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Abstract: Adaptivity is the ability of the system to change its behavior whenever it does not achieve
the system requirements. Self-adaptive software systems (SASS) are considered a milestone in
software development in many modern complex scientific and engineering fields. Employing self-
adaptation into a system can accomplish better functionality or performance; however, it may lead
to unexpected system behavior and consequently to uncertainty. The uncertainty that results from
using SASS needs to be tackled from different perspectives. The Internet of Things (IoT) that utilizes
the attributes of SASS presents great development opportunities. Because IoT is a relatively new
domain, it carries a high level of uncertainty. The goal of this work is to highlight more details about
self-adaptivity in software systems, describe all possible sources of uncertainty, and illustrate its
effect on the ability of the system to fulfill its objectives. We provide a survey of state-of-the-art
approaches coping with uncertainty in SASS and discuss their performance. We classify the different
sources of uncertainty based on their location and nature in SASS. Moreover, we present IoT as a case
study to define uncertainty at different layers of the IoT stack. We use this case study to identify the
sources of uncertainty, categorize the sources according to IoT stack layers, demonstrate the effect
of uncertainty on the ability of the system to fulfill its objectives, and discuss the state-of-the-art
approaches to mitigate the sources of uncertainty. We conclude with a set of challenges that provide
a guide for future study.

Keywords: self-adaptive software systems; uncertainty; sources; solutions; Internet of Things

1. Introduction

System adaptivity has been a topic of research since the mid-1960s. Adaptive software
systems are capable of evaluating and changing their behavior whenever the system
evaluation shows that the software is not accomplishing what it was intended to do, or
when better functionality or performance may be possible while keeping system complexity
hidden from the user. Adaptivity is the capability of the system to adjust its behavior in
response to internal and external effects [1]. These causes can be categorized into internal
and external. Internal causes may include variations in sensor readings, not achieving the
predetermined objectives, system infrastructure properties, variations in system resources
(to proactively) manage a changing system load during certain anticipated situations),
or internal system faults (hardware defects or service failures). External causes may
include disturbances in the environment (effects from external sources of noise or signal
interference), adding or removing system requirements or changes in the priority of those
requirements based on stakeholders needs [2], or any other unexpected events such as a
sudden increase in the number of users’ requests [3]. Therefore, adaptivity can, and should,
be evaluated at design time, during the development of the system, and after deployment
when the system is operating and continuously monitored.

Adaptive software systems can be classified into two categories based on the expected
impact on the system and/or cost factors (i.e., runtime, development time, system resources,
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and complexity)—weak adaption and strong adaption [3]. Weak adaptation employs
low-cost impacts such as modifying parameters or other actions such as changing the
transmitted data type or compressing data before transmission. Strong adaptation employs
high cost or extensive impact actions such as changing the underlying system architecture,
adding, or removing artifacts, replacing system components, resource provisioning, or
even restarting/re-deployment.

In mono-model adaptive systems, a single model is supported by the system and
the term adaptation mainly depends on the user requirements, system properties, and
environmental characteristics. During runtime, design parameters or relations are modified
to achieve the perceived behavior. In multi-model adaptive systems, where the system
dynamically supports several models, each one can still satisfy the system objectives, but,
depending on the model, with different impacts on some non-functional quality attributes.
In such systems, adaptivity can be defined as the capability of a system to achieve its
objectives by selectively switching execution between these models [4].

In a self-adaptive software system (SASS), the “self” prefix indicates that the system
autonomously decides how to adapt or to organize so that it can accommodate changes
in its contexts and operating environments [5]. Self-adaptive is sometimes paraphrased
in the literature as self-managing, self-healing, self-optimizing, self-configuring, or self-
organizing. A self-adaptive system consists of a closed-loop system [3] (i.e., modifying itself
through the feedback of internal connections due to continuous changes during system
runtime), thereby minimizing human efforts in the computer interaction [6].

SASS is considered a milestone in software development in many modern complex
scientific and engineering fields [7] such as high-performance computing, control systems,
programming languages, fault-tolerant computing, biological computing, and natural
systems, embedded systems (i.e., mobile and autonomous robotics), machine learning,
economic and financial systems, business and military strategic planning, Internet of
Things (IoT), etc. [8,9]. These modern systems that are performing multiple tasks in
diverse scenarios have to make decisions on adaptivity at runtime concerning changing
requirements and dynamic operating environment.

The idea behind SASS can be represented by a feedback loop, as Figure 1 shows.
The feedback loop provides the generic mechanism for self-adaptation. It collects perti-
nent knowledge at runtime, monitors the system functionality, and applies changes to
subsystems when necessary, regardless of possible uncertainties [7].
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Figure 1. Self-adaptive software system (SASS) in feedback loop [7].
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As shown in Figure 1, a feedback loop typically consists of the following steps: collect,
analyze, decide, and act. A feedback cycle starts with collecting raw data from sources
such as system requirements, goals specifications, physical devices, and user context. Then,
the collected data are analyzed by following system regulations and policies, alternative
models, and uncertainty reasoning. After that, a decision is made regarding how to
adapt the system to reach the desirable state by planning, evaluating the decision (based
on modeling the system using simulation, stochastic methods, optimization, or neural
network), and risk analysis. Finally, the system acts to implement the decision to drive the
system into the targeted direction through system reconfiguration, informing users along
with administrators and managing effectors [7].

Self-adaptive systems at normal operation need to achieve multiple non-functional
requirements based on stakeholder needs. Behavior may deviate from the expected one
due to various runtime dynamics and events that are difficult to predict at design time [2].
With a growing number of both adaptation scenarios and requirements trade-offs that
require the system to prioritize certain adaptation actions, choose the optimal adaptation
scenario, adapt the system, and handle the positive or negative chain of effects caused by
the adaptation of certain requirements [10,11]. Consequently, when the number of system
non-functional requirements increases, so does the number of adaptation alternatives,
and handling the requirements trade-offs becomes more complex. This issue should
be investigated properly; otherwise, uncertainty may induce inconsistency in certain
subsystems, and the accumulated inconsistencies may result in unignorable circumstances
that adversely affect system behavior.

