
computers

Article

Smart Contract Data Feed Framework for Privacy-Preserving
Oracle System on Blockchain

Junhoo Park, Hyekjin Kim, Geunyoung Kim and Jaecheol Ryou *

����������
�������

Citation: Park, J.; Kim, H.; Kim, G.;

Ryou, J. Smart Contract Data Feed

Framework for Privacy-Preserving

Oracle System on Blockchain.

Computers 2021, 10, 7.

https://dx.doi.org/10.3390/

computers10010007

Received: 30 November 2020

Accepted: 23 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Department of Computer Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu,
Daejeon 34134, Korea; junhpark@cnu.ac.kr (J.P.); kherootz@o.cnu.ac.kr (H.K.); gykim@cnu.ac.kr (G.K.)
* Correspondence: jcryou@cnu.ac.kr

Abstract: As blockchain-based applications and research such as cryptocurrency increase, an oracle
problem to bring external data in the blockchain is emerging. Among the methods to solve the
oracle problem, a method of configuring oracle based on TLS, an existing internet infrastructure,
has been proposed. However, these methods currently have the disadvantage of not supporting
privacy protection for external data, and there are limitations in configuring the process of a smart
contract based on external data verification for automation. To solve this problem, we propose a
framework consisting of middleware of external source server, data prover, and verification contract.
The framework converts the data signed in the web server into a proof that the owner can prove
with zk-SNARKs and provides a smart contract that can verify this. Through these procedures,
data owners not only protect their privacy by proving themselves, but they can also automate on-
chain processing through smart contract verification. For the proposed framework, we create a proof
using libsnark for server data and show the performance and cost to verify with Solidity the smart
contract language of the Ethereum platform.

Keywords: blockchain; smart contract; Oracle; zk-SNARKs

1. Introduction

Smart contract is a program that runs on a blockchain and is used to build various
decentralized applications such as games, insurance, and finance. Ethereum, the most
widely known smart contract platform [1], can be used to build decentralized applications.
Ethereum supports Solidity [2] as a language for writing smart contracts, and Ethereum
Virtual Machine (EVM), an execution environment for contracts.

In order to achieve decentralization, the blockchain verifies the validity of transactions
by consensus (e.g., Bitcoin PoW [3]). Blockchain consensus is verified only for elements
that must be verified by an internal system (e.g., the balance of accounts), and functions
implemented in smart contracts guarantee the execution of input data, but do not guarantee
the reliability of the data. In particular, when a function that implements a large amount
of money transfer through input data is executed, the result derived from the input data
becomes very important. However, the security provided by the blockchain or smart
contract does not support the authenticity of the source of external data or the integrity of
the inflow process.

Accordingly, connectivity with external systems is one of the challenges for the use of
smart contracts. Since data generated outside the blockchain is information that cannot be
verified inside the blockchain, it is necessary to secure the trust of external data. Oracle is a
system that operates to make external data available on the blockchain.

Representatively, decentralized finance (De-Fi) is an area where oracle can be used.
In order to implement staking and interest products necessary for decentralized finance,
it is necessary to stable coins or tokens that are the basis of the product, and for this, it must
be implemented based on current price exchange rate. For example, this is the current
dollar exchange rate per price of Bitcoin. As representative websites that provide price per

Computers 2021, 10, 7. https://dx.doi.org/10.3390/computers10010007 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://www.mdpi.com/2073-431X/10/1/7?type=check_update&version=1
https://dx.doi.org/10.3390/computers10010007
https://dx.doi.org/10.3390/computers10010007
https://dx.doi.org/10.3390/computers10010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/computers10010007
https://www.mdpi.com/journal/computers


Computers 2021, 10, 7 2 of 12

coin information include CoinMarketCap [4] and exchanges [5], an oracle is required to
utilize such information in the blockchain. Several proposals have been made to implement
known Oracles.

Voting based schemes MakerDAO [6], one of the decentralized financial platforms,
operates a committee to implement the Oracle system and exchanges tokens based on the
prices they suggested. Oraclize [7] and Chainlink [8] deliver coin price information to
Ethereum while operating nodes. In particular, Chainlink provides Link Tokens as a reward
by introducing a reputation system for node operation. An approach such as Astraea [9]
presents a game-theoretic approach for decentralized oracles. However, this method of
determining data does not provide authenticity of the data itself.

TLS based schemes Research has been conducted to construct a protocol based on
Transport Layers Security (TLS) [10] to provide cryptographic authentication of external
data. There are methods of providing data based on hardware safety [11] and privacy
preserving oracle to verify data with zero-knowledge proof [12]. An approach such as those
in [11,12] requires a separate infrastructure that oracle can trust or participate as a verifier
of data. Therefore, on-chain automation is impossible, and execution of smart contracts
may be delayed due to external data feeds. A protocol [13] to support the verification of
the server’s signature has also been proposed, but it does not support privacy protection
operations for user data.

As a solution for the confidentiality and transactional privacy of the blockchain,
a method is to provide an anonymous cryptocurrency Zcash [14], Monero [15], or protocol
modification [16–18]. This method requires a fork because it is done at the blockchain
design stage. There are also methods [19,20] that verify calculations performed on the
off-chain on the on-chain. This method should consider the cost for verification on-chain.

