
computers

Article

Using the Context-Sensitive Policy Mechanism for Building
Data Acquisition Systems in Large Scale Distributed
Cyber-Physical Systems Built on Fog Computing Platforms

Alexander Vodyaho 1 , Nataly Zhukova 2 , Igor Kulikov 1,* and Saddam Abbas 1

����������
�������

Citation: Vodyaho, A.; Zhukova, N.;

Kulikov, I.; Abbas, S. Using the

Context-Sensitive Policy Mechanism

for Building Data Acquisition

Systems in Large Scale Distributed

Cyber-Physical Systems Built on Fog

Computing Platforms. Computers

2021, 10, 101. https://doi.org/

10.3390/computers10080101

Academic Editors: Paolo Bellavista,

Kiran Kumar Pattanaik and

Sourabh Bharti

Received: 14 July 2021

Accepted: 14 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University “LETI”,
197376 St. Petersburg, Russia; aivodyaho@mail.ru (A.V.); saddamabbas077@gmail.com (S.A.)

2 Laboratory of Big Data Technologies in Socio-Cyberphysical Systems, St. Petersburg Federal Research Centre
of the Russian Academy of Sciences (SPCRAS), 199178 St. Petersburg, Russia; nazhukova@mail.ru

* Correspondence: i.a.kulikov@gmail.com; Tel.: +7-(911)211-6694

Abstract: The article deals with the use of context-sensitive policies in the building of data acquisition
systems in large scale distributed cyber-physical systems built on fog computing platforms. It is
pointed out that the distinctive features of modern cyber-physical systems are their high complexity
and constantly changing structure and behavior, which complicates the data acquisition procedure.
To solve this problem, it is proposed to use an approach according to which the data acquisition
procedure is divided into two phases: model construction and data acquisition, which allows
parallel realization of these procedures. A distinctive feature of the developed approach is that the
models are built in runtime automatically. As a top-level model, a multi-level relative finite state
operational automaton is used. The automaton state is described using a multi-level structural-
behavioral model, which is a superposition of four graphs: the workflow graph, the data flow graph,
the request flow graph and the resource graph. To implement the data acquisition procedure using
the model, the context-sensitive policy mechanism is used. The article discusses possible approaches
to implementation of suggested mechanisms and describes an example of application.

Keywords: data acquisition; cyber-physical systems; fog platforms; policy-based systems; multi-level
relative finite state operational automaton; context-aware systems

1. Introduction

Rapid progress in the field of microelectronics, nanotechnology, telecommunications
and software engineering has opened unique opportunities for information-oriented sys-
tems developers to reach a new level of complexity of the created systems and has led to
the emergence of new classes of systems with a fundamentally new level of functionality.

Modern complex systems usually include a big number of elements, but the complexity
of the system can be determined not only by the number of elements, but also by the number
of element types, the number of hierarchy levels, and the stability of the structure and
behavior. The number of internal states can be considered as the universal measure of
functional complexity (complexity of behavior). The complexity of the behavior can also
be defined in terms of the number and complexity of the implemented functions. One can
define two types of complexity: internal and external complexity. Internal complexity is the
complexity of the system itself, and external complexity can be estimated by the number
and complexity of the system external links [1].

Almost all large-scale systems have the property of variability in structure and behav-
ior, such systems are mostly distributed systems. Various virtualization mechanisms are
widely used in their construction. The implementation of the variability of the structure
and cognitive behavior leads to the need to increase the share of the software component,
which requires the inclusion of increasingly powerful information processing and storage
tools for processing large volumes of information.

Computers 2021, 10, 101. https://doi.org/10.3390/computers10080101 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0933-0933
https://orcid.org/0000-0001-5877-4461
https://orcid.org/0000-0002-2532-5579
https://orcid.org/0000-0001-9931-463X
https://doi.org/10.3390/computers10080101
https://doi.org/10.3390/computers10080101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10080101
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10080101?type=check_update&version=2

Computers 2021, 10, 101 2 of 30

In the operation of any information-oriented system, there is always a data acquisition
(DA) procedure in one form or another, but the purposes of DA can be different: collecting
data on the state of the system itself in order to realize self-* functions, collecting data in
order to provide data, information and knowledge (DIK) to stakeholders in the required
form, collecting data in order to implement management procedures both at the local and
global levels.

As systems become more complex, the task of DA is no longer trivial.
The article consists of 12 sections. In Section 2, typical properties of modern information-

oriented systems are analyzed. In Section 3, DA problems for large scale distributed systems
are discussed. In Section 4, the scope of the study is presented. In Section 5, the suggested
approach is described. In Section 6, the conceptual model of the DA is presented. Section 7
contains a description of the multilevel structural and behavioral models. Section 8 considers
the problem of the model automatic generation. Section 9 deals with the implementation of the
DA procedure using policies and contexts. In Section 10, DAS typical architectural solutions
are discussed. In Section 11, the use-case description is given. Section 12 contains conclusions.

2. Typical Properties of Modern Information-Oriented Systems

Intelligent systems include software intensive systems (SwIS). Intelligent systems
include both systems that can implement some kind of human-like behavior, and systems
that use intelligent technologies, primarily technologies based on knowledge [2].