In this paper, we focus on the IoT field because it is a long-range technological area
that presents great opportunities for development. Because IoT is essential infrastructure
for vital applications that utilizes the attributes of SASS, it carries a high level of uncertainty,
both in relation to IoT technologies and to the aspects that are (or will be) correlated to this
field, such as social, economic, technological, legal, etc. IoT applications are subject to a
variety of uncertainties such as heterogeneity of edge nodes, scalability, transmission tech-
nology, optimum energy use, user configuration capabilities, data management, reliability,
privacy protection, security, and legal regulatory compliance [9]. IoT field is a long-range
technological area that utilizes the attributes of SASS, which presents great opportunities
for development. There is a great potential for applying IoT technology across emerging
sectors including both industrial and public to improve uncertainty. We are looking deeply
into causes of uncertainty and quality attributes that may affect uncertainty in this system,
and discuss the possible solutions [12].

The contributions of this work are as follows. First, we define uncertainty using a
high-level view of SASS and describe what are the sources of uncertainty in this system,
which provides a common terminology for looking at the problems and communicating
ideas. The goal of this work is to classify the different sources of uncertainty based on their
location and nature in SASS. Second, we consider IoT as a case study of SASS. To take an
advantage of self-adaption, this study addresses the phenomenon of uncertainty occurring
in large, developing systems namely IoT through the example of various IoT application
systems. In addition, we categorize the sources of uncertainty according to IoT stack layers.

The remainder of this paper is structured as follows. Section 2 defines and classifies
uncertainty in SASS. Section 3 illustrates a high-level model that defines uncertainty repre-
sentation in SASS. Section 4 discusses the sources that need to be considered to mitigate
uncertainty. Characteristics of uncertainty in SASS are explained in Section 5. Section 6
presents the mathematical techniques for representing uncertainty. In Section 7, we sum-
marize the state-of-the-art prominent approaches that tackle uncertainty in SASS. Section 8
defines uncertainty in IoT as a case study of SASS, which presents great opportunities
for development. We illustrate the main layers of an IoT stack and discuss the sources
which need to be considered to mitigate uncertainty. Moreover, we summarize the pos-
sible solutions to tackle uncertainty in IoT. We conclude our paper with future works
in Section 9.
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2. Scope of Uncertainty in SASS

In a software system, uncertainty is defined as the conditions in which the behavior of
the system deviates from expectations due to the dynamicity and volatility of a variety of
factors. One way to deal with this uncertainty is to build systems that, when information
is available, adapt during runtime. However, the integration of self-adaptation into a
system may lead to more uncertainty because faulty adaptation acts or unintended effects
of system adaptation can lead to unexpected system activity [13].

The essence of a SASS is making the adaptation decision. Uncertainty arises due
to the deficiency of adequate knowledge or experience to make correct decisions about
adaptation. The adaptation decision can be made with conviction when all the information
needed to make these choices is completely available. However, it is difficult to provide
the correct amount of required information at the right time [14].

In general, uncertainty is known as a second-order notion in the field of software engi-
neering [15]. A conventional misbelief is that the impact of uncertainty can be eliminated
by a series of procedures to allow concentrating on standard behavior. Even though it is
usually true that providing more facts reduces the measure of uncertainty, it is normally
not possible to remove uncertainty entirely (because gathering all the data about a system
is not feasible or achievable); hence, the degree of uncertainty can be reduced [16].

As sources of uncertainty, we refer to the factors such as users’ frequent struggle to
indicate their quality expectations correctly at design time, deployed sensors readings
having unmanageable noise, simplified assumptions use in analytical models to determine
the quality attributes of the software, etc. These elements question the belief with which
the choices for adaptation are formed. We believe that treating uncertainty as a first-class
concept increases the consistency or the accuracy of adaptation decisions [16].

Some sources of uncertainty can be categorized into internal and external. Internal
uncertainty is caused by the effect of adaptation in a system with multiple objectives and
quality goals making the process for selecting the optimal adaptation action is quite complex
or the effect of modifying or substituting a software part of the system [17]. For example,
in the network Open Systems Interconnection model (OSI) model, the situation where the
system modifies the transport layer protocol from Transmission Control Protocol (TCP)
to User Datagram Protocol (UDP) can be considered as an internal cause of uncertainty
because of the differences in the way of manipulating data transmission that may affect the
whole network progress. On the contrary, external uncertainty induces by the dynamicity
or complexity of the environment. For instance, in certain weather conditions such as a
snowstorm, an autonomous vehicle navigator may induce external uncertainty into the
system. If the navigator part of the vehicle is substituted by a more stable or conventional
navigator that can predict these types of weather conditions, it will help to prevent any
possible crash [17]. Approaches for modeling various kinds of uncertainties are very
different from each other as we will mention later in Section 7 [16].

3. Modeling Uncertainty in SASS

A high-level view of SASS is described in Figure 2 [18]. The SASS is split into two
sections in this model— meta-level and base-level. The key functionality of the program is
provided by the base-level subsystem. Meta-level subsystem leads the base-level subsystem
via reflection on its behavior. A feedback control loop according to MAPE-K (Monitor-
Analyze-Plan-Execute over a shared Knowledge) reference architecture is within the meta-
level subsystem [14].

User and Environment are the other two entities of a self-adaptive software system
as shown in Figure 2. The user objectives will be stated and passed from the base-level
subsystem to the meta-level subsystem. The self-adaptive software system resides in an
environment and thus continuously communicates with elements of that environment at
the base-level subsystem because it is the duty of the meta-level subsystem to satisfy the
user objectives stated at the base-level subsystem and monitor the environment.
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The adaptation choice made by the meta-level subsystem requires modeling all other
entities that appear in Figure 2. The entities are loosely coupled in the self-adaptive software
system. The interfaces of the metal-level subsystem with the other components are one
of the main places in which uncertainty resides. We elaborate on the various sources of
uncertainty faced by a self-adaptive software system in Section 4.

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

4. Sources of Uncertainty in SASS

One should consider the sources (factors) explained below in order to minimize
uncertainty in SASS:

4.1. Uncertainty Due to Simplifying Assumptions

This source of uncertainty is connected to the “Control” interface in Figure 2 and is
due to the inaccuracy of the complex base-level subsystem representing analytical models.
These analytical models are used to describe the effect of adaptation choices on the quality
attributes of the system. When modeling abstractions become an inaccurate reflection of
the system, the error in those predictions is magnified. The fact that often the assumptions
underlying the model are not kept at runtime is one of the reasons for uncertainty. For
instance, an analytical model that quantifies the response time of the system will account
for the dominant variables (such as component execution time and queuing time) and
neglect others (such as the difference between TCP and UDP in transmission delay of
packets). Response time estimates given by such a formulation vulnerable to errors.

