the concept of transitional low-dose 

radiation responses in tumor nodules derived from solid tumors [30. 
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2.4. Anti-Neoplastic Agents 

It was of interest to study the combination of low radiation doses and few anti-neoplastic agents. 

Taxanes were used in combination to HRS on head and neck squamous cell carcinoma cell lines and 

on SCCHN tumor xenografts in nude mice., a significant enhancement of radiation sensitization by 

taxanes was observed [31,32. Beauchesne et al. tested a combination of etoposide and HRS upon 

malignant glioma cell lines, low-dose hypersensitivity is apparent when etoposide is administrated 

immediately after irradiation, resulting in an additive effect on SF [17. 

3. Clinical Studies 

To translate these in vitro and in vivo observations into the clinical setting, a few phase II clinical 

studies were initiated for assessing ultra fractionated radiation regimens in patients. 

3.1. De Novo Tumors 

Beauchesne et al. initiated a phase II clinical study testing an ultra fractionated regimen that 

delivered a total dose of 67.5 Gy over 90 fractions (0.75-Gy fractions; 3-times daily; at least 4-h 

intervals; five fractions per week; six consecutive weeks) in newly-diagnosed, unresected 

supratentorial GBMs [25. The objective of the study was to assess the toxicity and tolerance of the 

ultra fractionated regimen. Notably, this protocol was initiated before concomitant radio-chemotherapy 

became the standard of care for GBM patients. Also, this was a multi-center French study. Eligible 

patients were >18 years of age, gave informed consent, and were newly diagnosed with unresectable 

GBM with a World Health Organization (WHO) performance status of 0–2 [33. Secondary end-points 

included progression-free survival (PFS) and OS. Irradiation was delivered to the gross tumor volume 

using a 2.5-cm margin for clinical target volume, and the radiation therapy was coordinated through 

dedicated computed tomography (CT) or magnetic resonance imaging (MRI) along with three-dimensional 

planning systems. Conformal ultra fractionated radiotherapy was delivered with linear accelerators 

with a nominal energy of ≥6 MeV [25. Thirty-one patients were included (16 males and 15 females) 

with a median age of 58 years old and a median Karnofsky Performance Status of 80 [33. Four 

patients died before initiating irradiation, and two decided to revert to standard radiation therapy. The 

ultra fractionated regimen was completed in 22 patients, and multi focal GBM was reported in seven 

patients [33. No toxic death occurred during the ultra fractionated irradiation, and the most common 

adverse effect was fatigue, which is frequently associated with cranial radiation therapy. Although the 

ultra fractionation regimen was a constraint for patients, it was well tolerated. Two patients with very 

large tumors progressed during the radiotherapy, leading to premature discontinuation after 48 and  

56 Gy [25. Tumor response was analyzed, and eight stabilizations were reported. In most cases, 

corticosteroids were decreased or stopped for several weeks. The median overall survival was  

9.53 months, and the overall survival rate at 18 and 24 months was 19.35% and 15.48%, respectively. 

Moreover, half of the long-term survivors did not receive a chemotherapy line. The median PFS was 

5.09 months, and the PFS rate at six and 12 months was 45.16% and 12.90%, respectively [33. 

This trial represented the first time that an ultra fractionated irradiation regimen was clinically 

performed and tested. The ultra fractionated regimen was safe and well tolerated. Notably, no  
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post-irradiation leuco-encephalopathy was reported. In fact, the results achieved were comparable to 

the highest survival that had been achieved in recent randomized studies [4,34,35. Also, it is 

important to point out that 16.1% of the patients included in the study were ≥70 years old. The 

EORTC–NCIC study reported a respective median overall survival of 7.85 and 9.4 months for 

irradiation alone and combined TMZ-radiation therapy in patients with unresectable GBM [4,26,29 

(Figure 4). There was a marked number of long survivors that were reported with this low-dose 

radiation therapy, and the overall survival rate at 24 months was 15.48%, which compares favorably 

with data for TMZ–radiation therapy obtained in the EORTC–NCIC study (10.42%) [4. 

Figure 4. Overall survival: ultra-fractionated schedule vs. EORTC/NCIC temozolomide/ 

radiation therapy. 

 

These encouraging results supported the development of further clinical trials to investigate the 

efficacy of the ultra fractionated regimen in combination with adjuvant TMZ. Thus, Beauchesne et al. 

initiated a prospective multicenter phase II trial to assess the effectiveness ultra fractionated irradiation 

along with concomitant and adjuvant TMZ for treating de novo unresectable GBM [36. Patients  

>18 years old, who were able to give informed consent, and had histologically proven newly 

diagnosed, inoperable supratentorial GBM were eligible [30. Three doses of 0.75 Gy were delivered 

daily at a minimum of 4-h intervals (five days a week; six consecutive weeks), and concomitant 

chemotherapy consisting of TMZ was given seven days per week during the ultra fractionated 

radiation therapy. After a 4-week break, chemotherapy was resumed with up to six cycles of adjuvant 

