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Abstract: Deep Learning-based methods have emerged to be one of the most effective and practical
solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A
critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate
detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms
(ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac
arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for
accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using
three benchmark medical datasets. In addition, considering that the quantification of uncertainty
estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to
capture the model’s uncertainty using a Bayesian-based approximation method without introducing
additional parameters or significant changes to the network’s architecture. Although many arrhyth-
mias classification solutions with various ECG feature engineering techniques have been reported in
the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the
results of existing methods in outstanding multiclass classification results that manifest F1 scores of
98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART)
dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the
deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing
and statistical reliability results in numerical experiments on the language modeling using the gating
mechanism of Recurrent Neural Networks.

Keywords: deep learning; biomedical signal processing; electrocardiogram; uncertainty estimation

1. Introduction

Artificial Intelligence (AI) has become increasingly influential in the healthcare system,
yielding robust evaluations and reliable medical decisions. The vast availability of biomed-
ical data brings tremendous opportunities for advanced healthcare research, particularly
the subdomain related to the monitoring of patients. The success of Deep Neural Networks
(DNNs) in the analysis and diagnosis of complex medical problems has demonstrated
a remarkable performance, making it one of the most effective solutions in the medical
domain. Methods for cardiac dysfunction diseases have benefited from the advancement of
DNNs by exploiting the enormous heterogeneous biomedical data to improve conventional
clinical diagnosis methods, including the detection and classification of heart dysfunctions.

AI-assisted decision-making applications are now increasingly employed for ana-
lyzing and classifying cardiac dysfunctions employing electrocardiographic morphology
readings [1–5]. Cardiac dysfunctions are anomalies in the heart’s electrical impulses records,
including cardiac arrhythmias, which can be analyzed and diagnosed from electrocardio-
gram recording. The electrocardiogram (ECG) has been widely recognized as one of the
most reliable and noninvasive methods for monitoring heart rhythms. An ECG records
impulses to manifest the heartbeat patterns, rhythm, and strength of these impulses as
they impel through the heart during a time interval so that abnormal changes within an
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ECG recording would signify heart-related conditions. As manual heartbeat classifica-
tion of the long-term ECG recordings can be very time-consuming and needs much more
practice, with an AI-powered automated recognition and classification system of ECG
recordings yields an efficient and accurate diagnosis, ultimately improving the quality of
medical treatment.

Machine learning-based solutions operate on the deterministic point-estimate mode,
meaning that they do not quantify the uncertainty of the model’s predictions, leading
to potential imprecision during results interpretation. In general, the performance of
machine learning models is usually evaluated in terms of metrics related to the models’
discriminative power, such as accuracy and F1-score. However, it is sometimes crucial
to verify the model’s uncertainty about its predictions, especially in the medical domain
where diagnostic errors are inadmissible. There have been quite some works in quantifying
the uncertainty estimations in machine learning methods. Fuzzy-based methods have been
used to provide problem-tailored uncertainty estimation solutions for classification and
clustering tasks [6–8]. Bayesian-based probabilistic methods have been primarily leveraged
for the uncertainty estimations of deep neural networks [9–11]. This work employs the
latter approach for the task of uncertainty quantifications.

Motivated by the desire to introduce an AI-powered broad-spectrum cardiac arrhyth-
mias classification design, this paper introduces an uncertainty-aware predictive model for
cardiac arrhythmias classification structured using carefully engineered Gated Recurrent
Neural Networks (GRUs) architecture that is trained using three publicly available medical
datasets and capable of classifying the most extended set of annotations (up to 20 different
types of arrhythmias annotations), yielding the uttermost possible classification perfor-
mance that is known to us. Moreover, we apply an easy-to-use feature extraction method,
namely the moving window-based method, to fragment prolonged electrocardiogram
recordings into multiple segments based on provided annotations. In addition, considering
that DNN-based methods tend to be overconfident [12,13], the introduced design estimates
the model uncertainty about its outputs using a Bayesian-based approximation method,
namely Monte Carlo-based dropout, without introducing additional parameters or signifi-
cant changes to the network’s architecture, assessed using a safety-specific set of metrics
to interpret the models’ confidence concerning the safety-critical domain applications.
By applying such an uncertainty quantification, the presented model could be exploited to
mimic the clinical workflow and transfer uncertain samples to additional analysis. Simply
put, the contribution of this work can be summarized into two folds:

1. The ability to outperform the existing results by being able to classify the most exten-
sive set of ECG annotations that are known to us (reaching 20 different imbalanced
sets of annotations) in high results.

2. The successful incorporation of model uncertainty estimation technique to assist the
physician-machine decision making, thus improving the performance regarding the
cardiac arrhythmias diagnosis.

This work attempts to present the best possible AI-assisted decision-making cardiac
arrhythmias classification model to improve the performance of arrhythmias diagnostics,
potentially in deployable real-world settings. The rest of this paper is organized as follows:
Section 2 presents the preliminaries of the essential elements used in this paper. Section 3
describes the datasets used during the experiment, followed by demonstrating the paper’s
proposed method. The paper’s experiment is thoroughly presented in Section 4 followed
by a discussion of the results in Section 5. The related works are presented in Section 6.
The paper is finally concluded in Section 7.

2. Preliminaries

To cover every aspect, we provide a concise and brief discussion of the electrocardio-
gram signals (ECGs) from the medical point of view to help the reader understand the
fundamental concepts of ECGs. Moreover, we briefly discuss the Gated Recurrent Neural
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Network (Gated RNNs), a class of artificial neural networks designed for sequential and
time-series data, which is mainly used in this experiment.

2.1. Electrocardiogram (ECG)

An electrocardiogram records the heart’s electrical activity against time, where the
changes in the electrical potential difference during depolarization and repolarisation of
the cardiac muscle are recorded and monitored [14]. ECG provides accurate and immediate
interpretations of various cardiac pathologies at a low cost, making them the best non-
invasive choice to diagnose abnormal cardiac conditions in a real-time manner.