4.2. Uncertainty Due to Model Drift

This source of uncertainty is also connected to the interface of “Control.” The adapta-
tion itself is another cause of uncertainty in the analytical models; the base-level subsystem
does not implement adjustments exactly as demanded by the meta-level subsystem, which
triggers a drift from the models. For instance, the situation where the meta-level subsystem
asks the base-level subsystem to modify the transport layer protocol from TCP to UDP
is considered in the same example. The base-level subsystem, however, fails to imple-
ment this shift, making the meta-level subsystem analytical models inconsistent with the
base-level subsystem behavior.
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4.3. Uncertainty Due to Noise in Sensor

This source of uncertainty refers to the interface of “Monitor” and is due to fluctuations
in a circumstance, such as a system parameter that is monitored, which hardly refers to a
single value, but rather to a series of values obtained during the time of observation. Con-
sider that any time a sample is taken, a sensor measuring the available network bandwidth
will return a slightly different amount, whereas the actual value of the bandwidth can be
already set at the source. To show the error in the probes used, this form of uncertainty is
referred to as noise.

4.4. Uncertainty Due to Human User in the Loop

This uncertainty is due to a paradigm shift from software types deployed on isolated
servers to software types that involve human users in their daily activities. These new
forms of software systems communicate intensively with human users and depend on
appropriate human behavior. Human behavior, however, is inherently unpredictable,
which consecutively induces uncertainty in the software system. The interface between the
base-level subsystem and the user is associated with this form of uncertainty. For instance,
in telemedicine, remote monitoring involves the communication of the user with the system
to improve patient health status. However, as described above, the unpredictability of
human behavior causes this kind of uncertainty.

4.5. Uncertainty in the Objectives

The “State Goals” interface refers to this form of uncertainty and is due to the complex-
ity of the specifications and desires of the users. Multiple users with different perspectives
may have several issues with the software system, some of which can conflict with one
another. However, obtaining and reflecting the desires of the users in an accurate manner
is a challenge. If stating goals can be made clear and consistent between all system users,
this kind of uncertainty can be reduced.

4.6. Uncertainty Due to Decentralization

In a decentralized software system, information is distributed among all the system
entities. No single entity has complete information of all other entities states in the de-
centralization system. These entities can only access other entities’ interfaces. All these
entities need to co-ordinate their work and obtain information about other entities in order
to achieve the system goals and reduce this uncertainty.

4.7. Uncertainty in the Execution Context

The meta-level subsystem is required to recognize the shift in context and adjust
the base-level subsystem to behave properly. As the context in which a system executes
changes, the different entities in the system’s environment also need to adapt to the change,
failure in which introduces uncertainty.

Table 1, which is adopted from [19], represents the classification of uncertainty based
on the following three categories: Context uncertainty is an identification of the model’s
boundaries, which is uncertainty about the data to be modeled. Regarding the real world,
this uncertainty concerns the completeness of the model. Model structural uncertainty
is concerned with the type of the model itself. This uncertainty relates to how closely
the model’s structure reflects the subset of the real world to be modeled. Uncertainty of
input parameters is often known as the uncertainty of parameters and is correlated with
the actual value of variables given to the model as input and with the methods used to
calibrate the parameters of the model.

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory
(i.e., variability) or epistemic (i.e., lack of knowledge). The epistemic uncertainty is related
to simplifying assumptions, model drift, human in the loop, objectives, and decentraliza-
tion. The lack of complete knowledge makes adaptation decisions vulnerable to uncertainty.
On the other hand, aleatory uncertainty is related to noise and context. In this case, uncer-
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tainty is rooted in the fact that after the adaptation decision is made, the behavior of the
system may change.

Table 1. Classification of different sources of uncertainty based on their location and nature.

Source of Uncertainty Classification Based on Location Classification Based on Nature

Structural Context Input Parameter Aleatory Epistemic

Simplifying assumptions
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
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software part of the system) can be considered as a reducible uncertainty. External uncer-
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5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Noise in Sensing
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Human in the loop

Computers 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 

this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
actual value of variables given to the model as input and with the methods used to cali-
brate the parameters of the model. 

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory 
(i.e., variability) or epistemic (i.e., lack of knowledge). The epistemic uncertainty is related 
to simplifying assumptions, model drift, human in the loop, objectives, and decentraliza-
tion. The lack of complete knowledge makes adaptation decisions vulnerable to uncer-
tainty. On the other hand, aleatory uncertainty is related to noise and context. In this case, 
uncertainty is rooted in the fact that after the adaptation decision is made, the behavior of 
the system may change. 

Table 1. Classification of different sources of uncertainty based on their location and nature. 

Source of Uncertainty 
Classification based on Location 

 
Classification based on Nature 

 Structural Context Input Parameter Aleatory Epistemic 
Simplifying assump-
tions 

     

Model drift 
 

    
Noise in Sensing      
Human in the loop      
Objectives   
Decentralization 

 

  
Execution context 

     

5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Computers 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 

this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
actual value of variables given to the model as input and with the methods used to cali-
brate the parameters of the model. 

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory 
(i.e., variability) or epistemic (i.e., lack of knowledge). The epistemic uncertainty is related 
to simplifying assumptions, model drift, human in the loop, objectives, and decentraliza-
tion. The lack of complete knowledge makes adaptation decisions vulnerable to uncer-
tainty. On the other hand, aleatory uncertainty is related to noise and context. In this case, 
uncertainty is rooted in the fact that after the adaptation decision is made, the behavior of 
the system may change. 

Table 1. Classification of different sources of uncertainty based on their location and nature. 

Source of Uncertainty 
Classification based on Location 

 
Classification based on Nature 

 Structural Context Input Parameter Aleatory Epistemic 
Simplifying assump-
tions 

     

Model drift 
 

    
Noise in Sensing      
Human in the loop      
Objectives   
Decentralization 

 

  
Execution context 

     

5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Decentralization
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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5. Characteristics of Uncertainty

We enumerate various characteristics of uncertainty in the following subsections.

5.1. Reducibility vs. Irreducibility

Irreducible uncertainty is associated with things that are implicitly unknown, whereas
reducible uncertainty is associated with knowable items that are undetermined for that
period. One of the key factors behind irreducible uncertainty is the unmanageable complex-
ity of events. Internal uncertainty (e.g., the effect of modifying or substituting a software
part of the system) can be considered as a reducible uncertainty. External uncertainty
(e.g., the impact on the system due to change in weather conditions) can be considered as
an irreducible uncertainty.

5.2. Variability vs. Lack of Knowledge

Uncertainty based on nature can be classified as aleatory or epistemic as shown in
Table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information
and is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory
uncertainty can differ from methods used to mitigate epistemic [16].