We intend to provide an environment in which data owners can directly prove it and
smart contracts can verify it in order to implement Oracle on the blockchain. For this,
the following requirements must be satisfied:

• Support for authenticity in the blockchain for external data
• Support on-chain automation for external data
• Support user privacy protection for external data

Solidity, the most used smart contract language, is executed deterministically. Smart con-
tracts triggered by transactions are implemented to perform predetermined actions. ZoKrates,
a tool that supports verification of off-chain operations generated outside the blockchain,
guarantees the privacy of data executed by smart contracts based on zero-knowledge proof.
Ethereum smart contract supports Solidity language conversion of verification operations
so that operations performed off-chain can be verified. Zkay [21], which expanded the
results of individual operations, developed a language that helps developers easily man-
age verification contracts. Language research like this supports verification of operations
performed off-chain, but does not support authentication for external data. Therefore,
the proposed framework should include the language function of the smart contract that
can verify this.

Among the ways to solve data privacy in smart contracts, a new blockchain infrastruc-
ture can be designed. For example, Hawk [17] and Arbitrium [18] rely on a trusted manager
or use hardware-based TEE (Trusted Execution Environment) [22] such as Ekiden [23].
Regarding Oracle, Town Crier [11] provides infrastructure based on reliable hardware.

In this paper, we present Ziraffe, a framework for automated smart contract execution
on-chain. The main function of the framework is to enable smart contracts to automate off-
chain operation verification while supporting data authentication and privacy protection.
Ziraffe provides middleware that supports signatures in TLS-based servers, clients that
provide verifiable data in smart contracts without compromising authentication by data
providers (owners), and interfaces that support easy construction in applications. Table 1
shows the differences between the Ziraffe framework and other solutions.



Computers 2021, 10, 7 3 of 12

Table 1. Comparison with the proposed oracle solution.

Supported Features Voting Based TLS Based Ziraffe

Authenticity × # #
On-chain automation × × #

Privacy Protection × # #

The contributions of this paper are as follows:

• Protocol supporting external data authentication: Introduce a signature system nec-
essary to prevent repudiation of the data source required to authenticate externally
provided data. Based on this, the blockchain can verify the origin of the data presented
by the owner of the data and verify that the correct data has been verified. The data
owner (certifier) cannot intermediately manipulate the data received from the data
source.

• Proposal of Interface for Developer Convenience: Design for the privacy of the prover
provides an oracle interface that can be written in Solidity so that a smart contract
developer can verify a proof including authentication of external data to solve a
problem difficult to implement.

• Provide an evaluation of the performance and cost of protocols and languages that can
be referenced when implementing the proposed framework. The main performance
corresponds to the cost of generating proof data and verifying the smart contract
implemented in Solidity on Ethereum and the size of the stored data.

The structure of this paper is as follows. Section 2 explains the background information
for understanding the proposed framework. Section 3 proposes the purpose and concept
of the proposed framework. Section 4 deals with the details of the proposed framework.
Section 5 proceeds with security and evaluation of the implementation. Through review of
related studies in Section 6, we compare the differences with this study and conclude in
Section 7.

2. Background
2.1. Blockchcin and Smart Contract

Blockchain is being used in cryptocurrencies such as Bitcoin. The important point
of decentralization is that when participants participate in the protocol in the blockchain,
they all assume equal authority and are not controlled by a single specific institution.
Decentralization by consensus is not controlled by a specific minority or a single institution,
so the blockchain has censorship resistance. Also, since the blockchain has an immutable
character as a ledger, it makes it difficult to forge or alter past details. In the blockchain,
irreversibility is proportional to the length of the chain accumulated over time, and integrity
is ensured by connecting each block with a cryptographic one-way function.

In blockchain, transactions are basically publicly stored to form a shared ledger and
verification. Pseudonymity is provided by using the hash value of the public key address,
but the movement of funds and the sum of the amount can be tracked. Transaction dis-
closure changes the state of the smart contract, which is a problem in systems that require
anonymity because prior information can be known.

Smart contracts are programs that run on the blockchain, and Ethereum’s Solidity is a
representative development language. Solidity runs within the Ethereum Virtual Machine
(EVM), a Turing-Complete Languages virtual machine. The EVM is executed with the
input value passed to the smart contract. In order to prevent Denial of Service (DoS),
the concept of gas is introduced. Therefore, a smart contract platform such as Ethereum
must present the cost of the operation executed in the blockchain to the transaction along
with the fee. On the other hand, operations executed on the off-chain are not related
to operations executed on the blockchain, so there is no cost. The method of verifying
operations performed off-chain on-chain using verifiable operations is cost effective.



Computers 2021, 10, 7 4 of 12

2.2. Oracle with TLS

In the blockchain, smart contract oracles deal with the problem of securing the reliabil-
ity of external information. When the information is fetched from outside the blockchain,
the oracle is responsible for the data feed. TLS can be applied to verify that the information
is obtained from the data source. Currently modified TLS 1.3 supports public key cryptog-
raphy, but since it does not provide a signature function to prevent repudiation of the web
server, a separate web server must participate in the blockchain network or the protocol
must be modified so that the server signs with a private key. TLS-N [13] constitutes Oracle
by adding non-repudiation mechanisms to TLS. TLS-N is configured to be compatible with
TLS1.3, and during the TLS handshake process, the requester and generator verify the
result of signing the TLS records exchanged with each other on the blockchain and propose
a mechanism that cannot deny the process of communicating with each other.

