
computers

Article

Spatial Low-Rank Tensor Factorization and Unmixing of
Hyperspectral Images

William Navas-Auger * and Vidya Manian

����������
�������

Citation: Navas-Auger, W.; Manian,

V. Spatial Low-Rank Tensor

Factorization and Unmixing of

Hyperspectral Images. Computers

2021, 10, 78. https://doi.org/

10.3390/computers10060078

Academic Editor: Lucia Maddalena

Received: 26 April 2021

Accepted: 24 May 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, University of Puerto Rico, 00681 Mayaguez, Puerto Rico;
vidya.manian@upr.edu
* Correspondence: william.navas@upr.edu

Abstract: This work presents a method for hyperspectral image unmixing based on non-negative
tensor factorization. While traditional approaches may process spectral information without regard
for spatial structures in the dataset, tensor factorization preserves the spectral-spatial relationship
which we intend to exploit. We used a rank-(L, L, 1) decomposition, which approximates the original
tensor as a sum of R components. Each component is a tensor resulting from the multiplication of a
low-rank spatial representation and a spectral vector. Our approach uses spatial factors to identify
high abundance areas where pure pixels (endmembers) may lie. Unmixing is done by applying Fully
Constrained Least Squares such that abundance maps are produced for each inferred endmember.
The results of this method are compared against other approaches based on non-negative matrix
and tensor factorization. We observed a significant reduction of spectral angle distance for extracted
endmembers and equal or better RMSE for abundance maps as compared with existing benchmarks.

Keywords: spatial low-rank tensor decomposition; remote sensing; hyperspectral image unmixing

1. Introduction

One pervasive problem in remote sensing is the identification of materials based on
their spectral signature [1]. When a pixel is recorded by the sensor, it can gather reflected
radiation from more than one material or substance. This happens because there may
be an insufficient spatial resolution for the sensor to capture individual materials or the
substances in question are mixed uniformly. In either case, we can infer that mixed pixels
have spectra that are some combination of the individual substances. The underlying
assumption is that for a given scene with thousands of pixels, there are a few material
types such as water, vegetation, soil, concrete, different types of sediments, and minerals
that have constant spectral properties. If we can make a successful separation of mixed
materials, then abundance estimation can provide valuable information to researchers such
as changes in land cover, biodiversity, environmental hazards, and others.

In this work, our goal is to use the spatial factors from a tensor factorization to improve
the identification of pure materials and their abundance, as opposed to other factorization
methods that use regularization to promote sparsity.

2. Background

Hyperspectral images (HSI) are three-dimensional data cubes with two spatial dimen-
sions and one spectral dimension with hundreds of bands. To apply traditional signal
processing algorithms, multidimensional arrays are unfolded; usually along the spectral
dimension. In the resulting data set, every pixel is considered an independent sample
of the material. This treatment ignores spatial relationships amongst neighboring pixels
that could be exploited. Previous work using tensor factorizations for classification or
feature extraction is discussed in [2]. Tensor decompositions have also been used for blind
signal unmixing as demonstrated in [3]. More recently, new methods for HSI unmixing

Computers 2021, 10, 78. https://doi.org/10.3390/computers10060078 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0172-4903
https://orcid.org/0000-0003-3834-8857
https://doi.org/10.3390/computers10060078
https://doi.org/10.3390/computers10060078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10060078
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10060078?type=check_update&version=2

Computers 2021, 10, 78 2 of 17

using low-rank tensor decompositions and non-negative tensor factorizations have been
proposed in [4–6].

2.1. Hyperspectral Unmixing

Hyperspectral unmixing (HU) refers to the process of separating the spectral com-
ponents of a hyperspectral image (HSI) as a matrix factorization where source signals,
namely endmembers, are summed in proportion to their abundance plus a noise term to
approximate the mixed pixels. This is referred to as the linear mixing model (LMM) [7]
expressed as:

Y = SA + W (1)

where Y ∈ RM×N, S ∈ RM×R, and A ∈ RR×N. Y represents the HSI with M spectral bands
and N pixels. The columns of S represent the “pure” materials, namely endmembers. The
matrix A is the fractional abundance matrix indicating the proportion in which endmem-
bers contribute to every pixel. The term W ∈ RM×N accounts for noise. The LMM has two
important constraints: all elements of Y, S, and A are non-negative (ANC), and abundances
sum-to-one (ASC). Solving for S and A cannot be done analytically but can be approxi-
mated by numerical methods. Furthermore, identifying the number of endmembers, R,
is a problem in itself. However, there are algorithms to estimate R such as HySime [8].
HySime estimates the signal and noise correlation matrices and then selects the subset of
eigenvalues that best represent the signal subspace in the least-squares sense.

2.2. Non Negative Matrix Factorizations

Matrix factorizations such as Principal Component Analysis and Singular Value
Decomposition produce orthogonal components helpful in dimensionality reduction but
do not satisfy the ANC and ASC imposed by the LMM. In addition, the orthogonal
components they produce do not easily translate to physical phenomena. Non-negative
matrix factorizations (NMF) can be used to separate signals into their constituent parts [9].
The non-negativity constraint also makes the decomposition easy to interpret as they relate
to parts of the original data. Several algorithms exist to compute non-negative factors. Some
of the most common ones are Alternating Least Squares (ALS/HALS) and Multiplicative
Update (MU) [10]. These methods approximate a solution for S and A by minimizing the
cost function:

C(S, A) = ‖Y− SA‖2
F (2)

subject to S ≥ 0, and A ≥ 0; where ‖·‖2
F denotes the Frobenius norm squared. Both

algorithms are initialized with random inputs and iteratively update S and A until the
solution converges. Improvements have been made by adding regularization terms to
the cost function that promotes sparsity of the abundance matrix under the assumption
that pixels are a mixture of few endmembers. The cost function with regularization takes
the form:

C(S, A) = ‖Y− SA‖F + λ‖A‖p (3)

where ‖·‖p denotes the lp-norm of the abundance matrix, as shown on Equation (4).

‖A‖p =
(

∑R,N
r, n=1|ar(n)|p

)1/p
(4)

Commonly used norms are the l1-norm, also known as the Manhattan Distance; and
the l2-norm, which is the same as the Euclidean Distance. The use of other norms with p in
the range (0,1) is discussed in [11], where the authors show that the l1/2-norm produces
improved results as compared to other unmixing algorithms.

2.3. Tensor Notation and Definitions

Using notation from Kolda in [12], we will use letters with bold script font to denote
tensors, bold non-script font denote matrices, and bold lowercase indicates vectors.

Computers 2021, 10, 78 3 of 17

Let Y ∈ RI1×I2×...×IN be a tensor, where N is the number of dimensions (or modes)
and In is the size on the nth dimension. The number of dimensions is also referred to as
the order of the tensor. An HSI cube is a third-order tensor with two spatial dimensions of
size (I, J) and one spectral dimension of size K, such that Y ∈ RI×J×K. An element of Y is
referenced as yijk.

Definition 1. A n-mode fiber is a column vector whose elements are obtained by fixing all tensor
indices but the nth one. For a third-order tensor, Y ∈ RI×J×K, a fiber is referenced as y:jk, yi:k, and
yij:, where the colon indicates all elements along that dimension.

Definition 2. A slab or slice is a matrix obtained by fixing all but two indices of a tensor. For a
third-order tensor with indices (i, j, k), slabs are denoted as matrices, Yi::, Y:j:, and Y::k.

Definition 3. The n-mode matrization or unfolding of a tensor Y ∈ RI1×I2×...×IN , is the process of
reordering the tensor elements into a matrix Y(n), whose columns are the mode-n fibers of Y; such
that Y(n) ∈ RIn×I1 I2···In−1 In+1···IN−1 IN .

Definition 4. The n-mode product is the dot-product of the n-mode fibers of a tensor X by the
columns of a matrix A where X ∈ RI1×I2···×In ···×IN−1×IN and A ∈ RJ×In . The operation yields
a new tensor Y ∈ RI1×I2···×J···×IN−1×IN . The n-mode product is expressed as Y = X ×n A and it
is equivalent to the matrix multiplication of A by the n-mode matrization of X, X(n) as shown on
Equation (5):

Y = X ×n A ⇔ Y(n) = AX(n) (5)

2.4. Tensor Factorizations

The Tucker decomposition [13] is an N-dimensional analog to singular value decom-
position (SDV) where a tensor, Y ∈ RI1×I2×...×IN is decomposed, as shown on Equation (6).

Y = G ×1 F(1) ×2 F(2) · · · × N F(N) (6)

G ∈ RR1×R2×...×RN and factor matrices F(n) ∈ RIn×Rn Low-rank representation is achieved
by reducing the dimensions of the core tensor G such that Rn < In.