It is necessary to take into account that all intelligent systems, including systems that
implement the ambient intelligence (AmI) paradigm [3], are SwIS [4]. Modern intelligent
systems are adaptive systems as their structure and/or behavior can change over time.
Many modern man-made systems can be classified as large and (or) complex systems.
Almost all systems are distributed systems.

Big, large scale and smart data. The increase of the systems size and performance leads
to the well-known big data problem [5], which consists of the fact that large systems pro-
duce huge amounts of data due to following factors: their size, active interaction with the
external environment and the presence of powerful computers. That leads to several prob-
lems: (i) where to store data, (ii) what the form is to be used to store it, and (iii) how quickly
the data in a distributed storage with limited bandwidth of communication channels can
be found.

The problem of storing big data can be solved by using cloud storage which can
store almost unlimited amounts of data. The main problem is the limited bandwidth of
the communication channels. As a solution of this problem, the paradigm of edge and
cloud computing was proposed [6–9]. This approach partly solves the problem of limited
bandwidth of communication channels, but significantly complicates the procedure for
managing the systems.

Thus, it can be argued that the distinctive features of modern systems are the following:
(i) a new level of complexity, (ii) a new level of heterogeneity, which is expressed in the fact
that systems are built from elements of different physical nature and includes in addition
to information components, electromechanical, mechanical subsystems, production and
technological processes, natural systems, biological systems and people. This leads to the
emergence of new classes of systems such as cyber-physical (CPS), and socio-cybernetic
systems, etc. [10–13].

Nowadays, it is almost impossible to find a complex system based on a single
paradigm or technology. Typically, different paradigms and technologies are used on
different levels. Thus, it is possible to talk not only about the convergence of technologies,
but also about the convergence of paradigms. In this regard, integration of paradigms and
technologies are of increasing interest.

Computers 2021, 10, 101 3 of 30

3. DA Problems in Large Scale Distributed AmI CPS

The task of DA is one of the key tasks for many classes of SwIS. Sometimes this task
appears as one of the subtasks; sometimes this is a final goal. When there are a number of
stakeholders with different concerns, the problem of forming data presentation takes place.

In this case, it is necessary to have actual information about the structure of the ObS
and the structure of the business processes (BP) running in it before collecting data. If the
system is large and works with big data, then this problem is a smart data problem [14].

Currently, various approaches and tools are used to solve DA problems. To solve the
problem of DA about the structure, approaches and tools based on the simple network
management protocol are usually used, and BP monitoring tools are used to collect data
about the behavior of ObS, but practically all existing methodologies and tools are oriented
on working with ObS with stable structures.

4. The Scope of the Study

Fog computing (FC) is one of the widely used platforms for building CPS [6]. Based
on this, the authors consider the problem of building data acquisition systems (DAS) for
realizing DA procedures in large scale AmI CPS with dynamic structure and behavior built
on fog computing (FC) platforms as a scope of DA problem.

Let us consider the typical structure of the FC platform and deployment of software
modules in it. This structure is considered in this article as a generalized structure of a
modern distributed AmI CPS. From building DAS point of view, systems built on FC
platforms can be conceded as an observable system (ObS) on the one hand, and as a
platform for building DAS on the other hand. The generalized structure of the FC platform
is shown in Figure 1. The platform is a three-layer structure that contains the following
layers (levels): core, inner layer, middle layer, and external layer.

Figure 1. Generalized structure of the FC platform.

The individual layers are connected by gateways.

Computers 2021, 10, 101 4 of 30

The inner layer is the core of the system, which includes computing resources and
data networks on the level of a country, region, metropolis, global aria networks (GAN),
and metropolitan area networks (MAN). Data centers (DC) act as a resource. This layer
acts primarily as an infrastructure for local networks (LAN) integration and as a service
provider. It represents a classic cloud computing environment [15].

The middle layer is the FC layer. This layer hosts servers that implement local
storage functions, typically using mechanisms known as cloudlets, and local data centers
to implement processing-related functions. LAN and campus networks (CAN) are used to
connect individual elements at this level. In addition, various types of cellular networks
(macrocell, microcell, picocell, femtocell) are widely used [6]. At the middle level, as a rule,
different versions of Linux are used as the operating system (OS).

The external layer is formed by devices. This is the level where Internet of things (IoT)
systems operate. Sometimes it is also called as the mist layer [6]. At this level, there are
three main types of devices: endpoints (sensors and actuators), embedded controllers,
and IP gateways.

Sensors and actuators are usually controlled by microcontrollers that have limited
computing performance and often run-on batteries. A typical example is a single-chip
Atmel Atmega 328p controller, which is used as the CPU of the popular Arduino Uno Rev3
kit. This controller operates at frequency of 20 MHz and has flash memory of only 32 kB.
It should be noted that since IoT systems are actively used as low-price systems, extremely
cheap controllers will continue to be used in the foreseeable future. As an OS at the lower
level, rather weak operating systems like Contiki and Tiny OS are usually used to control
sensors and actuators [16].