ECG signal analysis has been a subject of study for many years. It is the fundamental
analysis for the interpretation of the cardiac rhythm. In a nutshell, an ECG waveform
consists of three main elements: waves, segments, and intervals, as shown in Figure 1. First,
waves are the deflections from the baseline (positive or negative) indicating an electrical
event. The essential waves on the ECG waveform are P, Q, R, S, T, and U waves. The P wave
represents atrial depolarization [15,16]. The Q, R, and S waves, commonly known as QRS
complex, represent the ventricular depolarization and they are calculated by the sum of the
electrical activity of the inner (endocardial) and the outer (epicardial) cardiac muscles [17].
T wave represents the repolarization of ventricle [15,16]. Second, segments are the length
between two specific points on an ECG. The segments on an ECG include the PR, ST,
and TP segments. Third, intervals are the time between two ECG events. The intervals on
an ECG include the PR, QRS, QT interval, and RR intervals. The QRS complex is considered
the main feature in diagnosing many cardiac pathologies [18]. The quality of the detection
of ECG waveform characteristics is based on accurately detecting the QRS complex and
the P and T waves (P-QRS-T) because they can easily lead to identifying more detailed
information such as the heart rate, the ST segment, and more [19]. This is usually done by
physicians analyzing the ECG signals recorded simultaneously at different human body
points to identify diagnostics related to heart functioning accurately.

Figure 1. An electrocardiogram signal waveform.

2.2. From Recurrent Neural Networks (RNN) to Gated Recurrent Units (GRU)

Before elaborating on the Gated Recurrent Neural Networks (or Gated Recurrent
Units (GRU) for short), we first discuss Recurrent Neural Network (RNN) as being the
origin. Recurrent Neural Networks are fundamentally designed to process data streams
of arbitrary length by recursively applying a transition function to its hidden internal
states for each input sequence [20]. RNNs can handle variable-length sequences by making
recurrent hidden states whose current activation output depends on the previous one to
handle long dependencies. Because RNNs have been successful with sequential data, they
are well suited for the health informatics domain, where immense amounts of sequential
data are available [21].
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Formally, given a sequence x = (x1, x2, ..., xt), a default RNN updates a recurrent
hidden state ht at time t as [22]:

ht = f (ht−1, xt) (1)

it is common to choose f as a nonlinear activation function, such as sigmoid or tanh,
with an affine transformation of both ht−1 and xt. Thus, the update of the recurrent hidden
state can be rewritten as:

ht = φ(Wxt + Uht−1 + b) (2)

where xt is m-dimensional input vector at time t, ht is n-dimensional hidden state, φ is
a nonlinear activation function, W is weight matrix of size n×m, U is recurrent weight
matrix of size n× n, and b is a bias of size n× 1.

It was observed that the default RNN is deficient in capturing long-term dependencies
because the gradients tend to either vanish or explode with long sequences [23]. As a
consequence, two RNN variations, namely the Long Short Term Memory (LSTM) [24,25]
and, most recently, Gated Recurrent Units (GRU) [23,26], have been introduced to resolve
the vanishing and exploding gradient problems. Both variations have the similar goal of
keeping long-term dependencies effective while alleviating the vanishing and exploding
gradient problems. As seen in Figure 2, LSTMs essentially consists of three gates: input
gate it, forget ft, output ot, input vector xi, and an output activation function. The key
element in LSTM is the cell state Ct, which enables the information to flow along the
cell unchanged. The input gate regulates which value should be updated, the forget
gate regulates which value of the cell state should be forgotten, and the output gate
regulates how much information should be transformed to the next layers of the network.
To summarize, the following Equations briefly describe the operations performed by the
default LSTM [22]:

ft = σ
(
W f · [ht−1, xt] + b f

)
it = σ

(
Wi · [ht−1, xt] + bi

)
C′t = tanh

(
WC · [ht−1, xt] + bC

)
Ct = ft ∗ Ct−1 + it ∗ C′t
ot = σ

(
Wo · (ht−1, xt) + bo

)
(3)

where xt denotes the input at time t, W∗ are weight matrices, b∗ is the bias term, σ is
the sigmoid function, the · denotes component-wise multiplication, and ot is the output
gate. Finally, the hidden state ht constitutes the value of the output gate at time t being
point-wise multiplied with the nonlinearly transformed cell state Ct, and it is calculated by:

ht = ot ∗ tanh(Ct) (4)

Figure 2. Illustration the difference between of (a) Long Short-Term Memory (LSTM) and (b) Gated Recurrent Unit (GRU).

On the other hand, GRUs operate using only reset and update gates. It essentially
combines the forget and input gates into the update gate and merges the cell state and
hidden state into the reset gate. The resulting architecture appears simpler hence less
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training parameters are needed than LSTM, making the training faster than LSTM [23].
The operations performed by the GRU model is as follows:

rt = σ
(
Wr · [ht−1, xt]

)
ut = σ

(
Wu · [ht−1, xt]

)
h′t = tanh

(
W · [rt ∗ ht−1, xt]

)
ht = (1− ut) ∗ ht−1 + ut ∗ h′t

(5)

where rt and ut are respectively the reset and update gates at time t, W∗ are weight matrices,
and · denotes component-wise multiplication.

2.3. Uncertainty in Neural Networks

The combination of Bayesian statistics and neural networks implies uncertainty estima-
tion in the learning model predictions, introducing Bayesian Neural Networks (BNNs) [27].
The Bayesian Neural Network (or Bayesian Deep Learning) is essentially a stochastic neural
network trained using the Bayesian inference model. The essence of BNN is to capture
uncertainty in the model by inferring a probability distribution over the model’s weights
instead of point estimates. It adds a prior distribution over the model’s weights and then
attempts to capture how these weights vary given some data. There are two main types
of uncertainty one can model [28]. First, aleatoric uncertainty measures noise inherent in
observations from the environment’s dynamics, which typically appears during the data
collection method, such as motion noise or sensor noise, making it harder to reduce even
with enough data. Second, epistemic uncertainty (model uncertainty) looks for uncertainty
in the model parameters. This type is difficult to model since it requires placing a proba-
bility distribution over the entire model parameters to capture how much these weights
vary given some data. Simply put, epistemic uncertainty is modeled by placing a prior
distribution over the model’s weights and then trying to capture how much these weights
vary given some data while aleatoric uncertainty is modeled by placing a distribution over
the model’s output.

