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Abstract: Sensors and other Internet of Things (IoT) technologies are increasingly finding application
in various fields, such as air quality monitoring, weather alerts monitoring, water quality monitoring,
healthcare monitoring, etc. IoT sensors continuously generate large volumes of observed stream data;
therefore, processing requires a special approach. Extracting the contextual information essential for
situational knowledge from sensor stream data is very difficult, especially when processing and in-
terpretation of these data are required in real time. This paper focuses on processing and interpreting
sensor stream data in real time by integrating different semantic annotations. In this context, a system
named IoT Semantic Annotations System (IoTSAS) is developed. Furthermore, the performance of
the IoTSAS System is presented by testing air quality and weather alerts monitoring IoT domains by
extending the Open Geospatial Consortium (OGC) standards and the Sensor Observations Service
(SOS) standards, respectively. The developed system provides information in real time to citizens
about the health implications from air pollution and weather conditions, e.g., blizzard, flurry, etc.

Keywords: sensor stream data; semantic annotation and interpretation; real-time systems; Internet
of Things (IoT)

1. Introduction

The IoT is the network of objects or things containing technologies embedded with
electronics, software, and sensors in order to enable these objects to be sensitive to the
environment in which they are placed and to collect observed data and to transmit it to a
centralized server in the form of streaming data, called sensor stream data [1]. Furthermore,
sensors are accessible, discoverable, and controllable via the web, which is enabled by the
Sensor Web. The standardization for the Sensor Web is defined by the Open Geospatial
Consortium (OGC), named Sensor Web Enablement (SWE), which is divided into two
parts: SWE information model (which includes Observations & Measurements (O&M),
Transducer Model Language (TransducerML or TML), and Sensor Model Language (Sen-
sorML)); and SWE service model (which includes Sensor Observations Service (SOS), Web
Notification Services (WNS), Sensor Alert Service (SAS), and Sensor Planning Service
(SPS)) [2,3].

Complexity, dynamicity, standardization, generalization, and the large volume of
unstructured sensor data streams are the major challenges for processing in real time.
In addition, heterogeneous, distributed, and non-standard infrastructure and poor data
representation have resulted in many sensor data streams being locked inside specific
proprietary applications that are inaccessible to the wider community. Therefore, extracting
contextual information essential for situational knowledge from the sensor stream data is
very difficult (remains a significant burden for the IoT), especially when processing and
interpretation of these data are required in real time [4–7]. Therefore, the objective of this
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research paper is the development of techniques for integration and interpretation of the
semantic annotations into sensor stream data in real time.

In this context, adding semantic annotations into sensor stream data is expected to
provide a better understanding and more meaningful descriptions to enable application
areas of IoT to become much more intelligent [8]. Thus, what has been performed in this
research paper is the development of several different annotations that are integrated in
real time into the sensor stream data (in two IoT domains: air quality monitoring and
weather alerts) and their interpretation in real time, informing citizens about the health
implications of air pollution and weather conditions, e.g., blizzard, flurry, etc.

The main contributions of this paper are as follows:

1. Developed annotation techniques for real-time integration of semantic into heteroge-
neous sensor stream data within the context of IoT.

2. Developed techniques to enable interpreting semantically annotated of the context.
3. An integrated system named IoTSAS that demonstrates the utility of the proposed

research idea, which is tested in two IoT domains, such as air quality monitoring and
weather alerts monitoring.

4. The validity of IoTSAS and the proposed system architecture through the real sensor
stream data from the World Air Quality Index is proved. Moreover, the performance
of the system has been tested by 1,000,000 sensors observations at the same time.

The remainder of the paper is organized as follows. Section 2 introduces the proposed
system: an overview of the system architecture, system implementation (including six
modules of the system, such as real-time processing of integration and interpretation
of semantics into sensor stream data module, data modeling module, IoT management
metadata module, weather alerts and air quality monitoring modules, and Application
Programming Interface (API) for external systems module), system network architecture,
system security, and a sensor stream data simulator. Section 3 presents system testing
results focused on system performance testing. Finally, Section 4 summarizes the paper
and describes future research directions.

Related Work

The IoT represents an active scientific research field due to its importance in differ-
ent domain applications. Sensors are one of the most important components of the IoT.
Raw sensor stream data are useless unless properly annotated. Therefore, by adding
semantic annotations with concept definitions from ontologies, the interpretations and
understanding of sensor stream data are possible [8]. Sensor stream data that are stored in
the repository (data store) as static data and then integrated with semantics are defined as
non-real-time semantic annotation, while the real-time integration of sensor data as dynamic
data with semantics is defined as real-time semantic annotation [1]. Our IoTSAS system
works based on real-time semantic annotation.

Based on several literature reviews [1,9–11] for semantic sensor technologies in the
IoT, there are still gaps in extracting new knowledge from sensor stream data, especially in
the annotation of IoT heterogeneous sensor stream data with semantic in real time, which
is the main objective of this paper.

In the following, some works are presented that address the issue of IoT semantics.
In paper [12], the integrations and analyzation of multiple heterogeneous streams of

sensor data are explained with the goal of creating meaningful abstractions or features.
They have implemented a framework, based on Semantic Web technologies, that creates
annotations (e.g., blizzard, flurry, rain shower, and rain storm) from sensor steam data in
real time. In this paper, the SPARQL rule is used to integrate semantic annotations into
sensor stream data, while Spark Streaming is used for this purpose in our paper, which
has shown better results, as observed in Section 3 “System Testing Results”. Furthermore,
in our research paper and the annotations considered in the paper [12] also include other
annotations from air quality monitoring of the IoT domain, such as AQI index, air pollution
level, and health implications, and their interpretation is performed in real time.
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In paper [13], a generic window-based IoT streaming data integration (ISDI) approach
is proposed to deal with IoT data in different formats and subsequently introduced the
algorithms to integrate IoT streaming data obtained from multiple sources. The ISDI is
developed in Java on NetBeans IDE and is used as a time-based library, named Joda-Time.
Unlike our approach, no stream processing system (such as Spark Streaming, Storm, Kafka,
etc.) to support real-time and near real-time analytics for the streaming data sets is used.
Therefore, our system has shown better performance, as presented in the Section 3. “System
Testing Results”.