Since the web server does not directly communicate with the blockchain, the data
provided must be directly verified by the data owner on the blockchain. To this end,
it must be configured so that the user who owns the data can be issued a signed form
of his/her data provided on the web and provided it on the blockchain for verification.
In order to provide the data format that can be sent and received in the client–server
structure in JSON type and to be provided in a verifiable format so that it can be saved as a
smart contract stored in the blockchain, the server middleware must be added separately.
We have constructed the Oracle framework with this approach.

2.3. zk-SNARKs for Smart Contract

A zero-knowledge proof is a cryptographic protocol constructed in the presence
of a verifier to prove and a verifier to verify when a certain fact exists. For example,
when applying zero-knowledge proof in the authentication system, it can be configured
in a way that proves that the value is known without revealing the password or personal
information required for authentication. It can be implemented as a protocol by defining
what facts to prove and verify with zero-knowledge proof and what secret values to hide.

Zero-knowledge proof verifies only whether the statement about the fact that the
verifier wants to prove is true/false without revealing the secret value in the protocol
between the prover and the verifier. When a function given to a prover and a verifier exists,
if the verifier generates a proof value by inputting a sentence and a secret value as the
input of the function, the verifier must not know any value related to the secret during the
verification process. Summarizing these characteristics, the proof of zero knowledge must
satisfy the following three conditions:

• Completeness: If a sentence is true, the verifier must be able to understand this fact
• Soundness: If a sentence is false, it shouldn’t convince the verifier
• Zero Knowledgeness: During the verification process, the verifier must know nothing

but the true and false of the sentence.

NIZK (Non-Interactive Zero-Knowledge) converts the prover’s statement to be veri-
fiable and does not leak information other than the truth of the statement, so it is possi-
ble to prove personal data. zk-SNARK (zero knowledge Succinct Non-Interactive Argu-
ment of Knowledge) [24] does not interact in a non-interactive manner from short proofs.
Thus, the prover can persuade the verifier with one message. The prover can use per-
sonal information during the creation of the proof, and the verifier has no knowledge of
that information.

In off-chain computation, zk-SNARKs can perform calculations after a validator with
a weak calculation outsources the calculation to an unreliable validator and return a result
with evidence that the result is correct. In particular, in zk-SNARK, since the verification
cost is not related to calculation, it is cost-effective in platforms that require calculation costs
such as Ethereum. After the introduction of zk-SNARKs, methods such as optimization
were also studied [25].

Since zk-SNARK, zero-knowledge proof has been developed from various perspec-
tives. The approaches of these studies complement the initial trusted-setup or support



Computers 2021, 10, 7 5 of 12

homomorphic computation through range proofs. However, among the zero-knowledge
proof implementations studied so far, zk-SNARKs has the lowest verification complexity
and can utilize less on-chain verification cost in the blockchain. Therefore, we designed the
framework for zk-SNARKs.

In order to enable smart contracts to verify data outside the blockchain, we utilize
the ZoKrates toolbox. ZoKrates uses the Rust implementation of zk-SNARKs’ Bellman
library. ZoKrates provides a verification contract implemented in Solidity for verifica-
tion on Ethereum. The language proposed by Zkay utilizes ZoKrates to help developers
construct and distribute applications. Since this is supported at the level of the develop-
ment language, developers can more easily manage transactions that deploy and operate
verification contracts. Similar to zkay, Ziraffe framework creates a contract written in
Solidity using Zokrates, but another interface is needed to achieve the purpose of verifying
external signatures. Currently, Zokrates is the most widely known tool that enables solidity
verification within Ethereum, so it was designed to support a new language type for Oracle
to verify external data based on Zokrates.

3. Framework Overview

This section describes the composition of the Ziraffe framework. The Ziraffe frame-
work consists of three parts as shown in Figure 1. First, it can help distribute smart contracts
on the blockchain. The second is to enable users to access external data sources and transfer
the imported values to the blockchain. Finally, when a user fetches data from a data source,
it allows the server to verify the external origin by signing the issue. This section will
explain each part in detail.

Computers 2021, 10, x FOR PEER REVIEW 5 of 12 
 

cost is not related to calculation, it is cost-effective in platforms that require calculation 
costs such as Ethereum. After the introduction of zk-SNARKs, methods such as 
optimization were also studied [25]. 

Since zk-SNARK, zero-knowledge proof has been developed from various 
perspectives. The approaches of these studies complement the initial trusted-setup or 
support homomorphic computation through range proofs. However, among the zero-
knowledge proof implementations studied so far, zk-SNARKs has the lowest verification 
complexity and can utilize less on-chain verification cost in the blockchain. Therefore, we 
designed the framework for zk-SNARKs. 

In order to enable smart contracts to verify data outside the blockchain, we utilize the 
ZoKrates toolbox. ZoKrates uses the Rust implementation of zk-SNARKs’ Bellman 
library. ZoKrates provides a verification contract implemented in Solidity for verification 
on Ethereum. The language proposed by Zkay utilizes ZoKrates to help developers 
construct and distribute applications. Since this is supported at the level of the 
development language, developers can more easily manage transactions that deploy and 
operate verification contracts. Similar to zkay, Ziraffe framework creates a contract 
written in Solidity using Zokrates, but another interface is needed to achieve the purpose 
of verifying external signatures. Currently, Zokrates is the most widely known tool that 
enables solidity verification within Ethereum, so it was designed to support a new 
language type for Oracle to verify external data based on Zokrates. 