In the typical neural network setting, the task is to find the optimal weights w as
an optimization problem to be solved using an optimization method such as stochastic
gradient descent in order to obtain a set of w and a single prediction of y∗. On the other
hand, BNN differs from the previous setting as it tries to learn a distribution over the
model’s weights and subsequently the predictive posterior distribution of y∗ using the
Bayesian inference model. Formally, given input data D = {xi, yi}N

i=1, Bayesian modeling
allows to capture model uncertainty by estimating the posterior distribution p(w|D) over
the weights as the following:

p(w|D) =
p(D|w)p(w)

p(D)
=

p(y|x, w)p(w)∫
w p(y|x, w)p(w)dw

(6)

where p(D|w) is the likelihood function of w, p(w) is the prior over weights, and p(D) =∫
w p(y|x, w)p(w)dw is the marginal likelihood (evidence). The calculation of the posterior

p(w|D) is often intractable because computing the marginal likelihoods p(D) usually
requires computing very high-dimensional integrals. Several approximation techniques
have been introduced to overcome such intractability, including Markov Chain Monte
Carlo (MCMC) sampling-based probabilistic inference [9,29], Laplace approximation [30],
variational inference [10,27,31], and Monte Carlo dropout inference [11].

3. Materials and Methods

This section explains the datasets used during the experiment, followed by describing
the proposed preprocessing approach applied on the dataset, the modeling, and uncer-
tainty estimation.
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3.1. Data Description

As stated before, this experiment aims to construct a practical cardiac arrhythmias
classification model using reliable and reputable electrocardiogram (ECGs) datasets. We
will be using three publicly available arrhythmia datasets provided by the PhysioBank,
hosted by the PhysioNet repository and managed by the MIT Laboratory for Computational
Physiology: (1) MIT-BIH Database [32,33], (2) St Petersburg INCART Database [32], and (3)
BIDMC Database [34]. The databases use a standard set of annotation definitions (i.e.,
codes) standardized by PhysioNet [35]. Annotations are nothing but a labeling strategy
to characterize particular locations within an ECG recording to describe events at those
locations. It is worth noting that these standard sets of annotation codes are divided
into two categories: beats annotations and non-beats annotations. The beats annotations
identify heartbeats, and they have a specific meaning, while non-beats annotations describe
the non-beat events and can take another set of values (The description of the standard
set of annotation codes used by PhysioBank can be found https://archive.physionet.org/
physiobank/annotations.shtml, accessed on 17 June 2021).

3.1.1. MIT-BIH Database

This database has been considered to be the benchmark database for arrhythmia
analysis and electrocardiogram signal processing. It contains 48 records of two-channel
ambulatory ECG recordings (signals), sampled at 360 samples per second with 11-bit
resolution from 47 subjects. In most records, the upper signal is the modified-lead II
(MLII), while the lower signal is usually a modified lead V1, V2, V4, or V5, depending
on the record. Since the normal QRS complexes are eminent in the upper signal, we only
process the upper ECG signal of each record. The upper ECG signal has been annotated
independently by two or more cardiologists, with the disagreements being reviewed and
resolved by consensus. Thus, the total number of annotations in all records of this database
is 112, 477 annotations, as seen in Table 1a. Accordingly, we process this database for
the classification task by constructing three datasets of different labeling levels. First,
we form a dataset by considering all possible sets of annotations from the recordings,
except we drop (‘S’, ‘]’, and ’[’) annotations because there are few samples for them,
consequently forming a dataset of 20 classes. Second, we form a dataset by considering
the beats-only annotations from the recordings, except we drop ‘S’ annotation because
there are few samples for it, consequently forming a dataset of 14 classes. Third, we
form a dataset by considering a specific set of classes proposed by the Association for
Medical Instrumentation Advancement AAMI [36], which recommends grouping the
original 15 heartbeat types, i.e., beats-only annotations, into five superclasses beats: normal
(N), ventricular ectopic beat (VEB), supraventricular ectopic beat (SVEB), fusion beat (F),
and unknown beat (Q), as shown in Table 1b, consequently forming a dataset of 5 classes.

https://archive.physionet.org/physiobank/annotations.shtml
https://archive.physionet.org/physiobank/annotations.shtml
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Table 1. Distribution of heartbeat annotation codes used by the selected databases in this paper.

(a) The number of annotations used by each database (blue colored codes indicate beats-only annotations)

Database

R
ec

or
ds Annotation Codes Used by the Database

Total
N A V ∼ | Q / f + x F j L a J n R [ ! ] E " e r S

MIT-
BIH 48 74,965 2545 7126 614 132 33 7018 982 1243 193 802 229 8066 150 83 0 7251 6 472 6 106 437 16 0 2 112,477

INCART 75 150,253 1942 19,995 0 0 0 0 0 0 0 219 92 0 0 0 32 3171 0 0 0 0 0 0 0 16 175,720
BIDMC 15 1,578,105 0 28,165 0 0 293 0 0 258 0 0 0 0 0 0 0 0 0 0 0 5 0 0 10,353 5314 1,622,493

(b) AAMI classes vs. MIT-BIH labels

AAMI Class MIT-BIH Beat Annotations Number of Heartbeats

N N, L, R, e, j 90,527
SVEB A, a, J, S 2780
VEB V, E 7232

Q P or /, f, Q 8033
F F 802

Total 109,374
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3.1.2. St Petersburg INCART Database

This database includes 75 recordings from 32 subjects obtained by Holter records. Each
record is 30 about minutes long and contains 12 standard leads, sampled at 257 samples
per second. The records are annotated following the standard PhysioBank beats annotation
using an automatic algorithm followed by manual corrections. Thus, the total number
of annotations in this database is 175,720 annotations, as shown in Table 1a. We process
this database for the classification task by forming a dataset using all possible sets of
annotations from the recordings, except we drop (‘Q’, ‘+’, ‘B’) annotations because there
are few samples for them, consequently forming a dataset of 8 classes.

3.1.3. BIDMC Database

This database includes 15 long-term recordings, each of which contains two ECG
signals sampled at 250 samples per second with 12-bit resolution from 15 subjects with
severe congestive heart failure. We process the upper ECG signal of each record. As seen
in Table 1a, this database contains in total 1,622,493 annotations, where almost 97% of
the annotations are being normal ‘N’. Hence, we only choose 200 K of ‘N’ annotation
during this experiment. In addition, we process this database for the classification task by
considering a single dataset of all possible sets of annotations from the recordings except
we drop ‘E’ annotation because there are few samples for it, consequently forming a dataset
of 6 classes.