Canonical Polyadic decomposition (CPD) is a special case of the Tucker decomposition
where the core tensor G of t has all dimensions of the same size and it is also diagonal. CPD
represents a tensor as a sum of rank-1 terms. As opposed to Tucker decomposition, CPD
is free from rotational ambiguity under mild conditions [14]. The tensor rank is defined
in terms of the CPD as the minimum number of rank-1 components needed to exactly
reconstruct the original tensor. The CPD can be written as shown in Equation (7):

Y = ∑R
r=1

(
fr
(1) ◦ fr

(2) · · · fr
(N)
)

(7)

where ◦ indicates the outer product, and fr
(n) ∈ RIn is a factor for each dimension In. We

will call fr
(1) and fr

(2) the spatial factors while fr
(3) is the spectral factor. If we let

Er = fr
(1)fr

(1) ◦ fr
(2) (8)

and
Yr = Er ◦ fr

(3) (9)

then, it is evident that spatial information represented by the rank-1 matrix Er encodes the
magnitude of the rth spectral factor fr

(3), at a given location.
This structure would be analogous to the abundance if ANC and ASC constraints

are applied. However, while CPD provides an intuitive relationship between spatial
and spectral content for each component, the limitation on Er being of rank-1, makes it

Computers 2021, 10, 78 4 of 17

insufficient to capture complex shapes under a single component. Many components with
similar spectra would have to be clustered to produce shapes that capture the abundance
of materials in the form of an abundance map.

Figure 1 shows a CPD with eight components (R = 8). The original HSI has 198 bands
and four endmembers. Components Tree-1 and Tree-2 have very similar spectral signatures
but the optimization generates two components. Road-1, Road-2, and Road-3 show a
similar issue where the road is split into three components. Constraining the optimization
to R = 4 will produce the required number of components but there are not enough degrees
of freedom to represent spatial features accurately.

Computers 2021, 10, x FOR PEER REVIEW 4 of 17

spectral content for each component, the limitation on 𝐄 being of rank-1, makes it insuf-
ficient to capture complex shapes under a single component. Many components with sim-
ilar spectra would have to be clustered to produce shapes that capture the abundance of
materials in the form of an abundance map.

Figure 1 shows a CPD with eight components (R = 8). The original HSI has 198 bands
and four endmembers. Components Tree-1 and Tree-2 have very similar spectral signa-
tures but the optimization generates two components. Road-1, Road-2, and Road-3 show
a similar issue where the road is split into three components. Constraining the optimiza-
tion to R = 4 will produce the required number of components but there are not enough
degrees of freedom to represent spatial features accurately.

Figure 1. Components of a CPD computed for the Jasper Ridge HSI using CPD with R = 8. The
false color plots correspond to the magnitude of Er (red is larger), and the plot below each slab is
the spectral factor, fr(3).

Block Term Decomposition (BTD) is a generalization of CPD. It allows a tensor de-
composition to be written as a sum of low-rank terms different than rank-1 [15]. Rank-(L,
L, 1) in particular, is a 3-way decomposition specifying rank-L, with L > 1, for the first two
dimensions and rank-1 for the third. The rank-(L, L, 1) can be expressed as:

Y = ∑ 𝐅𝒓∷()𝐅𝒓∷() ∘ 𝐟 :() (10)

where F(1)∈ ℝ × × , F(2) ∈ ℝ × × , and 𝐟() ∈ ℝ × .
The motivation for using rank-(L, L, 1) decomposition stems from the characteristics

of an HSI. Endmembers on a scene are in the order of one to ten; while spatial dimension
sizes may be in the hundreds. This disparity can be addressed with rank-(L, L, 1) in such
a way that fewer components are required to achieve a good spatial approximation.

3. Materials and Methods
3.1. Hyperspectral Data Sets

We experimented with three data sets widely used in academic literature for
hyperspectral unmixing and classification. These data sets also have associated reference
endmembers against which we will compare the capability of our approach. Here we
provide a short description of the image content according to Le Sun’s website [16] where
the data sets were downloaded from.

Samson is a simple image that contains water, trees, and soil. The Jasper Ridge image
contains water, soil, trees, and roads. The Urban image contains grass, roads, buildings,
and trees. There are three versions of ground truth for Urban containing 4, 5, and 6
endmembers. In our experiments, we tested with 4 and 6 endmebers. Table 1 shows the
dimensions of hyperspectral input images.

Figure 1. Components of a CPD computed for the Jasper Ridge HSI using CPD with R = 8. The
false color plots correspond to the magnitude of Er (red is larger), and the plot below each slab is the
spectral factor, fr

(3).

Block Term Decomposition (BTD) is a generalization of CPD. It allows a tensor decom-
position to be written as a sum of low-rank terms different than rank-1 [15]. Rank-(L, L, 1)
in particular, is a 3-way decomposition specifying rank-L, with L > 1, for the first two
dimensions and rank-1 for the third. The rank-(L, L, 1) can be expressed as:

Y = ∑R
r=1F(1)

r:: F(2)T
r:: ◦ f(3)r: (10)

where F(1) ∈ RR×I1×L, F(2) ∈ RR×I2×L, and f(3) ∈ RR×I3 .
The motivation for using rank-(L, L, 1) decomposition stems from the characteristics

of an HSI. Endmembers on a scene are in the order of one to ten; while spatial dimension
sizes may be in the hundreds. This disparity can be addressed with rank-(L, L, 1) in such a
way that fewer components are required to achieve a good spatial approximation.

3. Materials and Methods
3.1. Hyperspectral Data Sets

We experimented with three data sets widely used in academic literature for hy-
perspectral unmixing and classification. These data sets also have associated reference
endmembers against which we will compare the capability of our approach. Here we
provide a short description of the image content according to Le Sun’s website [16] where
the data sets were downloaded from.

Samson is a simple image that contains water, trees, and soil. The Jasper Ridge image
contains water, soil, trees, and roads. The Urban image contains grass, roads, buildings, and
trees. There are three versions of ground truth for Urban containing 4, 5, and 6 endmembers.
In our experiments, we tested with 4 and 6 endmebers. Table 1 shows the dimensions of
hyperspectral input images.

Computers 2021, 10, 78 5 of 17

Table 1. Dimensions of each HSI and number of reference endmembers, R.

HSI Set I1, I2 I3 R

Samson 95, 95 156 3

J.Ridge 100, 100 198 4

Urban 307, 307 162 4, 6

3.2. Spatial Low-Rank Non-Negative Tensor Factorization Unmixing (SLR-NTF)

We propose using information from the spatial factors F(1) and F(2), as shown in
Equation (11), to extract endmembers which will later be used to generate abundance maps.

Er = F(1)
r F(2)T

r (11)

These factors multiplied the results in a spatial-low rank representation of the abun-
dance of one particular spectral component, hence, the name Spatial Low-Rank NTF
Unmixing (Supplementary Materials (SLR-NTF)). Having estimated endmembers, abun-
dance maps are computed using the fully constrained least-squares (FCLS) [17].

Parameter R is set as the number of expected endmembers. We can also write
Equation (7) in CPD form as a sum of LR components of rank-1. Hence, the resulting
tensor is rank-LR, as shown in Equation (12):

Y = ∑R
r ∑L

l

(
F(1)

r:l ◦ F(2)
r:l ◦ f(3):,r

)
(12)

BTD is guaranteed to be essentially unique for a tensor with tensor rank LR ≤min(I1, I2).
However, HSIs are not guaranteed to have a tensor rank less than the size of their spatial
dimensions. Since the rank is bounded by the total number of linearly independent
components, we chose L proportional to the minimum size of the spatial dimensions and
inversely proportional to R. Additionally, we weight L by the ratio of spatial to spectral size.
This weight, min(I1, I2)/(I3), adjusts L, increasing it when the spatial size is large relative
to the spectral size and or reducing it when the opposite is true. An increase of spatial
size relative to the spectral size would presumably increase the tensor rank assuming the
spectral rank remains the same and is significantly smaller than the HS dimension. The
calculation of L is shown in Equation (13):

L =

⌊
min(I1, I2)

2

R I3

⌋
(13)

The selection of an optimal value of L based on signal unmixing continues to be a
topic of research.

High magnitude regions on the spatial slab Er, indicate a strong abundance of end-
member r. Reconstructed pixels are selected from the regions where Er/max(Er) exceeds a
threshold γ = 0.95. and the average of the selected pixels at those locations becomes the
reconstructed endmember, as shown in Equation (14).

sr = ∑
Y′
(

argi,j

(
Er ,

max(Er)
> γ

)
, r
)

N
(14)

From the reconstructed endmembers, we compute the abundance of materials through
FCLS. This method solves the least-squares inverse problem while applying the non-
negativity constraint and the sum-to-one constraint imposed on the abundance map.
Figure 2 shows a block diagram of the whole process.

Computers 2021, 10, 78 6 of 17

Computers 2021, 10, x FOR PEER REVIEW 5 of 17

Table 1. Dimensions of each HSI and number of reference endmembers, R.