3. Framework Overview 
This section describes the composition of the Ziraffe framework. The Ziraffe 

framework consists of three parts as shown in Figure 1. First, it can help distribute smart 
contracts on the blockchain. The second is to enable users to access external data sources 
and transfer the imported values to the blockchain. Finally, when a user fetches data from 
a data source, it allows the server to verify the external origin by signing the issue. This 
section will explain each part in detail. 

 
Figure 1. Ziraffe framework overview. This figure is an overview of the Ziraffe framework. 
Programmers can use the framework to develop and distribute smart contracts. Users can be 
provided with privacy protection through the framework in their credentials. The server of the 
data source supports signing through middleware. 

Figure 1. Ziraffe framework overview. This figure is an overview of the Ziraffe framework.
Programmers can use the framework to develop and distribute smart contracts. Users can be
provided with privacy protection through the framework in their credentials. The server of the data
source supports signing through middleware.

3.1. Deploy Contract for Oracle

Smart contract developers write contracts using high-level languages. Various applica-
tions have been developed using Solidity, the most widely used language. Solidity can be
compiled and used in various platforms such as Klaytn [26], RSK [27], TRON [28], and Hy-
perledger [29], as well as Ethereum. However, in order to implement Oracle in Solidity, it is



Computers 2021, 10, 7 6 of 12

developed in a way that utilizes it after the Oracle infrastructure is implemented, so the
Oracle interface to Solidity itself is not supported.

From the developer’s point of view, when creating an application that requires Oracle,
there is a problem that it must be developed in Solidity and linked to platforms such
as Chainlink [8] or Provable [7]. This is because Oracle is not an interface supported by
Solidity, but an interface supported by the platform. Therefore, a problem of selecting an
Oracle platform operator arises from the developer’s point of view. This soon leads to
commissioning problems for Oracle costs.

Another issue is the privacy that occurs when external data is imported from smart
contracts. Storing external data on the blockchain or submitting it to request verification
causes unwanted information disclosure from users. By using a method such as off-chain
computation, calculations related to personal information can be performed off-chain,
and only verification can be performed with smart contracts. However, in order for a
developer to design with this in mind, it is necessary to be able to directly develop a
verification contract, and cryptographic knowledge is required. As a result, without a
simple interface, it is difficult to solve the requirements for privacy issues.

The purpose of our framework is to allow users acting dependently within the ap-
plication to verify external data. Therefore, in applications developed using the Ziraffe
framework, the user can directly transmit external data if necessary. Developers only need
to develop an application using the provided interface. Our solution is to introduce a type
for smart contract language and a preprocessor that supports it to support an interface that
can replace Oracle for developers.

The role of the preprocessor can be largely divided into two. The first is to support
Oracle types that developers can use. Any developer who knows and can develop the
Solidity language supports the implementation of Oracle using types. The second is to
support a privacy protection type of verification contract. We use systems like ZoKrates
to support creating contracts that require Oracle verification. Through the framework,
developers can implement verification contracts written in Solidity by using interfaces
without knowing about tools.

By utilizing the interface, not only does the developer’s contract development become
easy, but also the user’s privacy can be protected. For this purpose, we implemented the
type supported by the Solidity language and applied it to the development and distribution
stage of the blockchain. The contract required for proof of external data is compiled by
preprocessing the result of implementing the interface, and distributed as bytecode for it.

3.2. Privacy Protection for Users

Data that the user can certify by importing data from an external source may include
proof of the balance of the bank or the issued qualification, proof of the details of the
current server situation (for example, the current situation for insurance payment). In order
for a user to directly provide a source for external data, it must first be possible to verify
the presented data. Another important point is that privacy protection must be possible
while generating a provable proof.

We use zk-SNARK to construct this framework. The proof generated in zk-SNARKs is
included in the blockchain transaction, propagated, and configured to be verifiable on the
blockchain. In the blockchain, it is possible to verify the origin of data and necessary facts
from the transaction submitted by the user. At this time, the details of the user’s personal
information are not revealed.

Zk-SNARKs need a trusted setup for initial configuration. Therefore, in the smart
contract development stage, the transaction fields that the user intends to present and the
data provision details of the server must be defined in advance. When the fact to be proved
is confirmed, the contract is distributed, and the user can prove the fact by submitting the
result of the signed data received from the server.



Computers 2021, 10, 7 7 of 12

3.3. Signing from Data Source

In the Ziraffe framework, the signature of the data source is essential. The ECDH
protocol used in the TLS protocol is used for key exchange for HTTSP but does not provide
signed data, so it does not provide users with non-repudiation of data sources. Therefore,
in order to authenticate that the user’s data came from the correct source, it is necessary
to authenticate the source of the data. For this, we configured the framework to sign the
server using the cryptographic key exchanged with ECDH.

In order for the server to sign data details to the user, data exchange of a specified
standard is required between the user and the server. In order to generate proof of the data
that the user wants to prove with zk-SNARK, parameters for input data required during
the proof and verification process must be defined. We do this by putting middleware on
the server and configuring it to communicate with the user.

The server’s middleware communicates with the user, not with the blockchain.
Therefore, there is no need to directly connect to the blockchain or register an account on
the blockchain. The server is only responsible for communicating with the user to sign and
return the data the user needs. This is an extension of the HTTPS protocol. However, in or-
der to verify the result of the data signed by the server with the private key, the developer
must be able to register the smart contract public key in the application development stage.

When the middleware issues signed data, the user takes the signed data as input and
creates a proof that does not reveal the secret value. In the contract for verifying the proof,
the user’s public key is used to verify that the proof submitted by the user comes from the
correct data source, and thus the accuracy of the fact to be proved is guaranteed.