TMZ every 28 days [36. Irradiation was delivered to the gross tumor volume with a 2.5-cm margin 

for the clinical target volume, and radiation therapy was again coordinated using dedicated CT or MRI 

scanning along with three-dimensional planning systems. Conformal ultra fractionated radiotherapy 

was delivered using a linear accelerator with a nominal energy of ≥6 MeV. Tolerability and toxicity 
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were the primary endpoints, whereas survival and PFS were the secondary endpoints. Forty-two 

patients were included (30 males and 12 females), with a median age of 58 (range: 29 to 77 years old) 

and median Karnofsky Performance Status of 80 [36. All patients received combined ultra 

fractionated irradiation and TMZ. Three patients progressed during the scheduled radiation therapy, 

and four sudden deaths were reported [36. No grade 3–4 CNS toxicity was noted; however, one case 

of grade 4 hematological toxicities was observed, and two cases of pulmonary infection were reported 

(all were fatal). Four complete responses were observed, and 12 patients showed a partial response 

(PR) and stabilization (S) [30. The median OS was 15 months, and the OS rate at 18 and 24 months 

was 37% and 25.9%, respectively [36. Eight patients were alive at the time of first analysis. These 

preliminary results have confirmed that this combination of ultra fractionated irradiation and TMZ is 

feasible, safe, and well tolerated. Moreover, encouraging and unexpected survival was noted in GBM 

patients with unfavorable features. The definitive analysis for this study is planned for the end of 2013. 

A molecular analysis is also scheduled. 

3.2. Recurrent Tumors 

Siker et al. conducted a phase I/II study to test on recurrent malignant glioma patients, a protracted 

semi continuous low dose rate radiotherapy, SLDR [37. The delivery of SLDR is feasible in patients 

with recurrent gliomas and resulted in improved outcomes for patients who underwent re-resection., 

this work suggested that dose rate and not the pulse is the reason for the observed efficacy [37. 

No clinical trial has been reported or developed for the treatment of recurrent GBM patients using 

HRS phenemenon. Only one case report was found in the literature. Jahraus et al. reported the case of 

an 82-year-old woman with GBM that progressed during standard treatment [38. The woman 

completed radiotherapy plus concomitant TMZ, and recurrence occurred at the end of the treatment. It 

was then decided to modify the therapy, and the patient was given a combination of ultra fractionated 

irradiation (0.5 Gy, whole brain; twice daily; 4-h intervals) and chemotherapy, consisting of TMZ 

administered in a dose-intense regimen (5 days every 14-day cycle) [38. This new treatment resulted 

in regression of the tumor recurrence as assessed by MRI, and the patient survived for approximately  

six months following recurrence, having received five cycles of additional modified therapy [38. 

Therefore, this combination of TMZ and ultra fractionated irradiation was efficacious and well  

tolerated [38. 

3.3. Pulse Reduced Dose Rate Radiotherapy 

Pulsed reduced-dose-rate radiotherapy (PRDR) is a re irradiation technique that reduces the 

effective dose rate and increases the treatment time, allowing sub lethal damage repair during 

irradiation [39. This pulse radiotherapy regimen was tested on intracranial U87MG GBM tumors in 

nude mice, irradiation consisted in ten 0.2-Gy pulses separated by 3-min intervals [39. Pulse reduced 

regimen of radiation therapy resulted in greater inhibition of tumor growth and improved survival [39. 

In another animal study, the efficacy of pulse reduced dose rate irradiation was monitored by micro 

PET, the results confirmed the previously data [40. Translation to the clinic was performed. A man 

with a grade II astrocytoma who progressed to a GBM after surgery, radiation therapy and temozolomide, 

was re irradiated by a pulse reduce dose rate radiotherapy; a series of 0.2 Gy pulses separated by 3 min 
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time intervals, creating an apparent dose rate of 0.0667 Gy/min [41. A clinical response was obtained, 

and no apparent acute or late neurologic toxicities [41. Adkison et al. treated 103 patients with 

recurrent primary central nervous system malignancies with pulse reduce dose rate radiotherapy; a 

series of 0.2-Gy pulses at 3-min intervals, creating an apparent dose rate of 0.0667 Gy/min to a median 

dose of 50 Gy (range, 20–60) delivered in 1.8–2.0-Gy fractions. [42. Pulsed reduced dose rate was 

well tolerated, allowing for safe re treatment of larger target volumes to high doses with palliative 

benefit, and for Grade 4 patients at recurrence, an interval from initial RT of >14 months predicted for 

longer survival after pulse reduced dose rate radiotherapy [42. 

4. Conclusions 

The ―HRS‖ phenomenon has been demonstrated in vitro using numerous human cancer cell lines, 

including malignant glioma lines. Interestingly, daily repeated irradiation of cells with low doses 

compared to irradiation with a single biologically equivalent dose resulted in significantly higher cell 

killing. Moreover, experiments conducted using glioma xenografts confirmed that low-dose ultra 

fractionated irradiation (0.8 Gy, three times a day) more effectively inhibited tumor growth than a 

single dose (2 or 2.4 Gy, once a day). Furthermore, clinical trials using ultra fractionated radiation 

regimens verified these experimental results and have proved that the treatment method is safe and 

well tolerated. When compared with the EORTC/NCIC trial results for both PFS and OS in 

multivariate analysis, ultra fractionation showed superiority over radiation therapy alone, but not over  

radio-chemotherapy (with TMZ). Moreover, the preliminary results of combined ultra fractionated 

irradiation along with concomitant or adjuvant TMZ yielded encouraging survival outcomes. Taken 

together, ultra fractionated irradiation seems to be a promising treatment for GBM patients. 
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