HSI Set I1, I2 I3 R
Samson 95, 95 156 3
J.Ridge 100, 100 198 4
Urban 307, 307 162 4, 6

3.2. Spatial Low-Rank Non-Negative Tensor Factorization Unmixing (SLR-NTF)
We propose using information from the spatial factors F(1) and F(2), as shown in

Equation (11), to extract endmembers which will later be used to generate abundance
maps. 𝐄 = 𝐅𝒓()𝐅𝒓() (11)

These factors multiplied the results in a spatial-low rank representation of the
abundance of one particular spectral component, hence, the name Spatial Low-Rank NTF
Unmixing (Supplementary Materials (SLR-NTF)). Having estimated endmembers,
abundance maps are computed using the fully constrained least-squares (FCLS) [17].

Parameter R is set as the number of expected endmembers. We can also write Equa-
tion (7) in CPD form as a sum of LR components of rank-1. Hence, the resulting tensor is
rank-LR, as shown in Equation (12):

Y = ∑ ∑ 𝐅𝒓:𝒍(𝟏) ∘ 𝐅𝒓:𝒍(𝟐) ∘ 𝐟:,𝒓(𝟑)𝑳𝒍𝑹𝒓 (12)

BTD is guaranteed to be essentially unique for a tensor with tensor rank LR ≤ min(I1,
I2). However, HSIs are not guaranteed to have a tensor rank less than the size of their
spatial dimensions. Since the rank is bounded by the total number of linearly independent
components, we chose L proportional to the minimum size of the spatial dimensions and
inversely proportional to R. Additionally, we weight L by the ratio of spatial to spectral
size. This weight, min(I1, I2)/(I3), adjusts L, increasing it when the spatial size is large rela-
tive to the spectral size and or reducing it when the opposite is true. An increase of spatial
size relative to the spectral size would presumably increase the tensor rank assuming the
spectral rank remains the same and is significantly smaller than the HS dimension. The
calculation of L is shown in Equation (13):

L= 𝐦𝐢𝐧(,) (13)

The selection of an optimal value of L based on signal unmixing continues to be a
topic of research.

High magnitude regions on the spatial slab Er, indicate a strong abundance of
endmember r. Reconstructed pixels are selected from the regions where Er/max(Er) ex-
ceeds a threshold γ = 0.95. and the average of the selected pixels at those locations becomes
the reconstructed endmember, as shown in Equation (14). 𝑠 = ∑ Y’ , 𝐄 ,(𝐄) , (14)

From the reconstructed endmembers, we compute the abundance of materials
through FCLS. This method solves the least-squares inverse problem while applying the
non-negativity constraint and the sum-to-one constraint imposed on the abundance map.
Figure 2 shows a block diagram of the whole process.

Figure 2. Spatial Low-Rank Non-negative Tensor factorization (SLR-NTF) Unmixing.

3.3. Implementation on Tensorflow for GPU Execution

Figure 2. Spatial Low-Rank Non-negative Tensor factorization (SLR-NTF) Unmixing.

3.3. Implementation on Tensorflow for GPU Execution

Tensorflow [18] uses an operation graph approach to perform multidimensional
array computations with the goal of removing control logic from the programming model
such that data can be streamed into vector processors with ease. The TensorFlow API
abstracts low-level operations and implements hardware-specific vector, matrix, and tensor
operations through runtime libraries optimized for the computing device. The code may
run vector operations on multicore CPUs and take advantage of advanced vector processing
instructions such as AVX and AVX2, using Intel’s Math Kernel Library, or OneAPI. GPUs
between 10 and 100 times more functional units, which also take advantage of Tensor Flow’s
framework. The same Tensorflow code can run on NVidia GPUs using the CUDA libraries
and runtime. Pseudo code is shown on the section below and a full implementation and
demo is available at: https://github.com/wilonavas/SLR-NTF.git.

Pseudocode for Spatial Low-Rank Tensor Factorization (SLR-NTF)

Inputs: = Source HSI Y, Number of endmembers R.
Outputs: = Inferred Endmembers S’ = [s1, s2,.., sR], Abundance maps A’ = [A1, A2, . . . AR]

1. Estimate L =

⌊
min(I1,I2)

2

R I3

⌋
2. Initialize F(1), F(2), f(3)

3. Define computation graph for: Y’ = ∑R
r=1 F(1)r:: F(2)Tr:: ◦ f(3)r:

4. Define cost function: cost(Y, Y’) = ||Y − Y′ ||
5.

(
F(1), F(2), f(3)

)
= Minimize(Cost(Y, Y’))

6. Compute Spatial Slices Er = F(1)r F(2)Tr

7. Extract endmembers sr = ∑
Y′
(

argi,j

(
Er ,

max(Er)
>γ
)

,r
)

N
8. Compute abundance A’ = FCLS(Y’, S)

3.4. Initialization

SGD can be sensitive to initial conditions but heuristic methods have been developed
to improve initialization and convergence. One of them is Glorot initialization [19]. It scales
values on a narrow range that is inversely proportional to the factor sizes. There are two
formulations. The first produces normally distributed random numbers with a standard
deviation of σ =

√
2/M + N where M and N are the input and output dimensions of a neu-

ral network layer. In our case, it is the dimensions of our factors. The second formulation is
a random uniform distribution with numbers in the range [−

√
6/
√

M + N,
√

6/
√

M + N].

3.5. Optimizer

The rank-(L, L, 1) decomposition was implemented as a non-linear least-squares opti-
mization problem solvable by the Stochastic Gradient Descent (SGD) family of methods.
We leveraged existing frameworks for training neural networks and applied similar tech-
niques for solving the rank-(L, L, 1) factorization problem. Numerical experiments by [20]
show the non-linear methods are less sensitive to initial conditions and in some cases more
robust than ALS. We used the Adam [21] optimizer included in Tensorflow. It required
specifying a model, cost function, and setting appropriate stopping criteria based on re-
construction error. Below are the core functions used to implement the decomposition.
Tensorflow primitives have the tf.* prefix. We removed the loops for iterating and stopping
logic for clarity.

https://github.com/wilonavas/SLR-NTF.git

Computers 2021, 10, 78 7 of 17

Optimizer Core functions

def model(self):

self.apply_anc(’relu’)
op1 = tf.matmul(self.A,self.B,transpose_b=True)
op2 = tf.tensordot(op1,self.C,[0,0])
return op2

def cost(self):

se = tf.math.squared_difference(self.Y,model())
mse = tf.reduce_mean(se)
return mse

def train(self, opt=tf.keras.optimizer.Adam):

with tf.GradientTape() as tape:
tape.watch(self.vars)
curr_cost = self.cost()

grads = tape.gradient(curr_cost,self.vars)
opt.apply_gradients(zip(grads,self.vars))
return curr_cost

The function model() defines the computation graph for the rank-(L, L, 1) decompo-
sition using TensorFlow operations. We apply a Rectifier Linear Unit (ReLU) function to
satisfy the abundance non-negative constraint. ReLU is simply set to zero any negative
value that results from the application of the gradients.

With the function train(), we are leveraging the programming model commonly
used for training neural networks to only perform tensor factorization. The GradientTape()
performs automatic differentiation (AD) [22] and the optimizer applies changes to variables.
In our case, the variables are the factors of the decomposition. The optimizer takes gradients
as inputs, to dynamically adjust learning rate, momentum, and decay. Learning rate is the
size of the steps by which weights are modified in the direction that most reduces the cost
function. Large learning rates cause the error to oscillate around minimum while small
learning rates require more iterations to reach a minimum.

Momentum in the context of SGD is analogous to having a ball with mass rolling down
the cost function. The intent is to prevent the optimizer from converging on a shallow local
minimum. If the optimizer reaches a minimum, it will tend to continue as long as it has
momentum. Decay, following the physics analogy, is akin to friction. It uses an exponential
function to reduce momentum in such a way that the descent reaches a “terminal speed”
while going down a steep slope. Momentum dissipates if the surface is flat. These two
considerations make Adam very effective in Deep Neural Network training and proved to
be much faster and stable than SGD for our application.

The tensor operation op1 is a node in the TensorFlow compute graph. It computes the
matrix multiplication of spatial factors F(1) and F(2) resulting in spatial slices Er. Then, op2
computes the sum of the outer products of spatial slices with spectral factors f(3). Note that
we use tensordot() to perform the outer product and contraction with a single call. However,
below the high-level TensorFlow API, tensor fibers are being copied to the GPU’s memory
where inner products are computed in parallel and sums of products are pipelined into
specialized functional units such as CUDA cores and Tensor cores. In the case where we
used the CPU, the operations are distributed amongst cores available and mapped to vector
instructions such as AVX and AVX2.

3.6. Complexity and Performance

In this section, we discuss aspects of the asymptotic behavior of the proposed solution.
We also present execution times for SLR-NTF algorithm running with an 8 core AMD Ryzen
3700 processor and compare it against an Nvidia RTX 3700GPU with 5888 CUDA cores.

Computers 2021, 10, 78 8 of 17

The time complexity for one iteration of the optimizer is bound by some constant
times the number of multiplications and additions done in Equation (10). If we let
N ≥max(I1, I2, I3), and knowing L < min(I1, I2) and R << I3, then the number of oper-
ations is asymptotically bound by O(N4). However, with R being much lower than the HSI
dimensions (I1, I2, I3), and L inversely proportional to R, it reduces to O(N3). We performed
experiments with fixed size spectral dimension and verified O(N2) asymptotic behavior.