4. Implementation

Building an application using the Ziraffe framework consists of the following proce-
dures. Developers create contracts using Solidity language, and use the framework’s API
to create Oracle functions for data requested by the application. In addition, the application
registers the public key of the source corresponding to the data source. The developer
compiles the created contract and distributes it to the blockchain network. When running
an application and verifying external data such as user credentials, the user requests the
data source to perform HTTPS communication. The data source responds to the user by
signing the data requested by the user in the middleware. The user generates a proof that
can be verified by calculating the data received from the data source with zk-SNARKs.
The user sends the transaction including the proof to the Oracle contract. Oracle contract
verifies the submitted proof to verify the user’s credentials.

4.1. Pre-Processing of Smart Contracts

In order to program a contract to fetch external information, we provide a Solidity-
based contract interface. The process that is processed to convert to Solidity contract is
shown in Figure 2, and shows the process of preprocessing and compiling the ZIRF file
written in Solidity using the interface provided by Ziraffe framework. ZIRF is translated
through Lexer, Parser, and Rewritter for the written language. Here, Lexer converts
keywords (URL, JSON, function) or operators specified in Ziraffe and existing solidity
into tokens. The parser creates an Abstract Syntax Tree with tokens according to Ziraffe’s
grammar rules. After that, Rewritter traverses the AST tree, checks the type, and rewrites
the code.

The format of data fetched from an external source from the user’s client is composed
of JSON as shown in Figure 3a,b. JSON means a type to specify the value to be received
as a result of an https request. It can be used in the same way as a structure, and the
hash function is calculated according to the order of the values inside when verifying the
signature. It is stored as a struct in Ethereum. Here, in the case of the format shown in
Figure 3a, the Hash (balance|dataOfInquiry) value is saved.



Computers 2021, 10, 7 8 of 12Computers 2021, 10, x FOR PEER REVIEW 8 of 12 
 

 
Figure 2. This figure shows the pretreatment steps of the Ziraffe framework. The ZRF file created by the developer is 
converted to Solidity code through pre-processing. After that, it is stored in the blockchain as a bytecode through a 
compilation process. 

The format of data fetched from an external source from the user’s client is composed 
of JSON as shown in Figure 3a,b. JSON means a type to specify the value to be received 
as a result of an https request. It can be used in the same way as a structure, and the hash 
function is calculated according to the order of the values inside when verifying the 
signature. It is stored as a struct in Ethereum. Here, in the case of the format shown in 
Figure 3a, the Hash (balance|dataOfInquiry) value is saved. 

Randomly added type and variable JSON and URL are changed to Solidity type and 
variable. JSON and URL are each converted to a struct used in Ethereum. The ReqParam 
variable is expressed in ZRF, but in the rewritten Solidity contract, it is removed so that 
the value does not increase in the on-chain. For newly added functions, get and post, a 
value is requested in the URL, and the requested value is converted into a contract that 
can verify signature verification into zero-knowledge proof. 

When creating a contract for verification, it is created based on ZoKrates. Verification 
contract receives proof as an input and can prove without revealing the value (e.g., 
balance) of the entered information. The URL type defines the URL string value and the 
public key pk required to verify the signature of the value transmitted from the URL, and 
is stored in Ethereum in the form of a struct. ReqParm receives a string value as a value 
specifying the parameter used in the https request. The parameters used in the request are 
only used for https requests and are not stored in the blockchain. When requested, it enters 
the form as {id, password} as the second argument of the function that makes the https 
request. 

Get<Bank> is a function that sends a get request to the URL received as the first 
argument. It receives the JSON value received in the form of a bank and verifies the 
signature with the pk corresponding to the URL. The request function supports get and 
post among https requests. When requesting get<Bank>, the JSON value of the request 
result is shown as in Figure 3c. The message value is used as the bank value, and the 
signature is used by reading the signature value. An example for developing a contract to 
prove the balance of a bank that has implemented such a function is shown in Figure 3d. 

Figure 2. This figure shows the pretreatment steps of the Ziraffe framework. The ZRF file created by the developer
is converted to Solidity code through pre-processing. After that, it is stored in the blockchain as a bytecode through a
compilation process.

Computers 2021, 10, x FOR PEER REVIEW 9 of 12 
 

 
Figure 3. This figure is an example of the Ziraffe language used for smart contract development. (a) is an example of the 
JSON type used to prove the balance in the case of banks, and (b) shows the specification of the URL of the data source. 
(c) is the data format including signature. (d) shows an example of a contract created using the interface supported by the 
Ziraffe framework before pre-processing. 

4.2. Middleware 
TLS 1.3 exchanges keys to be used for https via ECDHE. It is possible to check 

whether the currently connected server is an authenticated server by using the server’s 
certificate received through key exchange. After that, the server performs encrypted 
communication to request data and receive a response. However, since the TLS 1.3 
protocol does not support application level signing in the server, there is a problem that 
the client cannot prove to a third party that the data is issued by the server. Ziraffe is 
configured to support signature by applying middleware that can be used in the server. 

After normal key exchange, the server responds to the client’s data request. The 
middleware responds with the JSON standard defined for the data the server responds, 
and is configured to respond by signing with the server’s private key. As shown in Figure 
3c, it adds the server signature according to the JSON requested by the client. The signed 
data may include a data value (e.g., balance) to be responded, a timestamp, a 
Blocknumber, a user’s address, and an ID value used for server authentication. 