3.2. Signal Segmentation

Before elaborating on the processing pipeline, we first explain the segmentation
method used for ECG long-term recordings. As described in the previous section, the QRS
complex is the most significant spike in the ECG signal because it represents the cardiac
ventricular muscles’ conditions, which can be used to diagnose several diseases [17,37].
The prominent characteristics of the QRS complex are the amplitude of the R wave, the du-
ration of the QRS complex, and the RR interval (RR interval refers to the time between
two consecutive R peaks). All databases used in this experiment are annotated using a
predefined set of annotations, and therefore we want to construct a labeled dataset from
each database recording. To do so, we process each raw ECG record using its provided
annotation in the following steps:

1. Locate QRS locations in the record.
2. Extract the corresponding segments using the moving window approach.
3. Label the extracted segments using their corresponding annotations.

The moving window-based segmentation approach is illustrated in Figure 3. The seg-
mentation is performed by first locating a QRS complex at a location, say i, and subse-
quently advance one second in both directions, i + 1 and i− 1, to ensure the extraction of
the essential waves, i.e., P wave, QRS complex, T wave, within the location, hence produc-
ing a segment xi. It is worthwhile to mention that the standard QRS duration is relatively
between 0.06 to 0.12 s [37,38]; therefore, we selected the window’s length precisely one
second to be long enough to cover the time duration of abnormal QRS complexes but short
enough not to overlap both QRS complex and T wave as possible.

Figure 3. Moving window-based segmentation approach.
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3.3. Processing Pipeline

The processing pipeline for constructing a cardiac arrhythmia classification model is
illustrated in Figure 4. It consists of two phases: (1) dataset generation and (2) modeling
& uncertainty estimation. The process starts with taking the raw ECG records from the
database and apply the segmentation approach explained formerly, yielding a labeled
dataset ready to be used for modeling. Next, we begin modeling the dataset using a
GRU-based Recurrent Neural Network method. In general, the Recurrent Neural Network
(RNN) selection was intended because RNNs have been traditionally successful in signal
processing, regardless of the extended training times and advanced hardware requirements
usually required, especially when dealing with prolonged signals. In the end, the modeling
step is followed by estimating the model’s uncertainty to capture the model’s level of
confidence toward the unseen data.

Figure 4. The processing pipeline for the cardiac arrhythmia classification system.

3.4. Uncertainty Estimation

Neural network-based solutions operate on the deterministic and point-estimate mode,
meaning that they do not quantify the uncertainty of the model’s predictions, leading to
potential imprecision during results interpretation. In principle, DNN-based classification
tasks yield a vector of probabilities (produced by a softmax transformation) for a set
of classes being considered. When the probability for one class is considerably higher
than the other probabilities, we often interpret it as correct with high confidence without
rationalizing if the model is certain. In the context of machine learning-based modeling
in the medical domain, it is crucial to know when the model is uncertain to avoid severe
consequences. In other words, we want to know when the model does not know. This kind
of reasoning is vital, especially for safety-critical applications.

Deep neural networks perform well on data that have been trained around before.
The difficulty is that the training dataset often covers a minimal subset of the entire input
space, making it challenging for the model to be decisive on new unseen data originating
from a different space. In this case, the model will attempt to guess the new data class
without providing any level of confidence. To assess the model’s confidence, we want to
be able to quantify the model’s uncertainty against new data, and this can be effectively
achieved using Bayesian inference via Bayesian Neural Network (BNN). However, Bayesian
inference has been recognized to be computationally intensive due to the computational
intractability of the marginal likelihood (evidence) in the model’s posterior.
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Several studies have demonstrated that one can instead approximate the model poste-
rior (inference approximation). Laplace approximation [30], variational inference [10,39],
and most recently Monte Carlo dropout estimation method [11] are all approximation
approaches intended to overcome the Bayesian inference’s computational complexity.
Gal et al. [11] showed that the dropout regularization, a technique commonly used to
control overfitting in DNNs, is equivalent to approximate the variational inference of the
Bayesian model when it is applied during the testing phase. Therefore, this work employs
model uncertainty estimation using the Monte Carlo dropout method (MC dropout) to
quantify the model’s predictive uncertainty.

In the classification setting, the predictive uncertainty of an input sample is the entropy
of the categorical softmax after calibration over the weight settings. In this work, we use
predictive entropy to evaluate the quality of the uncertainty estimates. In practice, when
applying dropout in a conventional neural network, each unit is randomly dropped with
probability pdrop during training time. At the testing time, the dropout is turned off,
meaning that the units are always present, and the weights are multiplied by (1− pdrop).
On the contrary, the dropout mechanism in the Monte Carlo method remains on during the
test time and the prediction pass (i.e., forward pass through the network) is performed T
times followed by averaging the results under the posterior distribution, thus estimating the
predictive uncertainty. Formally expressed, given a dataset D = {xi, yi}N

i=1, the predictive
distribution of the output y∗ given a new input x∗ is [40]:

p(y∗|x∗, D) =
∫

p(y∗|x∗, w)p(w|D)dw (7)

the integral can be approximated using Monte Carlo sampling method [41] over T itera-
tions as:

p(y∗|x∗, D) ≈ 1
T

T

∑
i=1

p(y∗|x∗, wi), wi ∼ p(w|D) (8)

which is also called the predictive mean µpred, and wi is the network’s weights having
dropout turned on at the ith MC dropout iteration. For each test sample, the class with the
largest predictive mean is selected as the output prediction. Ultimately, we capture the
model uncertainty by computing the predictive entropyH over K classes as the following:

H(y|x, D) = −
K

∑
i=1

p(yi|x, D) log p(yi|x, D) (9)

where p(yi|x, D) is the predictive means probability of ith class from T Monte Carlo sam-
ples. Thus, the higher predictive entropy corresponds to a greater degree of uncertainty,
and vice versa.

4. Experimental Details

This section describes the models design and configuration followed by the evaluation
metrics used to evaluate our proposed system.