6. Mathematical Techniques for Representing Uncertainty

In this section, we discuss two common mathematical techniques for describing uncer-
tainty in SASS. Although uncertainty in SASS can be represented using both approaches,
the ability to make adaptation decisions is significantly impacted by the representation.

6.1. Probability Theory

The probability theory [20] is the most common approach to handle uncertainty
(managing unknown circumstances) in SASS [14]. There are two well-known probabil-
ity evaluations on fundamental differences—classical interpretation theory and Bayesian
interpretation theory [20]. The theory of probability had previously been expressed by
the classical interpretation of the theory. Based on its central premise, the classical in-
terpretation outcome of a phenomenon is equally possible. Interpretation of this theory
creates inconsistencies when it is applied beyond games of chance. Due to this limitation,
the frequentist interpretation was designed. In this interpretation, the probability of an
event in a large number of trials is specified as the limit of its relative frequency. Bayesian
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theory [21] is defined on the basis of selective interpretation of probability theory. The
probability in this interpretation is characterized as a representation of a human’s rational
belief in uncertain propositions. The frequentist interpretation is extended by Bayesian
theory because it enables probability assignment to a single observation regardless of
whether it is part of a larger observation or not. In cases when there are not sufficient data
for frequentists, this interpretation is very beneficial. For example, a new unknown entity
for which adequate data are not available cannot be evaluated by frequentist interpretation,
whereas Bayesians can use subjective knowledge based on the specific phenomenon to
analyze the new concept. In the case of both full and partial availability of the information,
Bayesian theory is a single approach that can be applied.

6.2. Fuzzy Sets and Possibility Theory

An extension of the classical theory is the fuzzy set theory [22]. In classical set theory, if
an element is not a member of the set (for unknown quantity), value 0 is assigned, while 1 is
assigned if the element is a member of the set. According to the fuzzy set theory, any value
between 0 and 1 is the membership value of an element with respect to a set. The higher
the degree of membership, the more likely the element belongs to the set. Accordingly,
there is no specified definition for the boundary of a fuzzy set, while the boundary of a
classical set is defined by a crisp value (0 or 1). In systems where data are inaccurate or
unclear, the fuzzy set theory is useful. For instance, in the anti-lock braking system, fuzzy
logic is used to controls brakes in hazardous cases depend on car speed, acceleration, wheel
speed, and acceleration.

Although probability theory is concerned with evaluating numeric value due to the
change in data, possibility theory concentrates on measuring the information ambiguity.
Nevertheless, the two theories (probability and possibility) can be used interchangeably. In
general, the principle of possibility is useful when little knowledge or inaccurate data are
available. However, probability theory is used if detailed knowledge is available.

7. Approaches for Handling Uncertainty in SASS

There is a lack of relevant strategies in this context for dealing with uncertainty. In
this section, we will briefly present the approaches that minimize uncertainty in SASS.

7.1. Rainbow

In the Rainbow [23] framework, high-quality strategies are used to reduce uncertainty
in SASS architecture. Rainbow focuses on sources of uncertainty correlated to MAPE–K
feedback control loop [23], which are (1) identify the system faults (monitor and analyze
phase), (2) select the correct adaption strategy (decide and act phase), and (3) check adaption
achieved in the system according to required goals (“plan” and “act” phase).

They use probability theory to calculate the running average (i.e., the average that
will continue to change with new observations take place) in monitoring and address
the fluctuation in the system environment to minimize uncertainty. Afterward, data are
compared with stochastic details in SASS. If the issue is established, a mitigation strategy
is then chosen to resolve it. To reduce the uncertainty in strategy selection, the Stitch
model is used. Stitch makes it feasible to model the uncertainty in strategies directly. As a
consequence, when a strategy is determined by the Rainbow system, it can decide it based
on the expected value, which is a reflection of the underlying uncertainty. They determine
the last source of uncertainty by deciding how long the framework can track the strategy’s
implementation before transferring the adjustment to the running system.

Rainbow mitigates the uncertainty by augmenting architectural models with proba-
bilistic models due to simplifying assumptions and noise. In addition, Rainbow mitigates
the uncertainty due to the drift in the architectural models by tracking the device after
adaptation [14].
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7.2. Possibilistic Self-Adaptation (POISED)

Possibilistic self-adaptation (POISED) [17] is a quantitative approach to handle the
difficulties determined by making adaptation decisions automatically under internal uncer-
tainty. Fuzzy set theory is used to estimate the uncertainty residing within the elements of
SASS, which manages positive and negative effects of adaption decision. They suggested
a new approach to enhance the quality(performance) and find a feasible solution for the
best range of possible behaviors in reference to the utility of the system. To resolve the
self-adaption problem, POISED describes possibilistic linear programming, which deter-
mines the trade-off between alternatives. In order to build the trade-off between distinct
configuration alternatives, POISED relies on possibilistic linear programming in which
they normalize and combine the objective function in order to specify priorities among the
objectives. The POISED configuration allows the decision-maker to decide which element
of uncertainty is more important, which targets the decision-making stage at runtime.

7.3. Anticipatory Dynamic Configuration (ADC)

Anticipatory dynamic configuration (ADC) [24] provides a facility (for dynamically
changing resources) to choose suitable services to perform a task and assign resources at
runtime between these services. ADC does not take environmental uncertainty into account.
Due to this limitation (of a reactive approach), the authors expanded the original analysis
in a subsequent study [25] to include anticipatory decisions and considered the inaccuracy
of the expected use of resources. The authors of [26] enhanced the previous study by using
modeling data to determine resource requirements of the system for various configurations.
The anticipatory model selects a configuration that optimizes the cumulative expected
value of utility over time by integrating resource availability prediction (using probability
theory). This effectively decreases the number of modifications/configurations and system
disturbances. The cost of switching between configurations is often considered for the
adaptation decisions. Based on cost, ADC selects configuration. If the cost is low, ADP
chooses a better configuration available at that time. On the contrary, a non-optimum
configuration is chosen when the cost is high.

7.4. Feature-Oriented Self-Adaptation (FUSION)

Feature-oriented self-adaptation (FUSION) [27] is an online learning-based approach
in SASS. Instead of relying on analytical models that are manually operated, which affect
the system objectives based on adaption decisions, FUSION uses machine learning to
adjust the system adaption behavior automatically in order to handle unexpected changes.
The turnout of this learning consists of numerous relationships between the adaptation
actions and the quality attributes of the SASS. The quality attributes can be measured by
the runtime environment. The adaptation actions are related to fluctuation points in the
software that can be applied at runtime.