The role of the server is simply to sign the issued data to prevent non-repudiation. 
Therefore, when developing using the Ziraffe framework, the programmer must define 
the specification between the user (client) and the external source (server) at the stage of 
application construction. The specified standard is required during the setup process in 
zk-SNARK. 

4.3. Proof Generation 
The user creates a Proof that can be verified with a contract as a prover to prove data 

along with the role of a client communicating with an external source. For example, a 
prover can submit “How much I have” to the blockchain to verify it, and create a proof so 
that the amount is not revealed. 

Since zk-SNARKs require an initial trusted setup, the developer defines the facts that 
the user should prove in advance and defines the operation while simultaneously 
distributing JSON and a verifiable contract for this. The main contents of the operation are 
(1) verification of the pk corresponding to the source and URL of the server, (2) verification 

Figure 3. This figure is an example of the Ziraffe language used for smart contract development. (a) is an example of the
JSON type used to prove the balance in the case of banks, and (b) shows the specification of the URL of the data source.
(c) is the data format including signature. (d) shows an example of a contract created using the interface supported by the
Ziraffe framework before pre-processing.

Randomly added type and variable JSON and URL are changed to Solidity type and
variable. JSON and URL are each converted to a struct used in Ethereum. The ReqParam
variable is expressed in ZRF, but in the rewritten Solidity contract, it is removed so that the
value does not increase in the on-chain. For newly added functions, get and post, a value is
requested in the URL, and the requested value is converted into a contract that can verify
signature verification into zero-knowledge proof.

When creating a contract for verification, it is created based on ZoKrates. Verifica-
tion contract receives proof as an input and can prove without revealing the value (e.g.,
balance) of the entered information. The URL type defines the URL string value and the
public key pk required to verify the signature of the value transmitted from the URL, and is
stored in Ethereum in the form of a struct. ReqParm receives a string value as a value
specifying the parameter used in the https request. The parameters used in the request
are only used for https requests and are not stored in the blockchain. When requested,



Computers 2021, 10, 7 9 of 12

it enters the form as {id, password} as the second argument of the function that makes the
https request.

Get<Bank> is a function that sends a get request to the URL received as the first
argument. It receives the JSON value received in the form of a bank and verifies the
signature with the pk corresponding to the URL. The request function supports get and
post among https requests. When requesting get<Bank>, the JSON value of the request
result is shown as in Figure 3c. The message value is used as the bank value, and the
signature is used by reading the signature value. An example for developing a contract to
prove the balance of a bank that has implemented such a function is shown in Figure 3d.

4.2. Middleware

TLS 1.3 exchanges keys to be used for https via ECDHE. It is possible to check whether
the currently connected server is an authenticated server by using the server’s certificate
received through key exchange. After that, the server performs encrypted communication
to request data and receive a response. However, since the TLS 1.3 protocol does not
support application level signing in the server, there is a problem that the client cannot
prove to a third party that the data is issued by the server. Ziraffe is configured to support
signature by applying middleware that can be used in the server.

After normal key exchange, the server responds to the client’s data request. The mid-
dleware responds with the JSON standard defined for the data the server responds, and is
configured to respond by signing with the server’s private key. As shown in Figure 3c,
it adds the server signature according to the JSON requested by the client. The signed data
may include a data value (e.g., balance) to be responded, a timestamp, a Blocknumber,
a user’s address, and an ID value used for server authentication.

The role of the server is simply to sign the issued data to prevent non-repudiation.
Therefore, when developing using the Ziraffe framework, the programmer must define
the specification between the user (client) and the external source (server) at the stage of
application construction. The specified standard is required during the setup process in
zk-SNARK.

4.3. Proof Generation

The user creates a Proof that can be verified with a contract as a prover to prove
data along with the role of a client communicating with an external source. For example,
a prover can submit “How much I have” to the blockchain to verify it, and create a proof
so that the amount is not revealed.

Since zk-SNARKs require an initial trusted setup, the developer defines the facts
that the user should prove in advance and defines the operation while simultaneously
distributing JSON and a verifiable contract for this. The main contents of the operation are
(1) verification of the pk corresponding to the source and URL of the server, (2) verification
of the signature of data issued from the server, and (3) verification of the private data value
among JSON values without revealing it.

The generated proof composes and submits a transaction that calls the verification
contract and submits the input value used in proof creation and the server’s signature
together. In verification contract, the proof operation is verified, and the operation result is
used to determine true/false.

5. Evaluation

We evaluate the implementation of the Ziraffe framework described earlier. In the
blockchain, smart contract platforms such as Ethereum have to pay the cost of operations.
In addition, if you write values to storage data that is permanently stored in Ethereum,
you have to pay for it. On-chain operations require cost, whereas off-chain operations do
not require cost, so the main performance can be measured in time. Therefore, the main
performance indicators are the time to generate a proof in the off-chain with zk-SNARKs



Computers 2021, 10, 7 10 of 12

from the server issued data, the gas cost consumed to verify the proof in the contract
deployed on Ethereum, and the size required to store the proof.

The Ethereum network used for the evaluation was based on the Rapsten Test network,
and the client that generated the proof in off-chain operation has an Intel Core i7-8850 CPU
@ 2.60 GHz and 16 GB RAM. The data used to generate the proof can vary depending on
how many times the Hash value required to fix the length of JSON is executed. Therefore,
the test was conducted for the proof that the SHA-256 hash function was executed and the
signature was verified. ALT_BN1208 EdDSA was used to generate the signature.