In paper [14], an IoT-Stream system for semantically annotating streams is presented.
IoT-Stream is a lightweight semantic model, fully compatible and as an extension of the
well-known SSN ontology (Semantic Sensor Network ontology), for stream annotations
which facilitates the implementation of IoT applications dealing with stream sensory data.

In paper [15], a dynamic dashboarding platform for continuous monitoring of indus-
trial fleets tackled both aforementioned problems by adopting Semantic Web of Things
technologies. Aggregations, visualizations, and sensors can be discovered automatically,
since they are provided as Representational State Transfer (RESTful) web services on a Web
Thing Model compliant gateway. The gateway is designed to provide semantic annotations
of the Web Things, which describes what their abilities are.

In paper [16], the applicability of semantic technologies in the IoT is presented for ad
hoc integration and processing of heterogeneous data sources for static and streaming data,
providing more flexible and efficient processing techniques. The conceptual architecture
is based on the OpenIoT framework, extended with continuous query processing and
IoT intelligence. In paper [17], a new Purpose-Oriented Situation-Aware Access Control
(PO-SAAC) framework for software services is presented. The practical applicability of
the PO-SAAC framework is demonstrated by the implementation of a software in the
healthcare domain.

2. Proposed System
2.1. System Architecture—An Overview

In Figure 1, an overview of the system architecture for real-time integration and
interpretation of semantics into heterogeneous sensor stream data within the context of the
Internet of Things is presented. The proposed real-time semantic annotation system utilizes
Spark Streaming, Apache Kafka, Apache Cassandra database, and SOS O&M standards.

Figure 1. An overview of the system architecture.
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The heterogeneous sensor stream data forming the IoT-based sensor device is wirelessly
transmitted to serve as the “producer” for the Kafka server. The “producer” client publishes
streams of data to Kafka “topics” distributed across one or more cluster nodes/servers called
“brokers”. The published streams of data from Kafka are then processed by Apache Spark
Streaming in parallel and real time.

The Kafka server is utilized to receive various formats of sensor data streams (e.g.,
text, binary, JavaScript Object Notation (JSON), Extensible Markup Language (XML), etc.)
and to transform them in a particular format that will be processed by Spark Streaming.
The transformed sensor data stream will relay real-time detection process of outliers, which
is implemented inside Spark Streaming. A data stream object is considered an outlier if it
does not conform to the expected behavior, which corresponds to either noise or anomaly.
Outliers can arise due to different reasons such as mechanical faults, other changes in the
system, fraudulent behavior, instrument error, human error, or natural deviation.

The sensor data streams that are not identified as outliers for further semantic anno-
tations processing pass to the Real-Time Semantic Annotation (RTSA) component, which is
developed inside Spark Streaming. Next, the interpretation of the semantic annotations
is performed by the other component called Real-Time Interpreting Semantically Annotated
(RTISA), which additionally is developed inside Sparking Streaming.

The explanation of these two components is as follows:

• Real-Time Semantic Annotation (RTSA) enables real-time integration of semantics into
heterogeneous sensor stream data within the context of the Internet of Things. RTSA
uses sensor metadata, archival data streams, and mining data streams for adding
semantic annotations with concept definitions from ontologies or other semantic
sources, which allows the understanding of senor data and metadata elements. The
semantic annotations are implemented into SOS O&M by using stakes, such as External
XML Linking Language (XLink) or Embedded to add annotations in XML files. External
annotations can point to extra sources of information (e.g., a file) or to Uniform
Resource Name (URN), while Embedded annotations are only a single value-scalar of
semantic annotation.

• Real-Time Interpreting Semantically Annotated (RTISA) enables real-time interpretation
of semantics from heterogeneous sensor observation data and sensor metadata within
the context of the Internet of Things. In other words, it executes and interprets stake
annotated expressions, such as External (XLink) or Embedded.

The enriched sensor data stream with the semantic annotations results are stored in the
database (in our case Cassandra database) and are displayed in IoT Real-Time Monitoring
Systems. It is worth mentioning that Spark Streaming will process sensor data stream in
the format of OGC standards such as SWE, respectively, version 2.0 of the SOS standard
(SOS 2.0 relies on the OGC O&M) to encode semantic annotations and data gathered by
sensors [2].

Furthermore, as shown in Figure 1, our system architecture supports ad hoc requests
(queries executed ad hoc from users). An ad hoc request is a question asked once about the
current state of a stream or streams.

The real-time processing aspects that characterize the IoTSAS system involves a
continual input of heterogeneous sensor stream data, processed with semantic annotations
and interpretations, and output of data in format of SOS O&M standards and served to IoT
real-time monitoring systems, with very short latency requirements for processing.

2.2. Implementation

To validate the proposed model and techniques for integration and interpretation
of the semantic annotation in real time into heterogeneous sensor observation data and
metadata with context in the IoT, a prototype system named IoT Semantic Annotations
System (IoTSAS) is implemented, which contains modules, as shown in Figure 2: real-time
processing of integration semantics into sensor stream data module, metadata management
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module, air quality and weather alerts monitoring module, data modelling module, and
APIs module (for external systems).

Figure 2. IoTSAS (IoT Semantic Annotations System) modules.