FUSION involved two cycles—the learning cycle and the adaptation cycle. The
learning cycle defines the relation between the quality attributes of SASS and adaptation
actions. This cycle tracks the errors in the learned relation. The adaptation cycle gathers
measurements and optimizes the system (using data collected from a runtime environment).
If the quality factors (i.e., system quality attributes) reduce below a certain threshold point
over time, the adaption cycle provides the gathered information and takes adaptation
decisions accordingly to enhance the quality factors.

7.5. Resilient Situated Software System (RESIST)

Resilient situated software system (RESIST) [28] uses a feedback loop to monitor
internal and external system properties, analyze the changes in system structure, and
adapt the system configuration changes in order to improve reliability at runtime. The
component-level reliability analyzer is used to predict the reliability of system components.
RESIST focuses on mobile embedded widespread software. These software systems are
extremely complex because there are challenges in the validation, verification, and testing
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phases, which usually lead to uncertainty. This kind of system requires high reliability.
RESIST can reduce the uncertainty with persistent (constant) learning. In addition, small
variations in reliability are modeled as distributions of probability that signify noise.

RESIST uses a component-level reliability model that depends on dynamic learning
to estimate the process that begins with analyzing the effect of the adaptation choices
on the reliability of the system framework. The reliabilities of the components are mea-
sured stochastically using a discrete-time Markov chain (DTMC). Using probability theory
mathematical technique, RESIST models the uncertainty in the learning process.

7.6. RELAX

RELAX [29] is a requirement specification language depends on fuzzy set theory that
demonstrates environmental uncertainty in self-adaptive systems. RELAX defines the
requirements that can be disabled or “relaxed” based on the state of the environment.
Operators are designed specially to capture uncertainty, which can cause the relaxation
of requirements). These operators also describe how the requirement can be relaxed
at runtime.

RELAX language is expanded in a subsequent publication, [30] to specify flexible
requirements within the goal model to handle uncertainty in the environment. They
established a variety of threat modeling to identify the sources of uncertainty, which can
cause a problem to satisfy system goals. The approach offers various tactics to reduce
uncertainty, which are enabled by relaxing the requirements that can cause uncertainty.

In [31], the authors introduced a new approach that produces RELAXed goal specifi-
cations automatically. AutoRELAX identifies goals to RELAX by the specified operators
and the shape of the fuzzy logic function that helps to reach the objective of the system.
AutoRELAX creates solutions by designing tradeoffs between minimizing the number
of RELAXed goals and maximizing functionality by reducing the number of adaptations
caused by environmental factors.

7.7. FLAGS

To minimize the environmental uncertainty of the specified adaptive goals, FLAGS [32]
uses fuzzy theory. Like RELAX, FLAGS enable the definition of tactics that must be taken if
some goals are not satisfied. FLAGS aims to achieve the fundamental objective of adaptive
systems at the level of requirements to minimize environmental uncertainty.

In addition to the software uncertainty, FLAGS also deals with the uncertainty in
defining goals. FLAGS depends on two types of goals—fuzzy goals and clean (crisp) goals.
Fuzzy goals are defined as requirements that are not completely defined. Linear temporal
logic is used to specify the crisp goals and fuzzy temporal language is used to identify fuzzy
goals some temporary errors are tolerated in case of defining imprecise objectives/goals.

8. Case Study: Dealing with Uncertainty in IoT

IoT is an example of SASS that carries a high level of uncertainty in various levels. IoT
can be defined as a distributed network that consists of a large number of heterogeneous
nodes that collect and exchange data and is deployed over a certain geographical area.
IoT is recognized as one of the most important areas of future technology and is gaining
vast attention from a wide range of industries. IoTs have many applications but all share
the same challenges due to uncertainty. Uncertainty may be due to several causes such as
dynamics during operation at different layers of IoT stack.

Figure 3 shows the main layers of the IoT stack. We highlight the dynamics that cause
uncertainty according to these layers, especially if the system is applying self-adaption,
which incurs additional costs in terms of energy and communication [33].
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At the perception layer, “things” may include any type of nodes, such as sensors,
computers, or industrial equipment. For instance, different types of sensors are employed
in IoT according to the application. It is well-known that sensor resources are limited in
terms of energy, communication bandwidth, and processing capabilities. Uncertainty in
sensor measurements may be due to sensor types, inaccurate sampling frequency, data
compression, and amplification, or even possible hardware faults.

At the network layer, communication between “things” is subject to runtime uncer-
tainties, such as interference that may affect ethernet cables in wired networks and noise,
multi-path fading, or even mobility of devices that might affect the communication in
wireless networks [34].

The middleware layer sits between applications and “things” and performs processing,
filtration, and aggregation on collected data. Due to uncertainty at the middleware layer, a
demand for in-network uncertain data management arises. For example, middleware uses
application knowledge to perform data aggregation based on traffic priority. Aggregation
reduces radio transmission and thus reduces energy consumption.

The application layer is responsible for formatting and representing data. The re-
quirements of the application may be tuned at runtime, and adaption actions may require
sensors to change the features of targeted data to fulfill the application goals and provide
specific services to end-users.

With the rapid involvement of a high number of smart interconnected devices and
sensors, IoT emerges in a wide range of technologies. IoT nodes communicate in a wireless
ad hoc manner. Data integrations over different environments require to be supported
by modular interoperable components. In addition, IoT infrastructure needs to combine
volumes of data from various sources and use efficient lightweight aggregation techniques
to better utilize the energy.

Heterogeneity of IoT widens the range of applications in different environments that
require different networking technologies such as cellular, Wireless Local Area Network
(WLAN), and Radio Frequency Identification (RFID). Communication technologies should
be low cost with reliable connectivity and should apply privacy and security solutions that
are lightweight and user appropriate.

In addition, legal regulations and standards are essential to allow all users to equally
access and use system services and resources. Developments and coordination of legal
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regulations and standards will promote the efficient development of IoT infrastructures
and applications, services, and devices.

It is predicted that by 2025, there will be more than to 21 billion IoT devices. IoT devices
such as machines and sensors are expected to generate 79.4 zettabytes of data in 2025,
which is predicted by International Data Corporation (IDC). Excessive information transfer
will cause greater uncertainty at received parties which affects making the correct decision.