Table 2 shows the result of JSON input targeting JSON input using the Ziraffe frame-
work, and the hashed value of the JSON data is signed, and the time to generate the proof is
12,413 msec. At this time, 256,112 gas is displayed as the required value to verify the proof.
The value stored in the storage of the contract is 256 bytes, and in the case of zk-SNRAKs,
since the complexity of verification cost is constant, it can be seen that the value reflects
only the price of the network state regardless of the proof creation time.

Table 2. Proof generation and verification results of external data using zk-SNARK in Ziraffe frame-
work.

Key Value Proving Time (ms) Verification Cost
(gas) Proof Size (bytes)

Signature with 1 hash
function 5354 246,640 256

Signature with 2 hash
function 12,413 258,112 256

Signature with 3 hash
function 25,125 258,176 256

6. Related Work

The Ziraffe framework aims to support an environment for Oracle contract program-
mers to easily build Oracle. This section explains the differences between the existing
research and the proposed framework.

Blockchain and Privacy Since a decentralized block chain verifies and stores the validity
of transactions, privacy issues can arise. As a solution to this, there are studies apply-
ing zero-knowledge proof to payment such as Zcash [14] or Monero [15] to ensure the
anonymity of transactions. However, these studies do not support data source authenti-
cation because they are designed for verification without revealing the facts that can be
verified on-chain.

Oracle with TLS There are studies that attempt to vote in a decentralized environment
to implement Oracle, but it does not support the authentication process for users to bring
their own data. On the other hand, Town Crier [11], TLS-N [13], and Deco [12] support data
authentication by presenting a protocol for connecting TLS to the blockchain. In particular,
in the case of Deco, in TLS 1.3 version, the protocol was configured so that the attestor can
verify to the oracle (verifier) through a third-party handshake method without modifying
the server for authentication to external sources. In this study, Oracle is configured to
operate without a separate operation, eliminating platform dependence and supporting a
framework for developers to develop such environments.

Zero knowledge Proof for Smart Contract In order to apply zero knowledge proof to
smart contract, Hawk constructed a protocol using manager. ZoKrates [20] and Zkay [21]
proposed a language that supports developers to implement off-chain operations and
verify them with contracts on-chain. The Ziraffe framework proposes a framework that
can solve Oracle problems by using ZoKrates to authenticate external data sources and
provide interfaces to them.



Computers 2021, 10, 7 11 of 12

7. Conclusions

In this paper, we showed that the Ziraffe framework proposed by us can support
authentication of origin for external data and protection of user privacy. In addition, it is
configured to support the interface so that the programmer can easily implement the
contract for verification. The proposed process makes it easy to implement zk-SNARKs
verification when building applications that require data from external sources, and can
bring usefulness to the development stage. Reflecting this, developers can build the
necessary environment according to the requirements of the application, and users are
guaranteed to hide private data when submitting data to the blockchain. We tested this
only on Ethereum, but now Solidity is being used on smart contract platforms such as
Klaytn, RSK, and Hyperledger. Therefore, we believe that our solution will be practical,
as it can be enabled in Solidity to build applications in a decentralized environment.

Currently, we have proposed a method based on the ZoKrates tool that utilizes
zk-SNARKs, but the zero-knowledge proof scheme is developing. We use zk-SNARKs,
which are cost-effective due to low verification complexity, but they have a disadvantage
that they require initial trusted-setup and an additional study of interfaces for applying
zero-knowledge proofs may be required for various applications with homomorphic
computation support. Further, since the middleware of the server is operated by a third
party separately from the blockchain, problems such as censorship resistance or abusing
may occur. This part is expected to be better researched if data sources are diversified and
implemented in a trusted environment such as Intel SGX. We will develop the framework
in the future, including these researches.

Author Contributions: J.P. and J.R. contributed ideas and manuscripts. H.K. and G.K. supplemented
the manuscript and participated in its implementation. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (2019-0-00108, Developing Oracle Technology to connect Blockchain Smart Contracts to the
authenticity proof external data).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Buterin, V. Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. 2014. Available online:

https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_
platform-vitalik-buterin.pdf (accessed on 30 November 2020).

2. Ethereum Foundation. 2018. Solidity Documentation. Available online: https://docs.soliditylang.org/en/v0.4.24/ (accessed on
30 November 2020).

3. Nakamoto, S. Bitcoin: A Peer-to-peer Electronic Cash System; White Paper; 2008. Available online: https://git.dhimmel.com/
bitcoin-whitepaper/ (accessed on 30 November 2020).

4. CointMarketCap. 2020. Available online: https://coinmarketcap.com/ (accessed on 30 November 2020).
5. Binance. 2017. Available online: https://www.binance.com/ (accessed on 30 November 2020).
6. The Maker Procotocol: MakerDAO’ Multi-Collateral Dai (MCD) System. 2019. Available online: https://makerdao.com/en/

whitepaper/ (accessed on 30 November 2020).
7. Bernani, T. Oraclize; London, UK. 2016. Available online: http://www.oraclize.it (accessed on 30 November 2020).
8. Ellis, A.S.; Juels, S.N. Chainlink: A Decentralized Oracle Network. Retrieved March 2017, 11, 2018.
9. Adler, J.; Berryhill, R.; Veneris, A.; Poulos, Z.; Veira, N.; Kastania, A. Astraea: A decentralized blockchain oracle. In Proceedings

of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada,
30 July–3 August 2018; pp. 1145–1152.