The real-time processing of integration and interpretation of semantics into sensor
stream data is the core module that is developed in Spark Streaming. Since the Spark
Streaming programs can be written in one of the following languages, such as Java, Scala,
or Python (introduced in Spark 1.2), we have chosen the Java language using Eclipse. As
shown in Figure 3a, the Java packages of this module include the following:

• iot.core: Input IoT Data Stream, IoT Data Stream Decoder, IoT Domain, Query Proces-
sor, and Real Time Outlier Detection;

• iot.data.annotations.plugins: Air Quality Annotations and Weather Alerts Annota-
tions;

• iot.data.repository: Archival IoT Data Stream Annotation Repository, Archival IoT
Data Stream Repository, Cassandra Utils, Cassandra Connector, Processor IoT Data
Stream Repository, Working IoT Data Stream Annotation Repository, and Working
IoT Data Stream Repository;

• iot.datamodeling: Data Modeling, Create Keyspace, Create Processor IoT Data Streams
Model, Create Working IoT Data Streams Model, Create Working IoT Data Stream
Annotations Model, Create Archival IoT Data Streams Model, Create Archival IoT
Data Stream Annotations Model, and Create Invalid IoT Data Stream;

• iot.sos: Get Observation Response, and Register Sensor;
• iot.spark.entity: Archival IoT Data Stream, Archival IoT Data Stream Annotation,

Invalid IoT Data Stream, IoT Annotation, IoT Data Stream, IoT Sensing Node Device,
IoT Sensor, Ontology Classes, Ontology Source, Parameters, Processor IoT Data Stream,
Sensing Node, Sensing Node Device, Working IoT Data Stream, and Working IoT
Data Stream Annotation;

• iot.spark.processor: IoT Spark Processor, RTISAE Engine, and RTSAE Engine.
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Figure 3. IoTSAS Solution workspaces: (a) Java packages of core module; and (b) .Net C# projects of
other modules.

The development of other modules is performed in .Net Core C# based on the per-
formance [18] and our long experience in .Net C# technology. As shown in Figure 3b, the
.NET C# contains the following solutions:

• IoTSAS.AirQualityAndWeatherAlertsMonitoring;
• IoTSAS.API;
• IoTSAS.APIExternalSystems;
• IoTSAS.Core;
• IoTSAS.MetadataManagment;
• IoTSAS.SensorSimulator.

In the following, each of the modules are described.

2.2.1. Real-Time Processing of Integration and Interpretation of Semantics into Sensor
Stream Data Module

Real-time processing of integration and interpretation semantics into sensor stream
data module is the core component that provides the functionality of the system. As
mention in Section 2.1 “System Architecture”, it utilizes Apache Kafka, Spark Streaming,
Apache Casandra database, and SOS O&M standards.

Figure 4 illustrates the high-level view of architectural components of the system. The
heterogeneous sensors observed data are sent in different formats in Apache Kafka. In
Apache Kafka, a Kafka Producer is implemented that consumes different format of sensor
data and converts them into a suitable format and then publishes them to Kafka topics. A
Kafka topic is identified by its name, which is part of a global namespace of that Kafka
cluster. A topic in Kafka represents a queue or a logical collection of messages written by
one more Kafka producers and read by one or more Kafka consumers. Kafka converts all
messages into byte arrays. The communications between the producers, consumers, and
clusters in Kafka use the Transmission Control Protocol (TCP). A Kafka broker contains
one or more topics that are in turn divided into one or more partitions.
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Figure 4. Real-time processing of integration and interpretation of semantics into sensor stream data.

Kafka cluster transformed sensor data stream transmitted to Spark Streaming for
further processing. Spark Streaming divides the sensor data stream into batches of
50 milliseconds called Discretized Stream (DStreams), which internally is a sequence of
Resilient Distributed Datasets (RDDs), one for each batch interval.

Spark Streaming divides the sensor data stream into batches of 50 milliseconds called
DStreams, which internally is a sequence of RDDs, one for each batch interval. Each RDD
contains the sensor stream data received during the batch interval. The sensor stream data
contained in RDD are partitioned, and operations are performed in parallel on the data
cashed in memory by providing high performance at scale in partitioning and minimizing
disk I/O. The RDD sensor stream data by using the filter function are filtered to remove
outliers. Then, by using the transform function, RDD sensor stream data are transformed to
WorkingIoTDataStream by adding an identifier that uniquely identifies the observation
(sensor stream data) and an entry timestamp that notes that the sensor stream data have
arrived at the Stream Processor. After that, RDDs are mapped to the IoT domain (air
quality monitoring or water quality monitoring) and by using developed plugins through
the RTSA (Real-Time Semantic Annotation) component, the RDD sensor stream data are
enriched with semantic annotations from Web Ontology Language (OWL) source. Then,
by using RTISA (Real-Time Interpreting Semantically Annotated), the components are
executed, and stake annotated expressions are interpreted. Finally, by using the transform
function, RDDs annotated with semantic are transformed to SOS O&M standards and
serve IoT real-time monitoring systems and are stored in the Cassandra database, as shown
in Figure 4.

A SOS O&M observation comprises zero or multiple OM_Observation entries, and
each store an instance of an observation. In our solution, a complex observation SOS O&M
is implemented. In the following, common complex observation properties are presented:

• gml:identifier (mandatory): This identifies or refers to a specific observation. In our
case, it is a generated by the Universally Unique Identifier (UUID), e.g., 69822a61-
5490-47b4-aaf4-b282b6df7824), of observation;
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• om:phenomenonTime (mandatory): This describes the time instant or time period for
which the observation contains sensor data;

• om:resultTime (mandatory): This provides the time when the result became available
(often, this is identical to the phenomenonTime);

• om:procedure (mandatory): The identifier of the sensing node instance that has
generated the observation;

• om:observedProperty (mandatory): The IoT domain of phenomenon that was ob-
served;

• om:featureOfInterest (mandatory): An identifier of the geometric feature (e.g., sensor
station) to which the observation is associated;

• om:result (mandatory): The observed values. The type of the result is swe:DataRecord
PropertyType.

Figure 5 shows the complex observation SOS O&M standard document, which con-
tains two extra elements, that we have developed:

Figure 5. Complex observation SOS O&M standard document (with semantic annotations and
interpretations).
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• swe:sem-annotations: This element contains one or more annotation empty elements,
which can be embedded or xlink. The annotation elements are created by Real-Time
Semantic Annotation (RTSA) component;

• swe:sem-interpretations: This element contains the interpretation of sensor observed
data. The interpreted information is created by the Real-Time Interpreting Semantically
Annotated (RTISA) component.