We ran the rank-(L, L, 1) decomposition to completion, measured iterations per second,
and computed the time for a typical 10,000 iteration run. The 10,000 is an approximation of
the number of iterations based on observed times, as shown in Figure 3.

Computers 2021, 10, x FOR PEER REVIEW 8 of 17

We ran the rank-(L, L, 1) decomposition to completion, measured iterations per sec-
ond, and computed the time for a typical 10,000 iteration run. The 10,000 is an approxi-
mation of the number of iterations based on observed times, as shown in Figure 3.

Figure 3. Number of iterations required to converge with a change in MSE of less than 10−8 for all
image sizes and settings of R.

To obtain experimental measurements, we generated a set of synthetic images with
spatial dimensions (N = I1, N = I2) taking values of 16, 32, 64, 128, 256, 384, 512, and 1024.
The spectral dimension was kept at I3 = 220. We gathered the following observations:
• Execution time on the CPU is faster than the GPU at sizes N < 32. It makes sense that

communication overhead hurts GPU performance for small datasets. While the CPU
has data in memory readily available for computation, the GPU has to send data
across the PCI bus and get results back.

• The CPU exhibits linear time behavior in the range 16 < N < 32, and transitions to
quadratic as N increases with a measured exponent of 1.96.

• GPU exhibits constant time behavior for N < 64. For N > 64, it slowly transitions to
quadratic with a measured exponent of 1.95.

• The ratio between the CPU and GPU is the performance advantage, seen as the gray
line on Figure 4. It increases and asymptotically approaches 10. In the range of N =
128 to N = 256, the GPU runs are from 5 to 8 times faster.

• The GPU implementation runs between 30 s and 2 min for images between N = 64
and N = 256. The CPU takes from 1 to 11 min for images in the same range.

Figure 4. Time in minutes vs spatial dimensions (N = I1 = I2) per 10,000 iterations. The orange line
shows for CPU time as spatial dimensions increase from 16 × 16 to 1024 × 1024 pixels. The blue line
shows GPU time. Gray line shows the speed improvement factor of GPU time over CPU time.

Figure 3. Number of iterations required to converge with a change in MSE of less than 10−8 for all
image sizes and settings of R.

To obtain experimental measurements, we generated a set of synthetic images with
spatial dimensions (N = I1, N = I2) taking values of 16, 32, 64, 128, 256, 384, 512, and 1024.
The spectral dimension was kept at I3 = 220. We gathered the following observations:

• Execution time on the CPU is faster than the GPU at sizes N < 32. It makes sense
that communication overhead hurts GPU performance for small datasets. While the
CPU has data in memory readily available for computation, the GPU has to send data
across the PCI bus and get results back.

• The CPU exhibits linear time behavior in the range 16 < N < 32, and transitions to
quadratic as N increases with a measured exponent of 1.96.

• GPU exhibits constant time behavior for N < 64. For N > 64, it slowly transitions to
quadratic with a measured exponent of 1.95.

• The ratio between the CPU and GPU is the performance advantage, seen as the gray
line on Figure 4. It increases and asymptotically approaches 10. In the range of N = 128
to N = 256, the GPU runs are from 5 to 8 times faster.

• The GPU implementation runs between 30 s and 2 min for images between N = 64
and N = 256. The CPU takes from 1 to 11 min for images in the same range.

Computers 2021, 10, 78 9 of 17

Computers 2021, 10, x FOR PEER REVIEW 8 of 17

We ran the rank-(L, L, 1) decomposition to completion, measured iterations per sec-
ond, and computed the time for a typical 10,000 iteration run. The 10,000 is an approxi-
mation of the number of iterations based on observed times, as shown in Figure 3.

Figure 3. Number of iterations required to converge with a change in MSE of less than 10−8 for all
image sizes and settings of R.

To obtain experimental measurements, we generated a set of synthetic images with
spatial dimensions (N = I1, N = I2) taking values of 16, 32, 64, 128, 256, 384, 512, and 1024.
The spectral dimension was kept at I3 = 220. We gathered the following observations:
• Execution time on the CPU is faster than the GPU at sizes N < 32. It makes sense that

communication overhead hurts GPU performance for small datasets. While the CPU
has data in memory readily available for computation, the GPU has to send data
across the PCI bus and get results back.

• The CPU exhibits linear time behavior in the range 16 < N < 32, and transitions to
quadratic as N increases with a measured exponent of 1.96.

• GPU exhibits constant time behavior for N < 64. For N > 64, it slowly transitions to
quadratic with a measured exponent of 1.95.

• The ratio between the CPU and GPU is the performance advantage, seen as the gray
line on Figure 4. It increases and asymptotically approaches 10. In the range of N =
128 to N = 256, the GPU runs are from 5 to 8 times faster.

• The GPU implementation runs between 30 s and 2 min for images between N = 64
and N = 256. The CPU takes from 1 to 11 min for images in the same range.

Figure 4. Time in minutes vs spatial dimensions (N = I1 = I2) per 10,000 iterations. The orange line
shows for CPU time as spatial dimensions increase from 16 × 16 to 1024 × 1024 pixels. The blue line
shows GPU time. Gray line shows the speed improvement factor of GPU time over CPU time.

Figure 4. Time in minutes vs. spatial dimensions (N = I1 = I2) per 10,000 iterations. The orange line
shows for CPU time as spatial dimensions increase from 16 × 16 to 1024 × 1024 pixels. The blue line
shows GPU time. Gray line shows the speed improvement factor of GPU time over CPU time.

4. Results
4.1. Performance Metrics

The root mean square error (RMSE) is a commonly used metric to measure average
deviation of a predicted signal versus the actual data. It is the average magnitude of the
residuals. Since the residuals are squared, it has the effect of weighting large differences
more heavily than small ones. We will be using RMSE to measure the error of estimated
abundance maps against reference ones provided with the datasets or computer generated
in the case of synthetic images. The formulation for RMSE is shown in Equation (15):

RMSE
(
ar, a′r

)
=

√
1
N ∑N

n=1(ar(n)− a′r(n))
2 (15)

where ar is the reference abundance and a’r is the computed abundance for the rth end-
member.

The spectral angle distance (SAD) is one of many metrics that measures similarity. It
is related to the Pearson Correlation but operates on uncentered data. Geometrically it
measures how much one vector is in the same direction of another, making it insensitive to
changes in magnitude. Equation (16) shows the SAD computation:

SAD
(
s, s′

)
=

< s, s′ >
‖s‖‖s′‖ (16)

where <·,·> denotes the inner product, s is the reference endmember, and s’ the com-
puted one.

SGD is sensitive to initial conditions. Depending on the shape of the solution space,
it can converge to a local minimum resulting in a suboptimal solution. In addition, the
characteristics of the HSI along with the selection of the L parameter may not meet the
requirements for uniqueness. For that reason, 10 runs for each set of parameters and inputs
are executed. For each run, RSME and SAD are computed. Then, the mean and standard
deviation for each set is reported as the final performance number.

4.2. Performance on Synthetic Images

In order to understand the behavior of SLR-NTF with different values of L, we tested
synthetic images. The images were generated using the ”Hyperspectral Imagery Synthesis

Computers 2021, 10, 78 10 of 17

toolbox” [23]. The mean, standard deviation, and sum of mean and standard deviation
for each metric is plotted. We expect to see less variation as the rank of the estimate
approaches the rank of the original image, which should reflect as a minimum of the mean
plus standard deviation.

Two input HSI sets were created. The first set, labelled “sleg-0x”, has abundance maps
synthesized with Legendre low order polynomials. Figure 5 shows one HSI of the Legendre
set. These polynomials produce smooth shapes with slowly changing gradients. The
other set, labeled with prefix “sgau-0x”, creates abundance maps with random Gaussian
fields, which produce more irregular content and material transitions. Figure 6 shows
the first image of the Gaussian sets. All images are mixed spectral signature from the
USGS Library [24]. Four minerals were chosen: Axinite HS342.3B, Brucite HS247.3B,
Carnallite HS430.3B, and ChloriteHS179.3B. All images are 64 pixels wide by 64 tall and
have 220 bands with a mixture of four endmember.

Computers 2021, 10, x FOR PEER REVIEW 10 of 17

Figure 5. SAD and RMSE vs. L for HSI sleg-01.

Figure 6. SAD and RMSE vs. L for HSI sleg-02.

4.3. Legendre Synthetic HSI Results
The following series of plots are the results of SLR-NTF applied to the Legendre syn-

thetic image set. We show the SAD and RMSE for choices of L= (2,4,8,16,24,32,48,56,64).
For each value of L, five runs were made. The points on the plot correspond to the mean
and standard deviation of SAD and RMSE.