IoT is considered a milestone in diverse domains applications such as manufacturing,
e-health monitoring, smart home automation, smart cities, intelligent transportation, busi-
ness and manufacturing, industrial automation, market, smart grid, smart safety, smart
home, school, smart logistics, environment monitoring, surveillance systems, autonomous
vehicles, smart agriculture and big data management, security surveillance, Wireless Sen-
sor Network (WSN), etc. Due to concerns over size and cost, IoT motes typically offer
limited computation, storage, and energy resources, which require careful design of IoT
networks. However, with the new technological evolutions, more and more processing
energy, storage and battery capacities become available at relatively low cost and low size
that improve identification, communication, and processing capabilities. However, they
add considerable uncertainty on various levels of processing, communication, and storage.
The uncertainty is always evaluated at the beginning of software system development, but
it must be a continuing process with solutions during the whole system’s progress [35].

8.1. Sources of Uncertainty in IoT

Sources of uncertainty in IoT applications can be summarized as follows:

• Dynamics in the availability of resources (internal dynamics): Managing dynamics
autonomously and correctly is especially important in highly critical IoT applica-
tions. For example, because the bandwidth of IoT terminals could vary from Kbps
to Mbps from sensing simple value to video stream, requirements on hardware are
diverging [12,34,36].

• Dynamics in the environment (external dynamics): These systems include unmanned
underwater vehicles that are used for oceanic surveillance to monitor pollution levels,
and supply chain systems that ensure sufficient, safe, and nutritious food to the
global population. The dynamics of these systems introduce uncertainties that may be
difficult or even impossible to anticipate before deployment. Hence, these systems
need to resolve the uncertainties during system runtime [34].

• Heterogeneity of edge nodes: A large number of nodes may include nodes, sensors,
actuators, and gateways, representing high diversity in their processing and commu-
nication capabilities. In IoT, one vital issue is integration and interoperability among
these nodes (i.e., the ability to interconnect and communicate different systems) to
form a cost-effective and easy-to-implement ad hoc network [37]. Devices connected
through heterogeneous communications technologies such as Ethernet, Wi-Fi, Blue-
tooth, ZigBee, etc. consider various metrics, including the data range and rate, network
size, Radio Frequency (RF) channels, bandwidth, and power consumption that needs
to develop a heterogeneous technological approach to enable interoperable and secure
communications in IoT. For instance, because the bandwidth of IoT terminals varies
from Kbps to Mbps from sensing simple values to video streams, requirements on
hardware are diverging [12].

• Scalability: IoT is an ad hoc network that formed quickly, and it changes rapidly
where nodes are interconnected, using network services in a distributed manner [38].
Because the number of connected things is rapidly growing, IoT systems will require
the composition of plenty of services into complex workflows. Accordingly, scalability
in terms of the size of IoT nodes becomes a significant concern. Scalability will be
measured by the capability of the system to handle increasing workloads, for instance,
the addition or removal of IoT nodes or the addition or removal of computing resources
in a single IoT node (e.g., adding more memory to increase buffer size or adding more
processor capacity to speed up processing).
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• Transmission technology: Wired and wireless technologies are the main transmission
methods of data transfer [39]. Issues related to transmission are considered as an issue
regarding transfer speeds and delays in the delivery of data [34]. For instance, in WSN,
apart from uncertainty emerging from redundancy in densely deployed neighboring
sensors, a significant amount of data can be lost or corrupted during the transmission
from sensor nodes to the sink because of intrusion attacks, node failures, or battery
depletion in sensor networks.

• Optimum energy use: Energy consumption is defined as the total energy consumed
for running the components of the system architecture. The issue of power use is
crucial [40]. The irregularities in energy consumption across the nodes, the size of
battery capacity, and charging capability are challenging and require effective runtime
decisions in IoT systems. The prediction of energy use under uncertainty is critical in
fields such as WSN, e.g., forest monitoring or field surveillance systems. IoT nodes
are deployed statically in the field to perform a certain task. A continuous source of
energy is required to drive these nodes, which presents a severe challenge in terms of
cost and network lifetime. Moreover, their computational and storage capabilities do
not support complex operations [41].

• User configuration capabilities: The number of users, the complexity of systems, and
the continuously changing needs of users make it necessary to provide mechanisms
that allow the users to configure the systems by themselves. For instance, IoT in
smart homes or smart buildings, including servomotors, mobile devices, televisions,
thermostats, energy meters, lighting control systems, music streaming, and control sys-
tems, remote video streaming boxes, pool systems, and irrigation systems, in addition
to various types of built-in sensors in equipment, and objects whose primary profiles
did not include ICT functions (dishwashers, microwave ovens, refrigerators, doors,
walls, furniture, windows, facades, elevators, ventilation modules, heating/cooling
modules, water systems, roofs, electrical power systems, communication systems, of-
fice equipment, data storage systems, video monitoring and property control systems,
and home appliances), which require young and elderly people to be able to cope
with and sett configurations to meet their requirements [35].

• Data management: In IoT, it is crucial to utilize appropriate data models and semantic
descriptions of their content, appropriate language, and format. For instance, when big
data are processed and managed, the uncertainty causes severe liabilities with respect
to the effectiveness and the accuracy of the big data [42]. To give an example, con-
sider continuous measuring of temperature as a function of an environmental sensor
network that produces big data streams. Due to readings, and possible transmission
errors, it happens that temperature readings arrive at the receiver node with some
uncertainty that is modeled in terms of probability distribution functions. Another ex-
ample considers the function of a smart city application that determines geographical
coordinates. Hence, the collection of geographical coordinates represents big data that
are defined in hierarchical models on top of the geography of the smart city, such as
stores, streets, quarters, districts, areas, cities, etc. Missing or processing errors causes
smart data to be processed without an exact association to the hierarchical level of the
smart city they refer to (e.g., the quarter where a certain store is located is known but
the street of this store is not known).

• Reliability: The data loss may occur due to the inability of the system to maintain
errors. Many factors can cause errors that decrease reliability and safety in IoT nodes,
namely, (1) data distortion and corruption, so data can be changed due to imperfect
software and/or hardware during data processing, transmission, and storage and
(2) complete and partial data loss where the probability of technological disasters,
virus attacks, human-made errors, etc. will lead to a complete or partial loss of data [9].

• Privacy protection: IoT nodes must ensure an appropriate level of security and privacy
because of their close relationship with the real world [43]. For example, consider
the case of obtaining data by unauthorized users, uncertainty in authentication stems
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from the incompleteness of information regarding the acceptance of an authentication
request leads to an incident. Moreover, uncertainty arises from a lack of precision
(ambiguity) in the information requesting to authenticate in the system. For instance,
assume that X attempts to authenticate to a system. We also assume that authenticating
him endangers the system (the access would expose an asset to a threat) with a
probability of 50%. A formal definition for uncertainty in authentication is presented
as follows: given a set of authentication requests: R = {r1, r2, r3, . . . , rn}, a set of
possible access decisions: D = {Access, Deny}, an access decision function: F:R→D,
and a set of possible outcomes for any access decision: O = {Safe, Incident}; the
uncertainty of an authentication request is defined by the probability.