4.1. Model Design and Configuration

In this work, we applied the Gated Recurrent Neural Networks (or Gated Recurrent
Units (GRU) for short) method to be used for the classification task. We spent quite an
amount of time experimenting with varying GRU-based architectures and hyperparameters
tuning choices to achieve the best possible results, including Figure 5 which demonstrates
the best model design and configuration. The final GRU architecture consists of three
GRU-based blocks, each of which is followed by a one-dimensional average pooling and a
dropout layer. The pooling is to downsample the input representation by taking the average
value over a defined-sized window called pool size and shifted forward by a particular
value. In the dropout layer, individual nodes from the GRU netwrok are either dropped
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out with probability 1− p or kept with probability p. The experimental environment was
implemented using TensorFlow v2.4.1 via the application programming interface Keras
v2.4.1 [42,43]. The model training and prediction were performed on a workstation with
an Intel Core i7-10700KF (3.8 GHz) CPU, Nvidia Geforce RTX 3060 Ti (8 GB) GPU, and 64
GB of RAM.

Figure 5. The GRU-based model architecture design. The number of GRU units is stated between
parenthesis. Similarly, the dropout value of each dropout layer is stated between parenthesis.

The objective of the neural network-based methods is to reduce the loss functions
that measure the discrepancy between the predicted value and the true label. In our
experiment, we have found out that ADAM optimizer [44], with the learning rate of
1× 10−2, works well during the training and the validation phases. The learning rate is one
crucial parameter that regulates how much change can be applied to the model in response
to the estimated error when the model weights are updated [45]. The choice of activation
functions used for the GRU’s update and reset gates were set to the sigmoid function, while
the recurrent activation is set to the hyperbolic tangent function (tanh) (We shall release
the source code for public use upon publication at https://github.com/DrAseeri/cardiac-
arrhythmia-uncertainty-estimation, accessed on 17 June 2021).

4.2. Evaluation Metrics

The performance of machine learning-based methods is generally evaluated in terms
of metrics related to the models’ discriminative power. Thus, we choose a set of metrics that
accurately assess our models’ performance as a multiclass classifier. Given that the input
datasets are highly imbalanced, we specifically employ the following metrics: Precision,
Recall, F1-score, and the area under the receiver operating characteristic curve (AUROC).
These metrics have been widely adopted for multiclass classification problems as they
provide a deeper analysis of the model’s behavior toward each class.

Formally, the multiclass classification problem refers to assigning each data point
into one of the K classes. The goal is to construct a function which, given a new data
point, will correctly predict the class to which the new data point belongs to. Unlike the
binary classification problems, there is no cut-off score (i.e., threshold) to make predictions.
Instead, the predicted output is the class with the highest predicted value. Classically,
the performance of a binary classification model can be evaluated by means of four features:
the number of correctly identified class instances (true positives TP), the number of correctly
identified instances that do not belong to the class (true negatives TN), and instances that
either was incorrectly assigned to the class (false positives FP) or that were not recognized
as a class instance (false negatives FN). In the case of a multi-class classification problem,
this can be easily extended to cover a set of K classes as follows: given a class ki, tpi is a set

https://github.com/DrAseeri/cardiac-arrhythmia-uncertainty-estimation
https://github.com/DrAseeri/cardiac-arrhythmia-uncertainty-estimation
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of true positives, tni is a set of true negatives, f pi is a set of false positives, f ni is a set of
true negatives, the weighted average for each of the metrics mentioned above is calculated
as follows [46]:

Precision =
∑K

i=1 |ki|
tpi

tpi+ f pi

∑K
i=1 |ki|

Recall =
∑K

i=1 |ki|
tpi

tpi+ f ni

∑K
i=1 |ki|

F-score =
∑K

i=1 |ki|
2tpi

2tpi+ f pi+ f ni

∑K
i=1 |ki|

AUROC =
∑K

i=1 AUC(i, all∼i)

∑K
i=1 |ki|

where all∼i in AUROC gathers all classes different from class i, meaning that AUROC is
computed here using the one against all approach, i.e., we compute this measure as the
average of k combinations.

4.3. Probabilistic-Based Metrics

The predicted classes are said to be either correct when the highest predicted values
match the respective true classes or incorrect otherwise. However, there is no notion of
knowing the model’s certainty toward the predicted classes, meaning that it solely follows
the softmax predicted outputs and is often erroneously interpreted as model confidence.
The authors in [11] show that a model can be uncertain in its predictions even with a high
softmax output. A perfect system would correctly rate predictions as correct with higher
confidence (low uncertainty) and incorrect predictions with low or no confidence (high
uncertainty). Uncertainty estimation has been a challenging task since there is no ground
truth available for the uncertainty estimates. Inspired by [47], we will evaluate uncertainty
estimation of our proposed architecture using the following possible outcomes: correct
and certain (CC), correct and uncertain (CU), incorrect and certain (IC), and incorrect and
uncertain (IU). The most severe case is when the predictions are incorrect but the model is
certain (IC), while an acceptable yet impractical model might correctly identify predictions
but in relatively high uncertainty (CU). For such a system, the goal is to minimize the error
from (1) the ratio of the number of certain but incorrect samples to all samples (IC), and (2)
the ratio of the number of uncertain but correct samples to all samples (CU). Moreover,
we also consider measuring the accuracy of the uncertainty estimates as the ratio of the
optimal outcomes (i.e., correct and certain (CC) and incorrect and uncertain (IU)) over all
possible outcomes, where the higher value (close to 1) indicates to the model that is in a
perfect mode for most of the time.

More specifically, we evaluate the quality of predictive uncertainty estimates using
conditional probability-based metrics across various uncertainty thresholds as proposed
in [48]. These metrics require only the actual true labels, the model predictions, and the
normalized uncertainty estimates H. To do so, we first apply a threshold t = [0, 1] on
the continuous uncertainty values of H to split the predictions into two groups: certain
when (H < t) and uncertain when (H > t). Second, the resulted model predictions are
divided into correct when the ground truth matches the predictions, and incorrect otherwise.
Therefore, we can formulate the following conditional probabilities:

1. P(correct|certain) indicates the probability that the model is correct on its outputs
given that it is certain about its predictions. This can be calculated as:

Pcc =
ncc

ncc + nic
(10)
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2. P(uncertain|incorrect) indicates the probability that the model is uncertain about its
outputs given that it has produced incorrect predictions.