Figures 5–7 show the results for the sleg-01, sleg-02, and sleg-03 HSI. We can see that
sleg-01 and sleg-02 have a very low error and variability at L = 24 and L = 16, respectively.
Sleg01 and Sleg02 show SAD in the range of 0.05 and more importantly, a very low stand-
ard deviation at that point. As L increases further, the variability of the runs increases,
indicating we have augmented the degrees of freedom beyond the rank of the original
HSI. Sleg03 has very small abundance of materials Axinite and Carnalite. In this case, the
decomposition fails to make a good approximation of the endmembers for those low
abundance regions. Figure 5, sleg-03 (b) and (c), shows very small abundances for mate-
rials Axinite and Carnalite, making them difficult to identify.

Figure 5. SAD and RMSE vs. L for HSI sleg-01.

Computers 2021, 10, x FOR PEER REVIEW 10 of 17

Figure 5. SAD and RMSE vs. L for HSI sleg-01.

Figure 6. SAD and RMSE vs. L for HSI sleg-02.

4.3. Legendre Synthetic HSI Results
The following series of plots are the results of SLR-NTF applied to the Legendre syn-

thetic image set. We show the SAD and RMSE for choices of L= (2,4,8,16,24,32,48,56,64).
For each value of L, five runs were made. The points on the plot correspond to the mean
and standard deviation of SAD and RMSE.

Figures 5–7 show the results for the sleg-01, sleg-02, and sleg-03 HSI. We can see that
sleg-01 and sleg-02 have a very low error and variability at L = 24 and L = 16, respectively.
Sleg01 and Sleg02 show SAD in the range of 0.05 and more importantly, a very low stand-
ard deviation at that point. As L increases further, the variability of the runs increases,
indicating we have augmented the degrees of freedom beyond the rank of the original
HSI. Sleg03 has very small abundance of materials Axinite and Carnalite. In this case, the
decomposition fails to make a good approximation of the endmembers for those low
abundance regions. Figure 5, sleg-03 (b) and (c), shows very small abundances for mate-
rials Axinite and Carnalite, making them difficult to identify.

Figure 6. SAD and RMSE vs. L for HSI sleg-02.

4.3. Legendre Synthetic HSI Results

The following series of plots are the results of SLR-NTF applied to the Legendre
synthetic image set. We show the SAD and RMSE for choices of L = (2,4,8,16,24,32,48,56,64).
For each value of L, five runs were made. The points on the plot correspond to the mean
and standard deviation of SAD and RMSE.

Figures 5–7 show the results for the sleg-01, sleg-02, and sleg-03 HSI. We can see that
sleg-01 and sleg-02 have a very low error and variability at L = 24 and L = 16, respectively.
Sleg01 and Sleg02 show SAD in the range of 0.05 and more importantly, a very low
standard deviation at that point. As L increases further, the variability of the runs increases,
indicating we have augmented the degrees of freedom beyond the rank of the original
HSI. Sleg03 has very small abundance of materials Axinite and Carnalite. In this case,
the decomposition fails to make a good approximation of the endmembers for those low

Computers 2021, 10, 78 11 of 17

abundance regions. Figure 5, sleg-03 (b) and (c), shows very small abundances for materials
Axinite and Carnalite, making them difficult to identify.

Computers 2021, 10, x FOR PEER REVIEW 11 of 17

Figure 7. SAD and RMSE vs. L for HSI sleg-03.

4.4. Gaussian Fields Synthetic HSI Results
Results for the sgau set are shown on Figures 8–10. For the sgau image set, we in-

creased the number of trials to ten for each image and nine values of L were used. We see
sgau-01 and sgau-02 reaching minimum SAD at L = 32, and sgau-03 at 20. Once at that
point, variability is negligible with standard deviation an order of magnitude smaller than
the mean. At the high end of the L values, sgau02 remains with low error and variability
while sgau-01 and sgau-03 start increasing between 40 and 50. We can make a few obser-
vations from these results.
1. The sleg set, being generated by low order polynomials, is smooth and the results

confirm has a lower spatial rank than the sgau set.
2. Both sets see very low variability when the representation has its lowest SAD and

RMSE. We can infer that the solution is unique when the LR is close to the HSI tensor
rank.

3. In the ”smooth” sleg images, using higher rank than necessary produces higher SAD
and variability.

Figure 8. SAD and RMSE vs. L for HSI sgau-01.

Figure 7. SAD and RMSE vs. L for HSI sleg-03.

4.4. Gaussian Fields Synthetic HSI Results

Results for the sgau set are shown on Figures 8–10. For the sgau image set, we
increased the number of trials to ten for each image and nine values of L were used. We
see sgau-01 and sgau-02 reaching minimum SAD at L = 32, and sgau-03 at 20. Once at
that point, variability is negligible with standard deviation an order of magnitude smaller
than the mean. At the high end of the L values, sgau02 remains with low error and
variability while sgau-01 and sgau-03 start increasing between 40 and 50. We can make a
few observations from these results.

Computers 2021, 10, x FOR PEER REVIEW 11 of 17

Figure 7. SAD and RMSE vs. L for HSI sleg-03.

4.4. Gaussian Fields Synthetic HSI Results
Results for the sgau set are shown on Figures 8–10. For the sgau image set, we in-

creased the number of trials to ten for each image and nine values of L were used. We see
sgau-01 and sgau-02 reaching minimum SAD at L = 32, and sgau-03 at 20. Once at that
point, variability is negligible with standard deviation an order of magnitude smaller than
the mean. At the high end of the L values, sgau02 remains with low error and variability
while sgau-01 and sgau-03 start increasing between 40 and 50. We can make a few obser-
vations from these results.
1. The sleg set, being generated by low order polynomials, is smooth and the results

confirm has a lower spatial rank than the sgau set.
2. Both sets see very low variability when the representation has its lowest SAD and

RMSE. We can infer that the solution is unique when the LR is close to the HSI tensor
rank.

3. In the ”smooth” sleg images, using higher rank than necessary produces higher SAD
and variability.

Figure 8. SAD and RMSE vs. L for HSI sgau-01. Figure 8. SAD and RMSE vs. L for HSI sgau-01.

Computers 2021, 10, x FOR PEER REVIEW 12 of 17

Figure 9. SAD and RMSE vs. L for HSI sgau-02.

Figure 10. SAD and RMSE vs. L for HSI sgau-03.

4.5. Performance on Real HSI Datasets
The benchmark measurements for SAD and RMSE were obtained from Y. Zhu [25].

The parameter L was set according to Equation (13) and R is set equal to the number of
reference endmembers in the benchmark data set. We called our approach Spatial Low-
Rank Non-negative Tensor Factorization and label it SLR-NTF. We compared our results
for SLR-NTF against Vertex Component Analysis (VCA), NMF, NMF with l1-norm and
l1/2-norm regularization, and matrix-vector NTF (MV-NTF), which is the only tensor-
based approach included in the benchmark.

4.6. Samson Results
Samson results with the proposed method, SLR-NTF, are excellent. When comparing

against the best result from other methods, in this case NMF-l1, it is showing a 64% and
62% reduction in SAD and RMSE, respectively. As shown in Table 2, SAD with NMF-l1/2
is 0.1033 vs. 0.0363 with SLR-NTF. The same for RMSE with results of 0.1042 for NMF-l1/2
vs. 0.0244 for SLR-NTF. Figure 11 shows abundance maps and inferred endmembers for
Samson.

Table 2. Spectral Angle and RMSE Benchmarks for Samson.

 Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)
 VCA NMF NMF-L1 NMF-L1/2 SLR-NTF VCA NMF NMF-L1 NMF-L1/2 SLR-NTF

Soil 0.4239 0.2793 0.178 0.2074 0.0331 0.1504 0.1633 0.1425 0.1719 0.0546

Tree 0.1118 0.115 0.0542 0.0559 0.0343 0.1483 0.171 0.1341 0.1683 0.0388

Water 0.0662 0.0804 0.0778 0.0731 0.0414 0.1055 0.061 0.036 0.0395 0.0244

Avg. 0.2006 0.1582 0.1033 0.1121 0.0363 0.1543 0.1318 0.1042 0.1266 0.0393

Figure 9. SAD and RMSE vs. L for HSI sgau-02.

Computers 2021, 10, 78 12 of 17

Computers 2021, 10, x FOR PEER REVIEW 12 of 17

Figure 9. SAD and RMSE vs. L for HSI sgau-02.

Figure 10. SAD and RMSE vs. L for HSI sgau-03.

4.5. Performance on Real HSI Datasets
The benchmark measurements for SAD and RMSE were obtained from Y. Zhu [25].

The parameter L was set according to Equation (13) and R is set equal to the number of
reference endmembers in the benchmark data set. We called our approach Spatial Low-
Rank Non-negative Tensor Factorization and label it SLR-NTF. We compared our results
for SLR-NTF against Vertex Component Analysis (VCA), NMF, NMF with l1-norm and
l1/2-norm regularization, and matrix-vector NTF (MV-NTF), which is the only tensor-
based approach included in the benchmark.