• Security: Security in IoT ensures controlling access and authorizing legitimate uses
only. Challenges and approaches are proposed to overcome the security issues in
different layers of IoT [9]. For instance, in Application Programming Interface (API)
malfunctions, clouds provide a set of User Interfaces (UIs) and APIs to customers to
manage and interact with cloud services. The security and availability of services
depend on the security of these APIs. Because they are used frequently, they are very
likely to be attacked continuously. Therefore, adequate protection from the attacks is
necessary. These interfaces must protect against accidental and malicious attempts to
prevent security policies. Poorly designed, broken, exposed, and hacked APIs could
lead to data ambiguity.

• Legal regulatory compliance: Governance strategies are a useful mechanism to address
issues related to risk mitigation, compliance, and legal requirements [44]. However,
supporting these strategies face challenges mostly due to uncertainties inherited in
IoT infrastructure such as requiring changes in sensor configurations (i.e., transfer
rate) or changing nodes communication protocol in situations such as an emergency
or multiple devices failure that may lead to performance variability.

• Limitations of sensors in IoT: Due to limitations of sensors and uncertain measures, sen-
sors readings require preprocessing because they induce uncertainty due to (1) missing
readings (tag collisions, tag detuning, metal/liquid effect, tag misalignment); (2) incon-
sistent data: RFID tags can be read using various readers at the same time; therefore,
it is possible to obtain inconsistent data about the exact location of tags; (3) ghost data:
sometimes radio frequencies might cause data to be reflected in reading areas, so RFID
readers might read those reflections; (4) redundant data: captured data may contain
significant amounts of additional information; and (5) incomplete data: tagged objects
might be stolen or forged and generate fake data [34].

8.2. Classification of Sources of Uncertainty Based on Layers of IoT Stack

We study the stack layers and all possible sources of uncertainty in IoT. We categorize
them based on our understanding, nature of uncertainty, and system behavior toward
different sources of uncertainty. Table 2 shows the classification of uncertainty based on
IoT layers (i.e., perception layer, network layer, middleware layer, and application layer).

Dynamics in the availability of resources, which is considered an internal type of
dynamics, and heterogeneity of edge nodes can be found at the perception and network
layers. On the contrary, dynamics in the environment that are considered an external type
of dynamics can be found at the perception and application layers.

Uncertainty due to scalability and reliability basically exists at the perception and
middleware layers. Types of transmission technologies (wired/wireless) belong to the
network layer. Optimum energy use and limitations of sensors are two causes of uncertainty
at the perception layer. User configuration capabilities and legal regulatory compliance
induce uncertainty at the application layer. Data management introduces uncertainty at
the middleware layer. To mitigate uncertainty related to privacy protection, we need to
focus on the network and application layers. Because security is related to end-users and
data management, it needs to be considered at the middleware and application layers.
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Table 2. Classification of different sources of uncertainty based on IoT Layers.

Source of Uncertainty Classification Based on Layer

Application Layer Middleware Layer Network Layer Perception Layer

Dynamics in the availability of
resources (internal Dynamics)
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tion. The lack of complete knowledge makes adaptation decisions vulnerable to uncer-
tainty. On the other hand, aleatory uncertainty is related to noise and context. In this case, 
uncertainty is rooted in the fact that after the adaptation decision is made, the behavior of 
the system may change. 

Table 1. Classification of different sources of uncertainty based on their location and nature. 
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Transmission Technology
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actual value of variables given to the model as input and with the methods used to cali-
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Optimum energy use
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

User Configuration capabilities
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
actual value of variables given to the model as input and with the methods used to cali-
brate the parameters of the model. 

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory 
(i.e., variability) or epistemic (i.e., lack of knowledge). The epistemic uncertainty is related 
to simplifying assumptions, model drift, human in the loop, objectives, and decentraliza-
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Data management

Computers 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 

this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
actual value of variables given to the model as input and with the methods used to cali-
brate the parameters of the model. 

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory 
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to simplifying assumptions, model drift, human in the loop, objectives, and decentraliza-
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Reliability
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
actual value of variables given to the model as input and with the methods used to cali-
brate the parameters of the model. 

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory 
(i.e., variability) or epistemic (i.e., lack of knowledge). The epistemic uncertainty is related 
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
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parameters is often known as the uncertainty of parameters and is correlated with the 
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Privacy protection
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
actual value of variables given to the model as input and with the methods used to cali-
brate the parameters of the model. 

Based on their nature, Table 1 characterizes the sources of uncertainty due to aleatory 
(i.e., variability) or epistemic (i.e., lack of knowledge). The epistemic uncertainty is related 
to simplifying assumptions, model drift, human in the loop, objectives, and decentraliza-
tion. The lack of complete knowledge makes adaptation decisions vulnerable to uncer-
tainty. On the other hand, aleatory uncertainty is related to noise and context. In this case, 
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
model's structure reflects the subset of the real world to be modeled. Uncertainty of input 
parameters is often known as the uncertainty of parameters and is correlated with the 
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
concerned with the type of the model itself. This uncertainty relates to how closely the 
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parameters is often known as the uncertainty of parameters and is correlated with the 
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uncertainty is rooted in the fact that after the adaptation decision is made, the behavior of 
the system may change. 

Table 1. Classification of different sources of uncertainty based on their location and nature. 

Source of Uncertainty 
Classification based on Location 

 
Classification based on Nature 

 Structural Context Input Parameter Aleatory Epistemic 
Simplifying assump-
tions 

     

Model drift 
 

    
Noise in Sensing      
Human in the loop      
Objectives   
Decentralization 

 

  
Execution context 

     

5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  
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this uncertainty concerns the completeness of the model. Model structural uncertainty is 
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
complexity of events. Internal uncertainty (e.g., the effect of modifying or substituting a 
software part of the system) can be considered as a reducible uncertainty. External uncer-
tainty (e.g., the impact on the system due to change in weather conditions) can be consid-
ered as an irreducible uncertainty. 

5.2. .Variability vs. Lack of Knowledge 
Uncertainty based on nature can be classified as aleatory or epistemic as shown in 

table 1 [19]. Aleatory uncertainty is often due to variability and is usually modeled using 
probabilities. On the counterpart, Epistemic uncertainty refers to a lack of information and 
is often referred to as uncertainty of parameters. Techniques used to mitigate aleatory 
uncertainty can differ from methods used to mitigate epistemic [16]. 