Pui =
niu

niu + nic
(11)

We also measure the accuracy of the uncertainty estimation (AU) as the ratio of the
desirable cases (i.e., correct and certain, incorrect and uncertain) over all possible cases as
the following:

AU =
ncc + niu

ncc + ncu + niu + nic
(12)

Hence, a model with a higher value of the above metrics is considered a better
performer. Please note that the above metrics are computed over a set of thresholds
t = [0, 1], meaning that we evaluate the model results using the above metrics on different
thresholds and choose the best possible threshold value.

4.4. Data Oversampling

As shown in Table 1a, the class distribution (i.e., the distribution of heartbeat annota-
tions) of all databases employed in this work is highly imbalanced. Therefore, we allow
oversampling the minority classes by generating synthetic segments that belong to the
under-represented classes using the Synthetic Minority Oversampling Technique (SMOTE),
which is efficiently implemented by the imbalanced learn package [49]. Here we emphasize
that oversampling is only performed on the training set, whereas the validation set and
testing set remain intact so that the performance metrics can correctly deduce the results
from the original class distribution.

5. Results and Discussion

In this section, we demonstrate and analyze the performance of our proposed design
architecture discussed in Section 4.1 using the input datasets described in Section 3.1. All
results shown are based on a separate test set used for neither training nor hyperparameter
tuning. The proposed design in Section 4.1 is implemented in two modes: deep ensemble
(DEs) [39] mode and Monte Carlo-based dropout (MCDO) mode. We employ the deep en-
sembles method in our experiment to demonstrate our proposed GRU-based deterministic
power when applying the input datasets. To fully evaluate the effectiveness of the resulted
models in both modes, we collect the classifier’s predictions and evaluate them using the
general-purpose metrics previously described in Section 4.2. Moreover, the uncertainty
estimates obtained from operating Monte Carlo-based dropout mode are evaluated using
probabilistic-based safety-specific metrics discussed in Section 4.3 for reliable and informed
decision making in safety-critical applications.

5.1. Deep Ensemble Performance

Deep Ensemble (DE) is a sampling-based approach used for estimating the predictive
power of DNNs using an ensemble of neural networks [39]. In this approach, multiple
models of different random initializations with the same underline architecture are trained,
and their softmax outputs are averaged to obtain the predictive mean. Although the
deep ensemble method is known to introduce additional complexity and overhead from
training multiple models, it is used in our experiment as a stress test to assess the model’s
performance. Table 2 illustrates the results of five-samples deep ensembles. It can be
concluded that our proposed GRU-based architecture is successfully able to classify the
annotations in each of the input datasets with very high performance. In addition, we plot
in Figure A1 the multi-class ROC curves of the deep ensemble resulting from each input
datasets in a different set of annotations (one-vs-all approach) (Due to the large number
of plots in this work, we move them into the Appendix A at the end of this paper.). We
can observe that the lowest AUC value is 0.95, meaning that the DE model in general can
classify between the classes at a high rate.
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Table 2. Classification results of five-sampling deep ensemble method using the three input cardiac
arrhythmias datasets for a different set of annotations, where precisionw, recallw, F1-scorew are the
mean precision, mean recall, and the mean F1-score overall classes, weighted by the size of each class.
The annotation type in each input dataset indicates the number of selected classes based on criteria
explained in Section 3.1.

Dataset Annotation
Type (Size)

Evaluation Metric

Precisionw Recallw F1-Scorew AUROC

MIT-BIT

All (20 classes) 0.9894 0.9882 0.9887 0.9972

Beats only
(14 classes) 0.9921 0.9919 0.9920 0.9955

AAMI (5 classes) 0.9939 0.9939 0.9939 0.9987

BIDMC All (6 classes) 0.9756 0.9703 0.9725 0.9960

INCART All (8 classes) 0.9940 0.9910 0.9923 0.9922

5.2. Uncertainty Estimation Performance

We evaluate the quality of our models’ uncertainty estimations using the Monte Carlo-
based dropout method (MC dropout). As discussed earlier, the idea of MC-dropout is very
simple; when dropout is applied at both training and testing time, it can be used to mimic a
variational approximation of a Bayesian neural network. Thus, during the inference phase
(i.e., testing phase), predictive distributions are obtained by performing multiple stochastic
forward passes over the network while sampling from the posterior distribution of the
weights. Our experiments found out that 50 Monte Carlo samples are enough to capture
the model’s uncertainty.

In Table 3, we display the prediction results of the MC-dropout method based on the
standard evaluation metrics discussed in Section 4.2. As shown, these results are close to
those resulting from the deep ensemble method, indicating the effectiveness of our model.
Likewise, Figure A2 illustrates multi-class ROC curves of the MC-dropout resulting from
each input datasets in a different set of annotations. It can be observed that the MC-dropout
delivers high AUC values with an exception in the class ’Q’ in Figure A2a that shows the
minimal area = 0.89. We tolerate such a rare case since the total number of classes in the
MIT-BIH dataset when applying all annotations is 20.

Table 3. Classification results of 50-iter Monte Carlo-based dropout method using the three input cardiac
arrhythmias datasets for a different set of annotations, where precisionw, recallw, F1-scorew are the
mean precision, mean recall, and the mean F1-score overall classes, weighted by the size of each class.
The annotation type in each input dataset indicates the number of selected classes based on criteria
explained in Section 3.1.

Dataset Annotation
Type (Size)

Evaluation Metric

Precisionw Recallw F1-Scorew AUROC

MIT-BIT

All (20 classes) 0.9874 0.9853 0.9862 0.9914

Beats only
(14 classes) 0.9908 0.9902 0.9904 0.9932

AAMI (5 classes) 0.9917 0.9914 0.9915 0.9970

BIDMC All (6 classes) 0.9718 0.9639 0.9673 0.9925

INCART All (8 classes) 0.9921 0.9874 0.9894 0.9834

A perfect uncertainty estimation would mark all correct predictions as certain and all
incorrect predictions as uncertain, maximizing the achievable performance and reducing
the remaining error to zero. In an attempt to visualize the quality of uncertainty estimation,
we plot the results from the input datasets based on the uncertainty-based metrics described
in Section 4.3. Namely, we plot results from Equations (10)–(12); the ratio of certain
and correct samples to all correct/incorrect samples (Figure A3), the ratio of uncertain
and incorrect samples to all incorrect samples (Figure A4), and the ratio of the desirable
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cases (i.e., correct and certain, incorrect and uncertain) over all possible cases (Figure A5),
respectively. In each figure, we plot the uncertainty-based results from three methods:
baseline, ensemble, and MC-dropout (MCDO). The baseline mode is nothing but softmax-
based predictions, and we plot this mode here for comparison reason only.