4.6. Samson Results
Samson results with the proposed method, SLR-NTF, are excellent. When comparing

against the best result from other methods, in this case NMF-l1, it is showing a 64% and
62% reduction in SAD and RMSE, respectively. As shown in Table 2, SAD with NMF-l1/2
is 0.1033 vs. 0.0363 with SLR-NTF. The same for RMSE with results of 0.1042 for NMF-l1/2
vs. 0.0244 for SLR-NTF. Figure 11 shows abundance maps and inferred endmembers for
Samson.

Table 2. Spectral Angle and RMSE Benchmarks for Samson.

 Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)
 VCA NMF NMF-L1 NMF-L1/2 SLR-NTF VCA NMF NMF-L1 NMF-L1/2 SLR-NTF

Soil 0.4239 0.2793 0.178 0.2074 0.0331 0.1504 0.1633 0.1425 0.1719 0.0546

Tree 0.1118 0.115 0.0542 0.0559 0.0343 0.1483 0.171 0.1341 0.1683 0.0388

Water 0.0662 0.0804 0.0778 0.0731 0.0414 0.1055 0.061 0.036 0.0395 0.0244

Avg. 0.2006 0.1582 0.1033 0.1121 0.0363 0.1543 0.1318 0.1042 0.1266 0.0393

Figure 10. SAD and RMSE vs. L for HSI sgau-03.

1. The sleg set, being generated by low order polynomials, is smooth and the results
confirm has a lower spatial rank than the sgau set.

2. Both sets see very low variability when the representation has its lowest SAD and
RMSE. We can infer that the solution is unique when the LR is close to the HSI
tensor rank.

3. In the “smooth” sleg images, using higher rank than necessary produces higher SAD
and variability.

4.5. Performance on Real HSI Datasets

The benchmark measurements for SAD and RMSE were obtained from Y. Zhu [25].
The parameter L was set according to Equation (13) and R is set equal to the number of
reference endmembers in the benchmark data set. We called our approach Spatial Low-
Rank Non-negative Tensor Factorization and label it SLR-NTF. We compared our results
for SLR-NTF against Vertex Component Analysis (VCA), NMF, NMF with l1-norm and
l1/2-norm regularization, and matrix-vector NTF (MV-NTF), which is the only tensor-based
approach included in the benchmark.

4.6. Samson Results

Samson results with the proposed method, SLR-NTF, are excellent. When comparing
against the best result from other methods, in this case NMF-l1, it is showing a 64% and
62% reduction in SAD and RMSE, respectively. As shown in Table 2, SAD with NMF-l1/2 is
0.1033 vs. 0.0363 with SLR-NTF. The same for RMSE with results of 0.1042 for NMF-l1/2
vs. 0.0244 for SLR-NTF. Figure 11 shows abundance maps and inferred endmembers
for Samson.

4.7. Jasper Ridge Results

For Jasper Ridge, we obtained a SAD of 0.1115 and RMSE od 0.0609. The second
best from the benchmark was NMF-L1/2 with RMSE of 0.1567 and RMSE of 0.1789. This
translates to a reduction on RMSE of about 60% and 29% reduction for SAD when compared
to NMF-L1/2. Table 3 shows the averages for SAD and RMSE for the different methods.
Figure 12 shows abundance maps and inferred endmembers for Jasper Ridge.

Table 2. Spectral Angle and RMSE Benchmarks for Samson.

Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)

VCA NMF NMF-L1 NMF-L1/2 SLR-NTF VCA NMF NMF-L1 NMF-L1/2 SLR-NTF

Soil 0.4239 0.2793 0.178 0.2074 0.0331 0.1504 0.1633 0.1425 0.1719 0.0546
Tree 0.1118 0.115 0.0542 0.0559 0.0343 0.1483 0.171 0.1341 0.1683 0.0388

Water 0.0662 0.0804 0.0778 0.0731 0.0414 0.1055 0.061 0.036 0.0395 0.0244

Avg. 0.2006 0.1582 0.1033 0.1121 0.0363 0.1543 0.1318 0.1042 0.1266 0.0393

Computers 2021, 10, 78 13 of 17Computers 2021, 10, x FOR PEER REVIEW 13 of 17

Figure 11. Samson unmixing results. (a) Ground truth abundance. (b) computed abundance. (c)
Reconstructed endmembers (solid blue) along with ground truth endmembers (dotted red).

4.7. Jasper Ridge Results
For Jasper Ridge, we obtained a SAD of 0.1115 and RMSE od 0.0609. The second best

from the benchmark was NMF-L1/2 with RMSE of 0.1567 and RMSE of 0.1789. This trans-
lates to a reduction on RMSE of about 60% and 29% reduction for SAD when compared
to NMF-L1/2. Table 3 shows the averages for SAD and RMSE for the different methods.
Figure 12 shows abundance maps and inferred endmembers for Jasper Ridge.

Table 3. Spectral Angle and RMSE Benchmarks for Jasper.

 Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)

 VCA NMF NMF-L1 NMF-L1/2 SLR-NTF VCA NMF NMF-L1 NMF-L1/2 SLR-NTF

Tree 0.2565 0.2130 0.0680 0.0409 0.0714 0.3268 0.1402 0.0636 0.0707 0.0587

Water 0.2474 0.2001 0.3815 0.1682 0.2029 0.3151 0.1106 0.0660 0.1031 0.0387

Soil 0.3584 0.1569 0.0898 0.0506 0.1138 0.2936 0.2557 0.2463 0.2679 0.0798

Road 0.5489 0.3522 0.4118 0.3670 0.0581 0.2829 0.2450 0.2344 0.2737 0.0665

Avg. 0.3528 0.2305 0.2378 0.1567 0.1115 0.3046 0.1879 0.1526 0.1789 0.0609

Figure 11. Samson unmixing results. (a) Ground truth abundance. (b) computed abundance.
(c) Reconstructed endmembers (solid blue) along with ground truth endmembers (dotted red).

Table 3. Spectral Angle and RMSE Benchmarks for Jasper.

Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)

VCA NMF NMF-L1 NMF-L1/2 SLR-NTF VCA NMF NMF-L1 NMF-L1/2 SLR-NTF

Tree 0.2565 0.2130 0.0680 0.0409 0.0714 0.3268 0.1402 0.0636 0.0707 0.0587
Water 0.2474 0.2001 0.3815 0.1682 0.2029 0.3151 0.1106 0.0660 0.1031 0.0387
Soil 0.3584 0.1569 0.0898 0.0506 0.1138 0.2936 0.2557 0.2463 0.2679 0.0798

Road 0.5489 0.3522 0.4118 0.3670 0.0581 0.2829 0.2450 0.2344 0.2737 0.0665

Avg. 0.3528 0.2305 0.2378 0.1567 0.1115 0.3046 0.1879 0.1526 0.1789 0.0609

Computers 2021, 10, x FOR PEER REVIEW 14 of 17

Figure 12. Jasper Ridge 2 unmixing results. (a) Reference abundance. (b) Computed abundance. (c)
Reconstructed endmembers (solid blue) along with Reference endmembers (dotted red).

4.8. Urban Results (4 Endmembers)
Unmixing on the Urban dataset produced SAD measurement of 0.1521 and RMSE of

0.1189. This image is the only one we could directly compare with another tensor decom-
position (MV-NTF) approach with published results [11]. SLR-NTF achieves a SAD of
0.1521 and RMSE of 0.1521, as shown in Table 4. MV-NTF is the second best with a SAD
with 0.2167 but a measurement for RMSE was not provided. NMF had the second best
RMSE with 0.1842. In both cases, SLR-NTF was superior showing a SAD reduction of 30%
against MV-NTF and an RMSE reduction of 35% reduction in RMSE. Figure 13 shows
abundance maps and inferred endmembers for Urban with 4 endmembers.

Table 4. Spectral Angle and RMSE Benchmarks for Urban (4 endmembers).

 Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)

 NMF NMF-L1 NMF-L1/2 MV-NTF SLR-NTF NMF NMF-L1 NMF-L1/2 SLR-NTF

Asphalt 0.2114 0.1548 0.1349 0.1638 0.0774 0.2041 0.2279 0.3225 0.1226

Grass 0.3654 0.2876 0.099 0.2268 0.2176 0.2065 0.2248 0.3387 0.1320

Tree 0.1928 0.0911 0.0969 0.1054 0.0626 0.187 0.1736 0.2588 0.1438

Roof 0.737 0.7335 0.5768 0.3707 0.2507 0.1395 0.1861 0.1782 0.0772

Avg. 0.3168 0.2269 0.3778 0.2167 0.1521 0.1843 0.2031 0.2746 0.1189

Figure 12. Jasper Ridge 2 unmixing results. (a) Reference abundance. (b) Computed abundance.
(c) Reconstructed endmembers (solid blue) along with Reference endmembers (dotted red).