2.2.2. Data Model Implementation

The data model is developed in Apache Cassandra database and contains the following
components: Processor Data Streams (stores a summary data of each sensor for Stream Proces-
sor operations), Working Data Streams (a fixed sliding window that stores 15 last measured
values for each sensor), Working Data Stream Annotations (stores semantic annotations of
Working Data Streams observations data), Archival Data Streams (archives sensor stream data
for generating reports and different statistics), Archival Data Stream Annotations (archives
semantic annotations of sensor stream data), Invalid Data Streams (stores invalid sensor
stream data that are classified as outlier), and WSNs Metadata (known as static data that
store data and metadata about sensors, sensors types, sensing nodes, gateway nodes,
central monitoring nodes, etc.).

Data modeling diagram of each component is presented in Figure 6. Each component
has its attributes, methods, and events. In order to explain more clearly how the data of the
Archival Data Stream, Archival Data Stream Annotations, and Process Data Streams are stored
in the Apache Cassandra database, their details are presented in Figure 7.

Figure 6. Diagram of data modeling implementation.
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Figure 7. Data of the Archival Data Streams, Archival Data Stream Annotations, and Process Data Streams.

2.2.3. IoT Management Metadata Module

The IoT management metadata module provides the management of data called static
data, such as the following:

• Devices metadata;
• Nodes metadata;
• Phenomenon (parameters) metadata.

Devices metadata include data about device types, such as the following: sensor, servers,
clusters, microcontrollers, cables, etc., and data about devices, as shown in Figure 8, such
as name of device, a description, serial number of device, sensor ID (when device type
is sensor), manufacturer, status of devices (active or passive), and parameters which the
device measures, such as CO (ppm), Humidity (%), O3 (ppb), NO2 (ppb), Pressure (mb),
PM10 (µg/m3), PM2.5 (µg/m3), SO2 (ppb), etc.

Nodes metadata include data about WSN nodes, such as the following:

• Sensing node types such as static sensor nodes to perform monitoring missions in the
region of interest or mobile sensor nodes to perform monitoring in different locations;

• Deployment sites include the name of deployment site, description, and municipality
in which the sensors are deployed;

• Sensing nodes include data of sensing nodes, as shown in Figure 9, such as the name
of sensing node, description, RIFD, node type, municipality, deployment site, data
rate (in minutes), node status as either active or passive, geographical position, and to
which gateway node they sent data;

• Gateway nodes include data such as name of gateway node, description, municipal-
ity, deployment site, status node, and geographical position and to which central
monitoring node they sent data;

• Central monitoring nodes include data such as the name of central monitoring node,
description, status node, and geographical position;

Phenomenon metadata include data about phenomenon, such as the following:

• Parameter types include data about parameter types: hydro morphological, physico-
chemical, biological, specific synthetic, specific non synthetic, air quality, etc.;
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Figure 8. IoTSAS Metadata Management module—adding new device.

Figure 9. IoTSAS Metadata Management module—adding new sensing node.
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• Sub parameter types include data about sub parameter types: hydrological regime, river
continuity, morphological conditions, thermal conditions, oxygenation conditions,
salinity, acidification status, nutrient conditions, invertebrate fauna, fish, phytoben-
thos, macrophytes, phytoplankton, air pollution, etc.;

• Parameters includes data such as the following: name of parameter (e.g., Carbon
Monoxide (CO), Humidity, Ozone (O3), Nitrogen Dioxide (NO2), Pressure (p), pm10,
pm25, Sulphur Dioxide (SO2), Temperature, Wind, Water Gauge, etc.), unit of phe-
nomenon (e.g., ppm, %, ppb, mb, µg/m3, ◦C, m/s, mm, etc.), and range of values.

2.2.4. Weather Alerts and Air Quality Monitoring

An IoT real-time air quality and weather alerts monitoring system is developed to
visualize sensor stream data and their semantic annotations based on web platform. Sensor
data of Hydrometeorological Institute of Kosovo (HMIK), Pristina US Consulate, Rilindja-
Pristina, and Peje are used through the World Air Quality Index API (AQI API). The AQI
API can be used for advanced programmatic integration, such as the following: access
to more than 11,000 station-level and 1000 city-level data, station name and coordinates,
search station by name, geo-location query based on latitude/longitude, individual Air
Quality Index (AQI) for all pollutants, current weather conditions, etc. [19].

Input Different Format Sensor Stream Data

The system receives raw sensor stream data from AQI API in JSON format, as pre-
sented in Figure 10, which supports measuring in real time the following parameters:
PM10 (pm10), Nitrogen Dioxyde (no2), PM25 (pm25), Carbon Monoxide (co), Humidity
(h), Sulphur Dioxide (so2), Ozone (o3), Pressure (p), Temperature (t), Water Gauge (wg),
and Wind (w). JSON data contains also attributes such as the following: data (station
data: idx—unique ID for the city monitoring station; aqi—real time air quality information;
time—measurement time information; s—local measurement time; and tz—station time
zone); city (information about the monitoring station: name—name of the monitoring
station; geo—latitude/longitude of the monitoring station; and url—url for the attribution
link); attributions (EPA Attribution for the station); and iaqi (measurement time information:
pm25—individual AQI for the PM2.5; v—individual AQL for the PM2.5).

Figure 10. Input sensor stream data—JSON format.

Data received by sensors every 60 minutes, through AQI API, are represented in
corresponding numerical formats, e.g., in −3.8 (◦C), for temperature parameter.
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Integration and Interpretation of Semantic Annotations to the Sensor Stream Data

In the developed system, different semantic annotations for sensor stream data are
developed, such as the following:

#Blizzard;
#Flurry;
#Rain_Storm;
#Rain_Shower;
#AQI_Index;
#Air_Pollution_Level;
#Health_Implications.

#Blizzard annotation detecting a Blizzard requires the WindSpeed to be more than
15.6 m/s (high), visibility to be less than 400 m (low), and snow precipitation for at least
4 h, as presented Equation (1).