Recall that a model with a value near 1.0 on the aforementioned uncertainty-based met-
rics is considered a better performer, meaning that both P(correct|certain) and
P(uncertain|incorrect) are ideally equal to 1. When the uncertainty threshold value is
0, all data points are marked uncertain because the denominator of Equations (10) and (11)
is 0, hence undefined. When the uncertainty threshold is 0, all data points are marked un-
certain because the denominator of Equations (10) and (11) is 0, hence undefined. Likewise,
When the uncertainty threshold value is 1, all data points are marked certain, making the
nominator of Equation (11) equal to 0.

By skimming through the plots in Figures A3 and A4, we can observe that both MC-
dropout and deep ensemble provide satisfiable results in terms of the ratio of correct and
certain samples over all correct/incorrect samples, i.e., P(correct|certain) and the ratio of
uncertain and incorrect samples to all incorrect samples, i.e., P(uncertain|incorrect), yet the
deep ensemble seems to have slightly higher values in most cases but not far away from
MC-dropout among all the three datasets, except with the INCART dataset in Figure A3e.
We also observe that the probability reduces moderately at a slow rate (as low as 0.96 with
the BIDMC dataset but not below 0.98 in the other datasets). As a result, it can be said that
the MC-dropout operates in high confidence about their correct/incorrect predictions at
varying uncertainty thresholds.

Similarly, we plot in Figure A5 the results of Equation (12) in which we measure the
overall accuracy of the uncertainty estimation (AU) in each mode. We can observe that the
uncertainty accuracy remains at a high rate close to 1 for varying thresholds of uncertainty,
with a minor observation that the ensemble method in the INCART dataset shown in
Equation (12) has a relatively low accuracy before the threshold value of 0.4.

5.3. Uncertainty Calibration

In addition to the metrics mentioned above, we apply an additional metric often called
the model calibration, which is used to show the quality of uncertainty estimates in context
to the overall performance. Figure A6 plots the average ratio of the correct predictions (i.e.,
when a model’s confidence in a prediction matches its probability of being correct) at each
confidence interval for all input datasets. An ideal calibration would match the diagonal
line from the bottom left to the top right. From these plots, we observe that the baseline
method (i.e., softmax predictions) tends to be overconfident while MC-dropout (MCDO)
produces almost well-calibrated estimations for higher confidence scores. In addition, it can
be observed that all three methods tend to oscillate at low confidence scores, significantly
below 0.5, but become more skillful as it moves toward the maximum confidence score.
Notwithstanding, the estimated confidences by these methods cover the entire value range,
which is very helpful for safety-critical applications.

6. Related Works

A successful ECG arrhythmia classification system should pass through three main
phases: (1) preprocessing, (2) feature extraction, and (3) classification modeling. As with
other types of signals, ECGs can be affected by many noise sources, and hence preprocessing
phase ensures the readiness of input signals for further processing. Afterward, relevant
features are extracted, especially raw signals, from the preprocessed signal using numerous
techniques. This phase is so ever important as it highly impacts the performance of
modeling methods. Accordingly, there have been quite some works on studying the
effectiveness of employing various machine learning-based methods for electrocardiogram
classification and recognition tasks. These studies are summarized in Table 4, including
our work, and they are elaborated next.
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Table 4. List of previous efforts in ECG classification compared to the paper’s results.

Authors Year of Publish Dataset Number of Classes Model Performance

Ye et al. [50] 2012 MIT-BIH 5 Acc: 94%

Zhang et al. [51] 2014 MIT-BIH 4 Acc: 86.66%

Rajpurkar et al. [52] 2017 Private
dataset

14 Precision: 80.09%
Recall: 82.7%

Acharya et al. [53] 2017 MIT-BIH 5

Noisy set:
Acc: 93.47%
Sen: 96.01%
TNR: 91.64%
Noise-free set:
Acc: 94.03%
Sen: 96.71%
TNR: 91.54%

He et al. [54] 2018 MIT-BIH 5 Acc: 98.80%

Jun et al. [55] 2018 MIT-BIH 8

Acc: 99.05%
Sen: 99.85%
TNR: 99.57%

Yang et al. [56] 2020 MIT-BIH 15 Acc: 97.70%

Carvalho [57] 2020 MIT-BIH 13 Precision: 84.8%
Recall: 82.2%

This study 2021

MIT-BIH 20

DE mode:
Precision: 98.94%
Recall: 98.82%
F1: 98.87%
MCDO mode:
Precision: 98.74%
Recall: 98.53%
F1: 98.62%

BIDMC 6

DE mode:
Precision: 97.57%
Recall: 97.03%
F1: 97.25%
MCDO mode:
Precision: 97.18%
Recall: 97.39%
F1: 96.73%

INCART 8

DE mode:
Precision: 99.4%
Recall: 99.1%
F1: 99.23%
MCDO mode:
Precision: 99.21%
Recall: 98.74%
F1: 96.94%

The earliest work to construct a multi-class arrhythmic classification model was done
by Ye et al. [50] using the general support vector machine (SVM) method, achieving 94.00%
accuracy in classifying the MIT-BIH dataset into five categories using a specific feature
engineering strategy that involves DWT coefficients with PCA and ICA. Zhang et al. [51]
adapted the one-versus-one (OvO) feature ranking method, which focuses on the selection
of effective subsets of features for distinguishing a class from others by making OvO
comparisons. The extracted features are trained using the SVM method resulting in
an average accuracy of 86.66%. Acharya et al. [53] developed a custom convolutional
neural network to identify 5 heartbeats’ categories using a publicly available ECG dataset.
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By pre-processing the ECG signals into two sets; original (A) and noise-free (B) ECGs,
they achieved in set A: accuracy 93.47%, sensitivity 96.01%, and TNR 91.64%, and in
set B: accuracy 94.03%, sensitivity 96.71%, and TNR 91.54%. He et al. [54] introduced a
lightweight CNN microarchitecture to diagnose 5 heartbeats’ arrhythmias categories that
incur a lower computational cost and thus less communication across different processing
units during distributed training. Their model attained an accuracy of 98.80% using ten-fold
cross-validation method.