4.8. Urban Results (4 Endmembers)

Unmixing on the Urban dataset produced SAD measurement of 0.1521 and RMSE
of 0.1189. This image is the only one we could directly compare with another tensor
decomposition (MV-NTF) approach with published results [11]. SLR-NTF achieves a SAD

Computers 2021, 10, 78 14 of 17

of 0.1521 and RMSE of 0.1521, as shown in Table 4. MV-NTF is the second best with a
SAD with 0.2167 but a measurement for RMSE was not provided. NMF had the second
best RMSE with 0.1842. In both cases, SLR-NTF was superior showing a SAD reduction of
30% against MV-NTF and an RMSE reduction of 35% reduction in RMSE. Figure 13 shows
abundance maps and inferred endmembers for Urban with 4 endmembers.

Table 4. Spectral Angle and RMSE Benchmarks for Urban (4 endmembers).

Spectral Angle Distance (SAD) Root Mean Squared Error (RMSE)

NMF NMF-L1 NMF-L1/2 MV-NTF SLR-NTF NMF NMF-L1 NMF-L1/2 SLR-NTF

Asphalt 0.2114 0.1548 0.1349 0.1638 0.0774 0.2041 0.2279 0.3225 0.1226
Grass 0.3654 0.2876 0.099 0.2268 0.2176 0.2065 0.2248 0.3387 0.1320
Tree 0.1928 0.0911 0.0969 0.1054 0.0626 0.187 0.1736 0.2588 0.1438
Roof 0.737 0.7335 0.5768 0.3707 0.2507 0.1395 0.1861 0.1782 0.0772

Avg. 0.3168 0.2269 0.3778 0.2167 0.1521 0.1843 0.2031 0.2746 0.1189
Computers 2021, 10, x FOR PEER REVIEW 15 of 17

Figure 13. Urban unmixing results. (a) Reference abundance. (b) Computed abundance. (c) Recon-
structed endmembers (solid blue) along with ground truth endmembers (dotted red).

4.9. Urban Results (6 Endmembers)
Table 5 shows the results for the Urban dataset with six endmembers. Average SAD

is 0.1352 for the endmembers and average RMSE for the abundance 0.1396. SAD decreased
slightly compared with the 4 endmember decomposition. However, SLR-NTF has the sec-
ond best SAD with NMF1/2 being the best. Figure 14 shows abundance maps and inferred
endmembers for Urban with six endmembers.

Table 5. Spectral Angle and RMSE Benchmarks for Urban (6 endmembers).

 Spectral Angle Distance Root Mean Square Error (RMSE)

 VCA NMF NMF1 NMF1/2 SLR-NTF VCA NMF NMF1 NMF1/2 SLR-NTF

Asphalt 0.2441 0.3322 0.2669 0.3092 0.0741 0.2555 0.2826 0.2803 0.3389 0.1626

Grass 0.3058 0.4059 0.3294 0.0792 0.2112 0.2696 0.3536 0.2937 0.2774 0.1414

Tree 0.6371 0.2558 0.2070 0.0623 0.1277 0.3212 0.2633 0.1859 0.2701 0.1323

Roof1 0.2521 0.3701 0.4370 0.0680 0.1643 0.2500 0.1662 0.1358 0.1541 0.0544

Metal 0.7451 0.6223 0.5330 0.1870 0.1297 0.2157 0.1603 0.2136 0.1660 0.1370

Soil 1.1061 0.9978 1.0371 0.0287 0.1044 0.2714 0.2505 0.2594 0.3542 0.2100

Avg 0.5484 0.4974 0.4684 0.1224 0.1352 0.2639 0.2461 0.2281 0.2601 0.1396

Figure 14. Urban unmixing results (6). (a) Reference abundance. (b) computed abundance. (c) Re-
constructed endmembers (solid blue) along with ground truth endmembers (dotted red).

Figure 13. Urban unmixing results. (a) Reference abundance. (b) Computed abundance. (c) Recon-
structed endmembers (solid blue) along with ground truth endmembers (dotted red).

4.9. Urban Results (6 Endmembers)

Table 5 shows the results for the Urban dataset with six endmembers. Average SAD is
0.1352 for the endmembers and average RMSE for the abundance 0.1396. SAD decreased
slightly compared with the 4 endmember decomposition. However, SLR-NTF has the
second best SAD with NMF1/2 being the best. Figure 14 shows abundance maps and
inferred endmembers for Urban with six endmembers.

Table 5. Spectral Angle and RMSE Benchmarks for Urban (6 endmembers).

Spectral Angle Distance Root Mean Square Error (RMSE)

VCA NMF NMF1 NMF1/2 SLR-NTF VCA NMF NMF1 NMF1/2 SLR-NTF

Asphalt 0.2441 0.3322 0.2669 0.3092 0.0741 0.2555 0.2826 0.2803 0.3389 0.1626
Grass 0.3058 0.4059 0.3294 0.0792 0.2112 0.2696 0.3536 0.2937 0.2774 0.1414
Tree 0.6371 0.2558 0.2070 0.0623 0.1277 0.3212 0.2633 0.1859 0.2701 0.1323

Roof1 0.2521 0.3701 0.4370 0.0680 0.1643 0.2500 0.1662 0.1358 0.1541 0.0544
Metal 0.7451 0.6223 0.5330 0.1870 0.1297 0.2157 0.1603 0.2136 0.1660 0.1370
Soil 1.1061 0.9978 1.0371 0.0287 0.1044 0.2714 0.2505 0.2594 0.3542 0.2100

Avg 0.5484 0.4974 0.4684 0.1224 0.1352 0.2639 0.2461 0.2281 0.2601 0.1396

Computers 2021, 10, 78 15 of 17

Computers 2021, 10, x FOR PEER REVIEW 15 of 17

Figure 13. Urban unmixing results. (a) Reference abundance. (b) Computed abundance. (c) Recon-
structed endmembers (solid blue) along with ground truth endmembers (dotted red).

4.9. Urban Results (6 Endmembers)
Table 5 shows the results for the Urban dataset with six endmembers. Average SAD

is 0.1352 for the endmembers and average RMSE for the abundance 0.1396. SAD decreased
slightly compared with the 4 endmember decomposition. However, SLR-NTF has the sec-
ond best SAD with NMF1/2 being the best. Figure 14 shows abundance maps and inferred
endmembers for Urban with six endmembers.

Table 5. Spectral Angle and RMSE Benchmarks for Urban (6 endmembers).

 Spectral Angle Distance Root Mean Square Error (RMSE)

 VCA NMF NMF1 NMF1/2 SLR-NTF VCA NMF NMF1 NMF1/2 SLR-NTF

Asphalt 0.2441 0.3322 0.2669 0.3092 0.0741 0.2555 0.2826 0.2803 0.3389 0.1626

Grass 0.3058 0.4059 0.3294 0.0792 0.2112 0.2696 0.3536 0.2937 0.2774 0.1414

Tree 0.6371 0.2558 0.2070 0.0623 0.1277 0.3212 0.2633 0.1859 0.2701 0.1323

Roof1 0.2521 0.3701 0.4370 0.0680 0.1643 0.2500 0.1662 0.1358 0.1541 0.0544

Metal 0.7451 0.6223 0.5330 0.1870 0.1297 0.2157 0.1603 0.2136 0.1660 0.1370

Soil 1.1061 0.9978 1.0371 0.0287 0.1044 0.2714 0.2505 0.2594 0.3542 0.2100

Avg 0.5484 0.4974 0.4684 0.1224 0.1352 0.2639 0.2461 0.2281 0.2601 0.1396

Figure 14. Urban unmixing results (6). (a) Reference abundance. (b) computed abundance. (c) Re-
constructed endmembers (solid blue) along with ground truth endmembers (dotted red).

Figure 14. Urban unmixing results (6). (a) Reference abundance. (b) computed abundance. (c) Re-
constructed endmembers (solid blue) along with ground truth endmembers (dotted red).

5. Conclusions and Future Work

In this work, we reviewed the use of non-negative tensor factorization for hyperspec-
tral unmixing with particular attention to the use of spatial information.

Decomposition in the context of unmixing: the insights from CPD experiments moti-
vated the use rank-(L, L, 1) decomposition, which provides better control of the spatial low
rank, independent of the spectral rank. We introduced a workflow for spectral unmixing
that directly uses spatial factors to infer endmembers and finally apply fully constrained
least squares to obtain abundance maps.

We introduced a novel approach to use rank-(L, L, 1) decomposition for hyperspectral
unmixing where the spatial factors are used to find candidate endmembers. As opposed to
the CPD, the spatial factors of rank-(L, L, 1) have rank L independent from the number of
components R. This overcomes the problem of limited detail on the spatial slice for each
component, allowing for more accurate spatial representation. In experiments with syn-
thetic images, it was shown that increasing the parameter L arbitrarily does not necessarily
lead to the best factorization for unmixing. The non-negative rank-(L, L, 1) factorization is
unique for LR equal to the original tensor rank. A tensor rank too low will produce poor
approximations, while rank too high leaves the gradient descent based optimizer too many
degrees of freedom; increasing the sensitivity to initial conditions. We proposed choosing
a value of L that is proportional to the spatial dimensions and inversely proportional to
R. The goal is for L to have just enough detail to represent regions of high abundance for
one spectral component. We then use those regions to gather candidate endmembers for a
given material from the low-rank reconstruction. The proposed method showed improved
SAD and RMSE when applied to the Samson, Jasper Ridge, and Urban HSIs; as compared
to other benchmarks in the same set.