10. The Transport Layer Security (TLS) Protocol Version 1.3 RFC8446. Available online: https://tools.ietf.org/html/rfc8446 (ac-
cessed on 30 November 2020).

11. Zhang, F.; Cecchetti, E.; Croman, K.; Juels, A.; Shi, E. Town crier: An authenticated data feed for smart contracts. In Proceedings of
the 2016 aCM sIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 270–282.

https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://docs.soliditylang.org/en/v0.4.24/
https://git.dhimmel.com/bitcoin-whitepaper/
https://git.dhimmel.com/bitcoin-whitepaper/
https://coinmarketcap.com/
https://www.binance.com/
https://makerdao.com/en/whitepaper/
https://makerdao.com/en/whitepaper/
http://www.oraclize.it
https://tools.ietf.org/html/rfc8446


Computers 2021, 10, 7 12 of 12

12. Zhang, F.; Maram, D.; Malvai, H.; Goldfeder, S.; Juels, A. Deco: Liberating web data using decentralized oracles for tls.
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Online, 9–13 November 2020;
pp. 1919–1938.

13. Ritzdorf, H.; Wüst, K.; Gervais, A.; Felley, G.; Capkun, S. TLS-N: Non-repudiation over TLS enablign ubiquitous content signing.
In Proceedings of the NDSS Symposium 2018, San Diego, CA, USA, 18–21 February 2018.

14. Zcash. Available online: https://z.cash/ (accessed on 30 November 2020).
15. Monero. Available online: https://www.getmonero.org/ (accessed on 30 November 2020).
16. Sasson, E.B.; Chiesa, A.; Garman, C.; Green, M.; Miers, I.; Tromer, E.; Virza, M. Zerocash: Decentralized anonymous payments

from bitcoin. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014;
pp. 459–474.

17. Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The blockchain model of cryptography and privacy preserving
smart contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016;
pp. 839–858.

18. Kalodner, H.; Goldfeder, S.; Chen, X.; Weinberg, S.M.; Felten, E.W. Arbitrium: Scalable, private smart contracts. In Proceedings of
the 27th {USENIX} Security Symposium, Baltimore, MD, USA, 15–17 August 2018; pp. 1353–1370.

19. Eberhardt, J.; Tai, S. On or Off the Blockchain? Insights on Off-Chaining Computation and Data. In European Conference on
Service-Oriented and Cloud Computing; Springer: Cham, Swizerland, 2017; pp. 3–15.

20. Eberhardt, J.; Tai, S. ZoKrates-Scalable Privacy-Preserving Off-Chain Computations. In Proceedings of the 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018;
pp. 1084–1091.

21. Steffen, S.; Bichsel, B.; Gersbach, M.; Melchior, N.; Tsankov, P.; Vechev, M. zkay: Specifying and enforcing data privacy in smart
contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11–15 November 2019; pp. 1759–1776.

22. Costan, V.; Devadas, S. Intel SGX Explained. IACR Cryptol. EPrint Arch. 2016, 2016, 1–118.
23. Cheng, R.; Zhang, F.; Kos, J.; He, W.; Hynes, N.; Johnson, N.; Song, D. Ekiden: A platform for confidentiality-preserving,

trustworthy, and performant smart contracts. In Proceedings of the 2019 IEEE European Symposium on Security and Privacy
(EuroS & P), Stockholm, Sweden, 17–19 June 2019; pp. 185–200.

24. Gennaro, R.; Gentry, C.; Parno, B.; Raykova, M. Quadratic span programs and succinct nizks without pcps. In Proceedings of the
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, 26–30 May 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 626–646.

25. Parno, B.; Howell, J.; Gentry, C.; Raykova, M. Pinocchio: Nearly practical verifiable computation. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, San Francisco, CA, USA, 19–22 May 2019; pp. 238–252.

26. Klaytn, Position Paper. 2019. Available online: https://www.klaytn.com/Klaytn_PositionPaper_V2.1.0.pdf (accessed on
30 November 2020).

27. Sergio Demian Lerner, RSK: Bitcoin Powered Smart Contracts. 2019. White Paper. Available online: https://www.rsk.co/
Whitepapers/RSK-White-Paper-Updated.pdf (accessed on 30 November 2020).

28. TRON Foundation, TRON Advanced Decentralized Blockchain Platform. 2018. Available online: https://tron.network/static/
doc/white_paper_v_2_0.pdf (accessed on 30 November 2020).

29. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.;
Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the
Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

https://z.cash/
https://www.getmonero.org/
https://www.klaytn.com/Klaytn_PositionPaper_V2.1.0.pdf
https://www.rsk.co/Whitepapers/RSK-White-Paper-Updated.pdf
https://www.rsk.co/Whitepapers/RSK-White-Paper-Updated.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf
https://tron.network/static/doc/white_paper_v_2_0.pdf

	Introduction 
	Background 
	Blockchcin and Smart Contract 
	Oracle with TLS 
	zk-SNARKs for Smart Contract 

	Framework Overview 
	Deploy Contract for Oracle 
	Privacy Protection for Users 
	Signing from Data Source 

	Implementation 
	Pre-Processing of Smart Contracts 
	Middleware 
	Proof Generation 

	Evaluation 
	Related Work 
	Conclusions 
	References