Furthermore, Jun et al. [55] proposed a preprocessing approach to transform ECG
signals into 2D images and use the convolutional neural network (CNN) model as pattern
recognition to classify a publicly available dataset of eight classes, achieving an accuracy of
99.05%, 97.85% sensitivity and 99.57% TNR. Rajpurkar et al. [52] took the task of heartbeat
classification to an advanced level by introducing a custom arrhythmia ECG classification
model using a specially made ECG dataset of a total of 14 classes. Their proposed model
achieved a precision of 80.09% and a recall of 82.7%. Recently, Yang et al. [56] introduced
a method that combines parametric and visual pattern features of ECG morphology for
automatic diagnosis using a publicly available dataset of 15 classes, trained using KNN
method, reporting an overall accuracy result 97.70%. Recently, Carvalho [57] slightly
improved the results of Rajpurkar et al. using a public ECG dataset of 13 classes and
achieved a precision of 84.8% and a recall of 82.2% while using a smaller neural network-
based model than previously published methods with a goal to increase the performance
while simultaneously keeping the neural networks short and fast. Finally, it is worth
mentioning that some of the previous studies listed in Table 4 report their results using an
improper metric, namely the accuracy, leading to inaccurate results, especially when using
highly multi-class imbalanced datasets. On the contrary, this paper reports the classification
results using a carefully selected set of metrics that accurately report the model performance
in the existence of the input multi-class imbalanced datasets using the Precision, Recall,
F1-score, and the area under the receiver operating characteristic curve (AUROC). These
metrics have been traditionally known to assess the model’s performance accurately.

7. Conclusions

This paper presents an uncertainty-aware risk-aware deep learning-based predictive
model design for accurate classification of cardiac arrhythmias successfully trained using
three publicly available medical datasets and evaluated using a standard and task-specific
set of metrics, providing more insights into the performance concerning safety-critical
applications. Our experimental results achieve high-predicted diagnostic results compared
with the existing models known to us. In addition, the results revealed that our classifier
makes solid decisions with a higher level of confidence, marking predictions as correct
when it is certain and incorrect when it is uncertain. Furthermore, we discovered that
the MC-dropout method works well on our GRU-based model design operating in high
certainty about its correct/incorrect predictions at varying uncertainty thresholds. Over-
all, we see strong potential by combining the two best-performing methods, i.e., deep
ensembles and MC-dropout, with the strong capability of rejecting false examples with low
confidence. For future works, we shall examine the effectiveness of the proposed method
on the classification of other biomedical signal domains, particularly EEG signals, concern-
ing the proposed uncertainty-oriented metrics. We shall also investigate the potential of
applying other relevant groups of uncertainty quantification, namely fuzzy-based methods,
to classify ECG signals and report our findings in the near future.
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Appendix A

(a) MIT-BIT: Annotation Type (All) (b) MIT-BIT: Annotation Type (AAMI) (c) MIT-BIT: Annotation Type (Beats only)

(d) BIDMC: Annotation Type (All) (e) INCART: Annotation Type (All)

Figure A1. Multiclass ROC curves of the input datasets using the Deep Ensemble method.
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(a) MIT-BIT: Annotation Type (All) (b) MIT-BIT: Annotation Type (AAMI) (c) MIT-BIT: Annotation Type (Beats only)

(d) BIDMC: Annotation Type (All) (e) INCART: Annotation Type (All)

Figure A2. Multiclass ROC curves using the Monte Carlo-based dropout method.

(a) MIT-BIT: Annotation Type (All) (b) MIT-BIT: Annotation Type (AAMI) (c) MIT-BIT: Annotation Type (Beats only)

(d) BIDMC: Annotation Type (All) (e) INCART: Annotation Type (All)

Figure A3. The plots of P(correct|certain) from each input dataset for varying thresholds of uncertainty. The annotation
type in each input dataset indicates the number of selected classes based on criteria explained in Section 3.1.
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(a) MIT-BIT: Annotation Type (All) (b) MIT-BIT: Annotation Type (AAMI) (c) MIT-BIT: Annotation Type (Beats only)

(d) BIDMC: Annotation Type (All) (e) INCART: Annotation Type (All)

Figure A4. The plots of P(uncertain|incorrect) from each input dataset for varying thresholds of uncertainty. The annotation
type in each input dataset indicates the number of selected classes based on criteria explained in Section 3.1.

(a) MIT-BIT: Annotation Type (All) (b) MIT-BIT: Annotation Type (AAMI) (c) MIT-BIT: Annotation Type (Beats only)

(d) BIDMC: Annotation Type (All) (e) INCART: Annotation Type (All)

Figure A5. The plots of Uncertainty Accuracy from each input dataset for varying thresholds of uncertainty. The annotation
type in each input dataset indicates the number of selected classes based on criteria explained in Section 3.1.
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(a) MIT-BIT: Annotation Type (All) (b) MIT-BIT: Annotation Type (AAMI) (c) MIT-BIT: Annotation Type (Beats only)

(d) BIDMC: Annotation Type (All) (e) INCART: Annotation Type (All)

Figure A6. The average ratio of the correct predictions at each confidence interval for all input datasets.

References
1. Chang, K.C.; Hsieh, P.H.; Wu, M.Y.; Wang, Y.C.; Chen, J.Y.; Tsai, F.J.; Shih, E.S.; Hwang, M.J.; Huang, T.C. Usefulness of

machine learning-based detection and classification of cardiac arrhythmias with 12-lead electrocardiograms. Can. J. Cardiol. 2021,
37, 94–104. [CrossRef]

2. Hijazi, S.; Page, A.; Kantarci, B.; Soyata, T. Machine learning in cardiac health monitoring and decision support. Computer 2016,
49, 38–48. [CrossRef]

3. Al-Zaiti, S.; Besomi, L.; Bouzid, Z.; Faramand, Z.; Frisch, S.; Martin-Gill, C.; Gregg, R.; Saba, S.; Callaway, C.; Sejdić, E. Machine
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