It was also shown how TensorFlow was used for accelerating execution times on GPU
vs. running on a multicore CPU and report how it scales for tensor sizes up to 1024 × 1024
× 220. In the range of N = 128 to N = 256, the GPU runs are from 5 to 8 times faster.

As future work, we consider building a neural network (NN) autoencoder that uses
the rank-(L, L, 1) model as the decoder end. Hence, weight matrices of the NN are the
tensor factors. The construction of the encoder is not trivial or unique. Other techniques
used in Deep NN, such as drop-out and max-pooling are, in a way, reducing dimensionality
and therefore rank. Exploration of a NN configuration of this type may lead to a novel way
of estimating tensor rank.

Supplementary Materials: SLR-NTF code developed by the authors and Jupyter notebook demo is
available at https://github.com/wilonavas/SLR-NTF. Updated in May 2021.

Author Contributions: Conceptualization, W.N.-A., V.M., methodology, W.N.-A., V.M.; software,
W.N.-A.; validation, W.N.-A.; formal analysis, W.N.-A.; investigation, W.N.-A., V.M.; data curation,
W.N.-A.; writing—original draft preparation, W.N.-A., V.M.; writing—review and editing, W.N.-A.,

https://github.com/wilonavas/SLR-NTF

Computers 2021, 10, 78 16 of 17

V.M.; visualization, W.N.-A., V.M.; supervision, V.M. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Input data sets were downloaded from: http://lesun.weebly.com/
hyperspectral-data-set.html. Last accessed in May 2021.

Acknowledgments: The authors would like to thank the Laboratory for Applied Remote Sensing,
Imaging, and Photonics (LARSIP), in the Department of Electrical and Computer Engineering, at the
University of Puerto Rico, Mayaguez for their support in the implementation of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Landgrebe, D.A. Signal Theory Methods in Multispectral Remote Sensing; Wiley: Hoboken, NJ, USA, 2003.
2. Sidiropoulos, N.D.; Lathauwer, L.D.; Fu, X.; Huang, K.; Papalexakis, E.E.; Faloutsos, C. Tensor Decomposition for Signal

Processing and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [CrossRef]
3. Qian, Y.; Xiong, F.; Zeng, S.; Zhou, J.; Tang, Y.Y. Matrix-Vector Nonnegative Tensor Factorization for Blind Unmixing of

Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1776–1792. [CrossRef]
4. Imbiriba, T.; Borsoi, R.A.; Bermudez, J.C.M. Low-Rank Tensor Modeling for Hyperspectral Unmixing Accounting for Spectral

Variability. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1833–1842. [CrossRef]
5. Sun, L.; Wu, F.; Zhan, T.; Liu, W.; Wang, J.; Jeon, B. Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse

Unmixing of Hyperspectral Images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2020, 13, 1174–1188. [CrossRef]
6. Xiong, F.; Qian, Y.; Zhou, J.; Tang, Y.Y. Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization.

IEEE Trans. Geosci. Remote Sens. 2019, 57, 2341–2357. [CrossRef]
7. Keshava, N.; Mustard, J.F. Spectral Unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [CrossRef]
8. Nascimento, J.M.P.; Bioucas-Dias, J.M. Hyperspectral Signal Subspace Estimation. In Proceedings of the 2007 IEEE International

Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; pp. 3225–3228.
9. Donoho, D.; Stodden, V. When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts? In Advances

in Neural Information Processing Systems 16; Thrun, S., Saul, L.K., Schölkopf, B., Eds.; MIT Press: Cambridge, MA, USA, 2004;
pp. 1141–1148.

10. Zhou, G.; Cichocki, A.; Zhao, Q.; Xie, S. Nonnegative Matrix and Tensor Factorizations : An Algorithmic Perspective. IEEE Signal
Process. Mag. 2014, 31, 54–65. [CrossRef]

11. Qian, Y.; Jia, S.; Zhou, J.; Robles-Kelly, A. Hyperspectral Unmixing via L1/2Sparsity-Constrained Nonnegative Matrix Factorization.
IEEE Trans. Geosci. Remote Sens. 2011, 49, 4282–4297. [CrossRef]

12. Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]
13. Tucker, L.R. Some Mathematical Notes on Three-Mode Factor Analysis. Psychometrika 1966, 31, 279–311. [CrossRef] [PubMed]
14. Sidiropoulos, N.D.; Bro, R. On the Uniqueness of Multilinear Decomposition of N-Way Arrays. J. Chemom. 2000, 14, 229–239.

[CrossRef]
15. Lathauwer, L. Block Component Analysis, a New Concept for Blind Source Separation; Springer: Berlin/Heidelberg, Germany, 2012;

Volume 7191, pp. 1–8.
16. Sun, L. Hyperspectral Data Sets. Available online: http://lesun.weebly.com/hyperspectral-data-set.html (accessed on 4 June

2021).
17. Heinz, D.C. Chein-I-Chang Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification

in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [CrossRef]
18. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:

A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016.

19. Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. J. Mach. Learn. Res. Proc.
Track 2010, 9, 249–256.

20. Sorber, L.; Van Barel, M.; De Lathauwer, L. Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic
Decomposition, Decomposition in Rank-$(L_r,L_r,1)$ Terms, and a New Generalization. SIAM J. Optim. 2013, 23, 695–720.
[CrossRef]

21. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 5th International Conference on Learning
Representations, Toulon, France, 24–26 April 2017.

22. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic Differentiation in Machine Learning: A Survey. J. Mach.
Learn. Res. 2018, 18, 1–43.

http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://doi.org/10.1109/TSP.2017.2690524
http://doi.org/10.1109/TGRS.2016.2633279
http://doi.org/10.1109/TGRS.2019.2949543
http://doi.org/10.1109/JSTARS.2020.2980576
http://doi.org/10.1109/TGRS.2018.2872888
http://doi.org/10.1109/79.974727
http://doi.org/10.1109/MSP.2014.2298891
http://doi.org/10.1109/TGRS.2011.2144605
http://doi.org/10.1137/07070111X
http://doi.org/10.1007/BF02289464
http://www.ncbi.nlm.nih.gov/pubmed/5221127
http://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
http://lesun.weebly.com/hyperspectral-data-set.html
http://doi.org/10.1109/36.911111
http://doi.org/10.1137/120868323

Computers 2021, 10, 78 17 of 17

23. Grupo de Inteligencia Computacional. Hyperspectral Imagery Synthesis (EIAs) Toolbox; Universidad del País Vasco/Euskal Herriko
Unibertsitatea: Spain, Leioa, 2021.

24. Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll,
R.L.; et al. USGS Spectral Library Version 7; Data Series; US Geological Survey: Reston, VA, USA, 2017; p. 68.

25. Zhu, F. Spectral Unmixing Datasets with Ground Truths. CoRR. 2017. abs/1708.05125. Available online: https://www.
researchgate.net/profile/Feiyun-Zhu-2/publication/319164320_Spectral_Unmixing_Datasets_with_Ground_Truths/links/59
a84536a6fdcc2398387589/Spectral-Unmixing-Datasets-with-Ground-Truths.pdf (accessed on 4 June 2021).

https://www.researchgate.net/profile/Feiyun-Zhu-2/publication/319164320_Spectral_Unmixing_Datasets_with_Ground_Truths/links/59a84536a6fdcc2398387589/Spectral-Unmixing-Datasets-with-Ground-Truths.pdf
https://www.researchgate.net/profile/Feiyun-Zhu-2/publication/319164320_Spectral_Unmixing_Datasets_with_Ground_Truths/links/59a84536a6fdcc2398387589/Spectral-Unmixing-Datasets-with-Ground-Truths.pdf
https://www.researchgate.net/profile/Feiyun-Zhu-2/publication/319164320_Spectral_Unmixing_Datasets_with_Ground_Truths/links/59a84536a6fdcc2398387589/Spectral-Unmixing-Datasets-with-Ground-Truths.pdf

	Introduction
	Background
	Hyperspectral Unmixing
	Non Negative Matrix Factorizations
	Tensor Notation and Definitions
	Tensor Factorizations

	Materials and Methods
	Hyperspectral Data Sets
	Spatial Low-Rank Non-Negative Tensor Factorization Unmixing (SLR-NTF)
	Implementation on Tensorflow for GPU Execution
	Initialization
	Optimizer
	Complexity and Performance

	Results
	Performance Metrics
	Performance on Synthetic Images
	Legendre Synthetic HSI Results
	Gaussian Fields Synthetic HSI Results
	Performance on Real HSI Datasets
	Samson Results
	Jasper Ridge Results
	Urban Results (4 Endmembers)
	Urban Results (6 Endmembers)

	Conclusions and Future Work
	References