BLIZZARD =
WindSpeed (a) ≥ 15.6 m/s (High) Λ Duration (a) > 4 h Λ

Precipitation (b) = Snow Λ Duration (b) > 4 h Λ
Visibility (c) < 400 m (Low) Λ Duration (c) > 4 h

(1)

#Flurry annotation: detecting a Flurry requires the WindSpeed to be less than 15.6 m/s
(low), visibility to be less than 400 m (low), and snow precipitation, for at least 4 h, as
presented Equation (2).

FLURRY =
WindSpeed (a) < 15.6 m/s (Low) Λ Duration (a) > 4 h Λ

Precipitation (b) = Snow Λ Duration (a) > 4 h Λ
Visibility (c) < 400 m (Low) Λ Duration (c) > 4 h

(2)

#Rain_Storm annotation: detecting a RainStorm requires the WindSpeed to be more
than 15.6 m/s (high), temperature greater than 0 ◦C, and rain precipitation, as presented
Equation (3).

RAIN STORM =
WindSpeed (a) ≥ 15.6 m/s (High) Λ

Precipitation (b) = Rain Λ
Temperature (c) > 0 ◦C

(3)

#Rain_Shower annotation: detecting a RainShower requires the WindSpeed to be less
than 15.6 m/s (low), temperature greater than 0 ◦C and rain precipitation, as presented
Equation (4).

RAIN SHOWER =
WindSpeed (a) < 15.6 m/s (Low) Λ

Precipitation (b) = Rain Λ
Temperature (c) > 0 ◦C

(4)

#AQI_Index annotation is an index for reporting daily air quality and informs us on
how clean the air or how polluted the air is. The United States Environmental Protection
Agency (EPA) calculates the AQI for five major air pollutants regulated by the Clean Air
Act: ground-level ozone, particle pollution (also known as particulate matter), carbon
monoxide, sulfur dioxide, and nitrogen dioxide. The AQI range values is from 0 to 500.
According to EPA, the higher the AQI value, the greater the level of air pollution and
the greater the health center (take the maximum of all individual AQI), as presented
Equation (5).

AQI = max(AQIPM2.5, AQIPM10, AQIO3, . . . ) (5)

#Air_Pollution_Level annotation is based on the AQI value. It is divided into six “Air
Quality Index Levels of Health Concern” categories: Good (AQI is 0 to 50), Moderate (AQI is
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51 to 100), Unhealthy for Sensitive Groups (101 to 150), Unhealthy (AQI is 151 to 200), Very
Unhealthy (AQI is 201 to 300), and Hazardous (AQI is 301 to 500).

#Health_Implications annotation: Each of six categories described above corresponds
to a different level of health concert. The #Health Implications annotation denotes what
they mean, for example, the ”Unhealthy for Sensitive Groups” category means the following:
“Although the general public is not likely to be affected at this AQI range, people with lung
disease, older adults, and children are at a greater risk from exposure to ozone, whereas
persons with heart and lung disease, older adults, and children are at greater risk from the
presence of particles in the air.” The ”Moderate” category means the following: “Air quality
is acceptable; however, for some pollutants there may be a moderate health concern for a
very small number of people who are unusually sensitive to air pollution.”

The above described annotations are developed into ontology named IoT semantic an-
notations ontology. Figure 11a presents air quality monitoring annotations, while Figure 11b
presents weather alerts monitoring. It is worth mentioning that for execution of the Simple
Protocol and RDF Query Language (SPARQL) query over the IoT semantic annotations
ontology, the Java library called ‘Jena Ontology API’ has been used.

Figure 11. IoT semantic annotations ontology for the following: (a) air quality monitoring and
(b) weather alerts monitoring.

After the real-time integration of semantics into heterogeneous sensor stream data
with context in the IoT, the real-time interpretation of the sensor stream data is performed
through the RTISA (Real-Time Interpreting Semantically Annotated) component in order to
provide better understanding and to infer new knowledge from the sensor stream data. In
this study, by using the integrated semantic annotated stakes, the following interpretation
pattern is developed:

Now (@[#timestamp]) in location [#location(lat, long)] is detected [#AQI_index] with AQ
index with primary pollutant [#MaxParam] [#MaxParamUnit] and [#Air_Pollution_Level]
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air pollution level with health implications [#Health_Implications]. Moreover, a [#High-
erLevelFeature] higher level feature is happening, which manifests [#HigherLevelFea-
ture_Indicates].

Outputs for Users

To display the heterogeneous sensor stream data and their semantic annotations and
interpretation, a real time IoT application in the ASP.NET Core Model View Controller
(MVC) is developed. To read data from Apache Casandra database, the “DataStax C# for
Apache Cassandra” is used, while Leaflet is used to display the data in the map. As shown
in Figures 12a,b and 13, the users can observe the quality of air pollution for the chosen
sensing node, including the latest measurement values obtained for that sensing node,
such as PM2.5, PM10, O3, NO2, SO2, CO, Temperature, Pressure, Humidity, Wind, and
Water Gauge; semantic annotations, such as #AQI Index, #Air Pollution Level, #Health
Implications, #Higher Level Feature; and the interpretations of the semantic annotations,
such as the following, are developed.

Figure 12. System outputs: (a) monitoring air quality pollution; (b) map view.

Now (@2021-08-22 13:18:17) in location ‘Pristina US Consulate (42.648872, 21.137121)’
is detected ‘58’ AQ index with primary pollutant ‘PM2.5 µg/m3’ and ‘Moderate’ air pollu-
tion level with health implications ‘Air quality is acceptable; however, for some pollutants
there may be a moderate health concern for a very small number of people who are unusu-
ally sensitive to air pollution’. Moreover, a ‘Blizzard’ higher level feature is happening
which manifests ‘A hazardous weather statement, which indicates a severe weather con-
dition characterized by reduced visibility from falling and/or blowing snow and strong
winds that may be accompanied by low temperatures. Detecting a Blizzard requires the
Wind Speed to be more than 15.6 m/s (high), visibility to be less than 400 m (low) and
snow precipitation, for at least 4 h’ .
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Figure 13. System outputs: Real-time integration and interpretation of semantic annotations.