6. Mathematical Techniques for Representing Uncertainty  
In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

Legal regulatory compliance
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5. Characteristics of Uncertainty 
We enumerate various characteristics of uncertainty in the following subsections.  

5.1. .Reducibility vs. Irreducibility  
Irreducible uncertainty is associated with things that are implicitly unknown, 

whereas reducible uncertainty is associated with knowable items that are undetermined 
for that period. One of the key factors behind irreducible uncertainty is the unmanageable 
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uncertainty can differ from methods used to mitigate epistemic [16]. 
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In this section, we discuss two common mathematical techniques for describing un-

certainty in SASS. Although uncertainty in SASS can be represented using both ap-
proaches, the ability to make adaptation decisions is significantly impacted by the repre-
sentation.  

8.3. Proposed Solutions for Dealing with Uncertainty

In this section, we discuss proposed solutions according to previously presented
sources that can limit uncertainty in complex systems such as IoT.

• Heterogeneity of nodes: Selection of technology and types of nodes is an important
factor that needs to be considered for IoT infrastructure. Acceptance of shared stan-
dards can be used to cope with the diversity of devices and applications. Adaptation
of trust relationships needs to be implemented on the following levels in order to
guide IoT devices to use the most trustworthy information for decision making and to
reduce risk caused by malicious devices, i.e., IoT entities, data perception (sensor sen-
sibility, preciseness, security, reliability, persistence, data collection efficiency), privacy
preservation (user data and personal information), data aggregation, transmission,
and communication, and human–computer interaction.

• Scalability: Service composition mechanisms are used to handle scalability require-
ments. A service composition mechanism defines a meaningful interaction between
services by considering two functional dimensions—control flow and data flow.
Control flow refers to the order in which interactions occur, and data flow defines
how data are moved among services (behavior of workflow). With the increased
number of devices, a data processing pipeline is required, which consists of a set of
data and functions according to IoT applications that can appropriately be applied to
the transferred data streams between various nodes. It is mandatory to have a system
that can be easily expanded according to future needs [38].

• Reliability: Several mechanisms are used to improve reliability, minimize risks of
data loss, distortion, and security violation. Ensuring that information generated by
IoT is precise, authentic, up to date and complete is very important. Comprehensive
approaches are used to detect possible errors in the design phase of the system to
avoid uncertainty due to partial information. Replication is another solution that
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helps to ensure data reliability but requires applying energy-efficient cryptographic
algorithms, error correction codes, access structures, secret sharing schemes, etc.
However, applying these techniques may increase data storage cost, load, processing
for encryption and decryption, the transmission of secret keys, etc. [9].

• Privacy protection: We discussed possibility and probability theory earlier. Proba-
bility theory was chosen to define and handle uncertainty in authentication due to
the challenges of IoT scenarios such as scalability and the need for less complexity.
Privacy protection can be handled by “trust” analysis methods in order to design
lightweight security protocols and efficient cryptographic algorithms. Prediction
models can also be used in trust analysis. Supervised machine learning algorithms
(classification algorithms) may be applied to the dataset in order to build prediction
models. For instance, authentication requests were classified into “Access” or “Deny”
class. Afterward, a behavioral-based analysis algorithm is used to check the history
profile of the user to improve the accuracy of prediction models [43].

• Simulation and modeling uncertainty in IoT: The creation of simulations and models
of uncertainty phenomena is a big challenge in IoT [33]. Numerical or statistical model
checking at runtime will help select the proper configuration that complies with self-
adaption and manage uncertainty in different IoT system components to evaluate
system properties. For example, noise uncertainty will degrade the performance
severely; in [45], the authors proposed a noise detector in IoT systems, which opens
the door for others to find techniques that improve the power control and sensing
accuracy in IoT devices.

• Legal regulation and standardization: Legal regulation, standardization, and secu-
rity policies need to be implemented to overcome ethical and legal issues related to
IoT. For example, in the data aggregation process, types of relevant standards are
technology standards (including network protocols, communication protocols, and
data-aggregation standards), and regulatory standards (related to security and privacy
of data).

• Transmission technology: In wireless data transfer, a large sample size requires more
energy, bandwidth, and latency. For instance, in WSN, traditional data compression
techniques are not suitable, especially in dense networks. Avoiding oversampling
beyond network capacity for a WSN is necessary to prevent excessive data transmis-
sion from sensors. Techniques that control transmission scheduling, queuing, and
managing delay constraints need to be implemented for data transmission in IoT [39].

• Data management: In IoT, data management is handled by a layer between objects
and devices that generate the data. Raw data or aggregated data will be transmitted
via the network layer to data repositories. Users have access to these repositories to
acquire the data [46].

• Optimum energy use: In most IoT applications, the energy consumption ratio is high.
For instance, to reduce energy consumption, the adaption of active/sleep scheduling
algorithms is employed to improve IoT lifetime. Other techniques for efficient energy
consumption include low power radio, the use of self-sustaining sensors, network
protocols that generate low traffic rates, and content caching [47].

9. Conclusions and Future Research

Employing self-adaption in software systems may lead to uncertainty. In this study,
we presented a high-level model of SASS to study the conception and causes of uncertainty.
We provided a survey of state-of-the-art approaches that tackle uncertainty from different
perspectives. We classified the different sources of uncertainty based on their location and
nature in SASS. The development of SASS faces significant challenges due to uncertainty
since clear and consistent objectives are difficult to specify at design time and dynamic
environment conditions are expected at runtime. Another challenge is quantifying uncer-
tainty in SASS. If uncertainty can be even partially quantified/estimated, self-adaption in
software systems is able to perform better than if it completely ignores uncertainty. Many
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proposed approaches considered sources of uncertainty to a limited degree. To this end, we
used IoT as a case study of SASS that is usually deployed in highly uncertain and rapidly
changing environments. IoT is a critical infrastructure for many applications that utilizes
the attributes of SASS. We studied the main layers of the IoT stack and categorized the
sources of uncertainty accordingly. We then summarized the possible solutions to tackle
uncertainty in layers of IoT stack.

One direction of future work is to apply a structured method that can handle multiple
sources of uncertainty more efficiently. Our focus so far has been defining causes of
uncertainty in the field of SASS. One of the limitations is that there is no optimized way
to prioritize or rank uncertainty (i.e., high, medium, low) in SASS. As a part of future
studies, researchers need to focus on developing algorithms and techniques that offer better
detection and numerical representation of different sources of uncertainty in SASS.
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