2.2.5. APIs for External Systems

To share sensor metadata and sensor observed data (with semantic annotations) with
IoT real-time monitoring external systems, an ASP.NET Web API, named IoTSAS.API, is
developed. ASP.NET Web API is an extensible framework for building Hypertext Transfer
Protocol (HTTP) services than can be accessed and consumed from any client including
platforms such as desktop applications, console applications, web applications, mobile
devices applications, etc. It is works similarly to the ASP.NET MVC web application except
that is sends data (in JSON, XML, Binary Javascript Object Notation (BSON), or other
format) as a response instead of html view.

2.3. System Network Architecture

The overall design of the system network architecture is shown in Figure 14, which
includes the following:

• Apache Kafka Server: Apache Kafka operates and receives streaming observed data sent
by sensors;

• Spark Streaming Cluster Server: core system (developed in Apache Spark Streaming) is
installed;

• Apache Cassandra database Server: all data are stored;
• IoT Real-Time Web Application Server. These are hosted in Internet Information Services

(IIS) modules such as the following: weather alerts monitoring module, air quality
monitoring module, and metadata management module;

• Web Services Server: these are deployed APIs for external systems.
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Figure 14. Network architecture of IoTSAS.

2.4. IoTSAS System Security

As for the security aspect of the IoTSAS system, in addition to the sensor metadata that
are registered in the Metadata Management Module, each sensor is assigned a secret code.
When sending the observed data, the sensor also sends this secret code as information to
be identified.

To provide security in data encryption when communicating modules in networks, the
Secure Sockets Layer (SSL) protocol is used. Users’ access to Metadata management module,
weather alerts monitoring modules, and air quality monitoring modules is provided
by using credentials such as username and password. The password is encrypted by
using the .NET System.Security.Cryptography.SHA512 library, respectively, and the Hash
Based Message Authentication Code Secure Hashing Algorithm 512 (HMACSHA512) hash
function. A salt is added to the hashing process to force their uniqueness and to increase
password complexity. To prevent Structured Query Language (SQL) injection attacks,
the Language Integrated Query (LINQ) to Entities .Net 5.0 is used because LINQ is not
vulnerable to SQL injection.

2.5. Sensor Stream Data Simulator

To test the performance of the IoTSAS system, simulating a huge amount of sensor
stream data was necessary. Therefore, to accomplish this, a sensor stream data simulator,
is developed, as shown in Figure 15. The simulator generates pseudo-random sensor
stream data by using Random C# class (https://docs.microsoft.com/en-us/dotnet/api/
system.random?view=net-5.0, accessed on 26 September 2021) in certain ranges that are
defined for each parameter (phenomenon) in the metadata module. For example, the
range of possible temperature values generated by the simulator is from −25 ◦C to 45 ◦C,
according to [20]. As shown in Figure 15, the simulator can be configured to generate data
at different intervals of milliseconds, seconds, or minutes. Moreover, specific sensor nodes
can be selected to generate sensor stream data and higher level features, e.g., Blizzard can
be selected to generate data from sensors that cause this phenomenon. The simulator is
able to generate sensor stream data in batches and can send them for processing in the
IoTSAS system.

https://docs.microsoft.com/en-us/dotnet/api/system.random?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.random?view=net-5.0
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Figure 15. Sensor stream data simulator.

3. System Testing Results

The testing of six modules, such as (a) real-time processing of integration semantics
into sensor stream data module; (b) metadata management module; (c) air quality and (d)
weather alerts monitoring module; (e) data modelling module; and (f) APIs module (for
external systems) is performed on five testing phases.

Unit test is based exactly on the system’s specification and has covered the results of
errors made during the coding phase.

Integration test is where the complete integration of the six modules is tested based
on a prepared test scenario. Furthermore, Data Flow testing is performed in this phase,
including each step-by-step process.

System test: As in the previous phase, all modules are ensured to work together
without any errors. Furthermore, at this point the system is tested on whether it meets
all the requirements and the security issues of the application, such as security level
(encryption of modules communications, SQL Injections, and XSS—Cross Site Scripting),
data confidentiality, access controls, and immunity.

Acceptance test (alpha and beta): in this phase, the system is tested with real data from
sensors of the Hydrometeorological Institute of Kosovo (HMIK), Pristina US Consulate,
Rilindja-Pristina, and Peje, as mentioned in Section 2.3.

Performance testing: By using the simulator (described in Section 2.5), it was possible to
test the performance of the IoTSAS system. Testing is performed in network architecture,
as shown in Figure 14. The technical specifications of the hardware environment, in which
the test is performed, are presented in Table 1.
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Table 1. Technical specifications of the hardware environment.

Server Processor RAM Memory OS

Spark Streaming
Cluster Server

Intel® Xeon® CPU x5570
@ 2.93GHz (4 CPUs),

~2.9GHz
32GB Windows Server 2016

Datacenter 64-bit
(10.0, Build 14393)

Apache Cassandra
database Server

Intel® Xeon® CPU x5570
@ 2.93GHz (4 CPUs),

~2.9GHz
32GB Windows Server 2016

Datacenter 64-bit
(10.0, Build 14393)

Apache Kafka Server
Intel® Core™ i5-4200M

CPU @ 2.50GHz
(4 CPUs), ~2.5GHz

8GB Windows 10 Pro
64-bit (10.0, Build

19042)

IoT Real-Time Web
Application Server

Intel® Core™ 2 Duo CPU
e7500 @ 2.93GHz

(2 CPUs), ~2.9GHz
16GB Windows Server 2019

Datacenter 64-bit(10.0,
Build 17763)

Web Services Server
Intel® Xeon® CPU

E5-2650 v4 @ 2.20GHz
(4 CPUs), ~2.2GHz

6GB Windows Server 2012
Standard 64-bit (6.3,

Build 9600)

Table 2 shows the results of the IoTSAS system performance test. The tests are
performed for different generated sensors observations data and are repeated three times
to obtain more accurate averages considering the current load of the processor, memory in
use by active processes, network, etc.

Table 2. Results of the IoTSAS system performance test.

No. of
Observations

Test 1
(Second)

Test 2
(Second)

Test 3
(Second)

AVG
(Second)

100 0.122 0.118 0.128 0.123
500 0.184 0.154 0.207 0.182

1000 0.287 0.281 0.269 0.279
5000 0.901 0.909 0.897 0.902

10,000 1.417 1.372 1.329 1.373
20,000 2.587 2.558 2.807 2.65
50,000 6.634 6.698 6.511 6.61

100,000 14.257 14.443 14.257 14.32
150,000 21.376 21.317 21.749 21.48
250,000 35.245 36.131 34.508 35.29
500,000 67.934 66.927 68.029 67.63

1,000,000 141.07 139.33 134.18 138.20

Figure 16a presents the test performance of 100 to 10,000 generated sensors observation
data. The average time required for real-time processing of 100 observations by annotating
with semantics and interpreting them is 0.123 s, while the average time required for
processing of 10,000 observations is 1.37 s.

In Figure 16b, the volume testing is presented, which determines the efficiency of the
IoTSAS system performance with large volume of generated sensors observations data. The
average time required for real-time processing of 500,000 observations by annotating with
semantics and interpreting them is 67.63 s, while the average time required for processing
of 1,000,000 observations is 138 s.
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Figure 16. Test performance of (a) 100–10,000 sensors observations data and (b) 20,000–1,000,000 sensors observations data.

Based on the World Air Quality Index database, the statistics of monitoring stations
in different European countries by area have been obtained and analyzed. As shown
in Table 3, there are a total of 2510 monitoring stations in European countries which
continuously send hourly observed data to the World Air Quality Index database. The
maximum number of observed phenomena (parameters) for monitoring station is 13,
which means that we have a maximum of 13 sensors observations data for one monitoring
station. Therefore, this means that we have a maximum of 32,630 sensors observation
data in Europe with 2510 monitoring stations. If these sensors observation data are sent
to the server at the same time, the IoTSAS system will process, annotate, and interpret in
real-time in less than 50 s.

If we calculate for 76,923 monitoring stations with 13 parameters for each monitoring
station (1,000,000 sensors observations/13 parameters per station), which send observed
data at the same time (all at once), then it means that the IoTSAS system will be able to
process, annotate, and interpret within 138 s based on the test results, which indicates good
system performance.

A comparative analysis of IoTSAS system performance and the existing systems is
presented in Table 4. In paper [12], in which hardware is not specified, the required time to
process 1104 observations is over 200 s, while the IoTSAS system requires only 0.35 s for the
same number of observations in our environment. In paper [16], the required time to pro-
cess 10,000 sensor observations is over 2.5 s, and our system processes sensor observations
in 1.37 s. In paper [13], the required time to process 56,570 records is approximately 60 s,
while our system takes approximately 7 s for the same number of observations. Based on
these results, we can say that the developed IoTSAS system provides good performance.

Table 3. Statistics of monitoring stations in different European countries by area.

# Country No. of Monitoring
Stations

1 Albania (https://aqicn.org/map/albania/) 2

2 Andorra (https://aqicn.org/map/andorra/) 1
3 Armenia (https://aqicn.org/map/armenia/) 1

4 Austria (https://aqicn.org/map/austria/) 82
5 Azerbaijan (https://aqicn.org/map/azerbaijan/) 3
6 Belarus (https://aqicn.org/map/belarus/) 16

https://aqicn.org/map/albania/
https://aqicn.org/map/andorra/
https://aqicn.org/map/armenia/
https://aqicn.org/map/austria/
https://aqicn.org/map/azerbaijan/
https://aqicn.org/map/belarus/
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Table 3. Cont.

# Country No. of Monitoring
Stations

7 Belgium (https://aqicn.org/map/belgium/) 63
8 Bosnia and Herzegovina

(https://aqicn.org/map/bosnia-herzegovina/)
19

9 Bulgaria (https://aqicn.org/map/bulgaria/) 24
10 Croatia (https://aqicn.org/map/croatia/) 23
11 Cyprus (https://aqicn.org/map/cyprus/) 9

12 Czechia (https://aqicn.org/map/czechrepublic/) 131

13 Denmark (https://aqicn.org/map/denmark/ 8
14 Estonia (https://aqicn.org/map/estonia/) 12

15 Finland (https://aqicn.org/map/finland/) 55

16 France (https://aqicn.org/map/france/) 158

17 Georgia (https://aqicn.org/map/georgia/) 6

18 Germany (https://aqicn.org/map/germany/) 162

19 Greece (https://aqicn.org/map/greece/) 28
20 Hungary (https://aqicn.org/map/hungary/) 46

21 Iceland (https://aqicn.org/map/iceland/) 9

22 Ireland (https://aqicn.org/map/ireland/) 87

23 Italy (https://aqicn.org/map/italy/) 130
24 Kazakhstan (https://aqicn.org/map/kazakhstan/) 47
25 Latvia (https://aqicn.org/map/latvia/) 23

26 Lithuania (https://aqicn.org/map/lithuania/) 7

27 Luxembourg (https://aqicn.org/map/luxembourg/) 4

28 Malta (https://aqicn.org/map/malta/) 4
29 Moldova (https://aqicn.org/map/moldova/) 7
30 Montenegro (https://aqicn.org/map/montenegro/) 6

31 Netherlands (https://aqicn.org/map/netherlands/) 98
32 North Macedonia (https://aqicn.org/map/macedonia/) 19

33 Norway (https://aqicn.org/map/norway/) 56
34 Poland (https://aqicn.org/map/poland/) 78

35 Portugal (https://aqicn.org/map/portugal/) 17

36 Republic of Kosovo (https://aqicn.org/map/kosovo/) 8

37 Romania (https://aqicn.org/map/romania/) 165
38 Russia (https://aqicn.org/map/russia/) 41

39 Serbia (https://aqicn.org/map/serbia/) 118
40 Slovakia (https://aqicn.org/map/slovakia/) 37
41 Slovenia (https://aqicn.org/map/slovenia/) 12

42 Spain (https://aqicn.org/map/spain/) 184

43 Sweden (https://aqicn.org/map/sweden/) 27

44 Switzerland (https://aqicn.org/map/switzerland/) 29

45 Turkey (https://aqicn.org/map/turkey/) 152

46 Ukraine (https://aqicn.org/map/ukraine/) 134
47 United Kingdom

(https://aqicn.org/map/united-kingdom/)
162

Total monitoring stations 2510

https://aqicn.org/map/belgium/
https://aqicn.org/map/bosnia-herzegovina/
https://aqicn.org/map/bulgaria/
https://aqicn.org/map/croatia/
https://aqicn.org/map/cyprus/
https://aqicn.org/map/czechrepublic/
https://aqicn.org/map/denmark/
https://aqicn.org/map/estonia/
https://aqicn.org/map/finland/
https://aqicn.org/map/france/
https://aqicn.org/map/georgia/
https://aqicn.org/map/germany/
https://aqicn.org/map/greece/
https://aqicn.org/map/hungary/
https://aqicn.org/map/iceland/
https://aqicn.org/map/ireland/
https://aqicn.org/map/italy/
https://aqicn.org/map/kazakhstan/
https://aqicn.org/map/latvia/
https://aqicn.org/map/lithuania/
https://aqicn.org/map/luxembourg/
https://aqicn.org/map/malta/
https://aqicn.org/map/moldova/
https://aqicn.org/map/montenegro/
https://aqicn.org/map/netherlands/
https://aqicn.org/map/macedonia/
https://aqicn.org/map/norway/
https://aqicn.org/map/poland/
https://aqicn.org/map/portugal/
https://aqicn.org/map/kosovo/
https://aqicn.org/map/romania/
https://aqicn.org/map/russia/
https://aqicn.org/map/serbia/
https://aqicn.org/map/slovakia/
https://aqicn.org/map/slovenia/
https://aqicn.org/map/spain/
https://aqicn.org/map/sweden/
https://aqicn.org/map/switzerland/
https://aqicn.org/map/turkey/
https://aqicn.org/map/ukraine/
https://aqicn.org/map/united-kingdom/
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Table 4. Performance comparison of existing systems vs. IoTSAS system.

Paper [12] Paper [16] Paper [13]

Hardware N/A
8-cores of 2.13 GHz processor

and 64 GB RAM
3.4 GHz CPU, 4 Core(s) and

8 logical processors with
16GB RAM

Number of Sensors/Observations 1104 10,000 56,570
Average processing time (seconds) >200 s >2.5 s ~60 s

Our IoTSAS system (average
processing time in environment,

presented in Table 1)
0.35 s 1.37 s ~7 s

4. Conclusion and Future Research

In the IoT technologies, Wireless Sensor Networks (WSNs) have a key role in con-
tinuously producing and transmitting data in the stream format to the central server for
further processing. Recently, semantics are becoming a key component in different IoT
domains to annotate sensor stream data and to provide a better understanding, interpreta-
tion, and more meaningful descriptions that enable IoT application areas to become much
more intelligent.

In this paper, an integrated system of real-time semantic annotated and interpreted
IoT sensor stream data, named IoTSAS, is presented. First, an overview of the system
architecture composed by two main components is given: (a) Real-Time Semantic Annotation
(RTSA) component, which enables a real-time integration of semantics into heterogeneous
sensor stream data with context in the IoT, and (b) Real-Time Interpreting Semantically
Annotated (RTISA) component, which enables real-time interpretation of semantics from
heterogeneous sensor observation data. Next, the technologies such as Apache Kafka,
Spark Streaming, Apache Cassandra database, and standards such as OGC Sensor Web
Enablement, which are utilized to build the IoTSAS system, are described. Then, the imple-
mentation of the six system modules is provided: (1) real-time processing of integration
and interpretation of semantics into sensor stream data module; (2) data modelling module;
(3) IoT management metadata module; (4) weather alerts and (5) air quality monitoring
modules; and (6) APIs for external systems module. The validity of IoTSAS and the pro-
posed system architecture through the real sensor stream data from the World Air Quality
Index API is provided as well. Finally, to test the IoTSAS performance, a sensor stream data
simulator is developed. Based on the performance testing results of the 1,000,000 sensors
observations data, the IoTSAS system processed real-time by annotating with semantics
and interpreting the semantic annotations only for 138 s, which proves the validity of high
system performance.

The contributions of this paper in the context of semantic annotations and interpre-
tations, sensor stream data, and IoT scientific research are as follows: The SOS O&M
standards are extended by adding two extra elements, swe:sem-annoations and swe:sem-
intepretations; different semantic annotations such as #Blizzard, #Flurry, #Rain_Storm,
#Rain_Shower, #AQI_Index, #Air_Pollution_Level, and #Health_Implications in weather alerts
and air quality monitoring IoT domains are developed; a semantic annotated data stream
management model is developed which can be used by other IoT scientific researcher
to store their IoT sensor data; the developed system provides information in real-time
to citizens about the health implications from air pollution and weather conditions, e.g.,
blizzard, flurry, etc. As of now, these are the contributions of this paper, but the research
can progress as in the following directions in the future:

• To more advanced annotation techniques for integration and interpretation of the
semantic annotations in real time into heterogeneous sensor observation data and
metadata within the context of the Internet of Things, such as XPath annotations;
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• To implement a module illustrating a healthcare monitoring use case through which it
will be possible to monitor patients in real time and will notify doctors about changes
in their patients’ health condition;

• To extend the proposed system architecture for supporting insert sensor with XML
request by using standards of Sensor Web Enablement (SWE), respectively; version
2.0 of the Sensor Observations Service (SOS) standard relies on the Open Geospatial
Consortium (OGC);

• To advance the components Outlier Stream Validator and Stream Classificator of the
proposed model by implementing some advanced outlier detection algorithms for
real time unsupervised anomaly detection.
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