At the lower level, there is usually a certain number of interconnected processors built
into various devices and equipment that have significant computing performance. Embed-
ded processors are usually RISC processors, most often ARM processors. These may be
smart phones running Android OS. Embedded devices usually have built-in network sup-
port (Wi-Fi, Bluetooth). IP routers are used to realize interaction between the end devices
and the middle layer, since at the lower level the IP protocol is not used to save energy. Such
protocols as Bluetooth Low Energy, Zig Bee or Z-Wave are used most often [6,11,16–19].

Currently, both commercial and free platforms for building FC systems are available.
The platforms as Open Stack++ [20], Apache Edgent [21] previously known as Quarks,
which usually represent platforms that use Linux and Android OS can be mentioned.
Apache Edgent can transfer processing from the cloud to the fog and back.

Developed by Carnegie Mellon University, Open Stack++ framework is focused on
working with virtual machines on x86 platforms. However, it should be noted that recently
the use of container-type virtualization has become more popular among SwIS developers
using containers such as Docker Containers Engine [22]. WSO2-IoT Server [6] as an
integration platform allows organize effective interaction with various IoT devices such
as Arduino Uno, Raspberry Pi, Android OS devices, iOS devices, Windows 10 IoT Core
devices, etc. In addition, it is possible to maintain work with data streams in real time.
Interaction with clouds is carried out using the message queuing telemetry transport and
extensible messaging and presence protocols [6].

Recently, the Linux Foundation Project opened a new project Edge X Foundry [23],
which aims to create a Software Development Kit framework for FC platforms which is
focused on the transition from the paradigm of connected things (IoT, IIoT) to the paradigm
of cognitive things. In this case, decisions are made at the level of controllers embedded
in sensors.

In this article, the use of the FC platform is considered as one of the possible ap-
proaches for CPS implementation. This type of CPS can be viewed as an ObS. In this case,
the platform can be presented as a set of services implemented, for example, based on a
framework which provides a set of standard services on three levels (Figure 2). The top-
level services are X as a Service (XaaS) models, where X is a generalization for IaaS, PaaS,
SaaS and S/CaaS (storage or caching as a service) [15].

Computers 2021, 10, 101 5 of 30

Figure 2. FC platform as a set of services.

Middle layer services correspond to fog-level services. The use of these services allows
run user applications on the fog level. The list of services is defined in the standard [8].

Low-level services provide support for working with the user’s terminal equipment
(sensors, actuators).

A CPS built on the FC platform can include up to three levels: the level of separate
CPS, the system of CPS (SoCPS) level, and the intelligent interface level that supports the
AmIS paradigm.

The described above AmI CPS can be conceded as a reference model of ObS.

5. Suggested Approach

The suggested approach is an integration approach which uses five main paradigms
and approaches: (i) data fusion approach, (ii) multi-model approach, (iii) AmI paradigm,
(iv) context-aware approach, and (v) smart data paradigm.

The main paradigm is the data fusion paradigm. This paradigm has been known for a
long time and is actively used. The Joint Directors of Laboratories (JDL) model is of the
greatest interest from the point of view of solving the data acquisition problem [24]. In this
article, we consider a fusion model based on this model. The JDL model can be considered
as a data management model for the DAS.

The second paradigm uses the multi-modal approach. The idea of using models at
different stages of the life cycle of systems is not new. The similar approaches as model
driven engineering, virtual reality, virtual devices, etc. are widely used. To solve problems
related to the management of the structure and behavior of large distributed heterogeneous
systems which consist of elements of different nature, the use of the model approach is the
only real alternative.

It should be noted that the question of possibility of using the same models both at
the stage of development and in run time is of great interest.

This article discusses runtime models that can be used to implement DA procedures
in large and complex distributed heterogeneous systems consisting of elements of different
nature, e.g., CPS.

The AmI paradigm refers to the construction of a human–machine interface and is
supposed to present information to each stakeholder in its own format. At the same time,
different groups of stakeholders communicate with the AmI CPS using their own domain
specific language (DSL) [25].

The context aware approach [26,27] is of interest for several reasons. First, obtaining
contextual information can be the ultimate goal of the DAS functioning, and second, DASs
operating in a CPS environment with a dynamic structure and cognitive behavior are
adaptive systems, i.e., their operation requires contextual information, and third, taking

Computers 2021, 10, 101 6 of 30

into account limited bandwidth of communication channels at lower levels, subsystems
operating at these levels are often built as autonomous systems and their operation also
requires contextual information, fourth, the data acquisition about the functioning of the
DAS itself can be treated as a process of a context building.

The idea is to use mechanisms for working with knowledge model: (i) a multi-level
system of models describes the structure and behavior of the ObS, which can be the DAS
itself, (ii) models are different for different levels and they can be built in terms of data,
information or knowledge, (iii) the relevance of the models at all levels is maintained
automatically, (iv) the relevance of the model is maintained using the data received from
the ObS in the form of logs, (v) all requests from all stakeholders are made only to the
models, if the required DIK cannot be received from the model then the model is rebuilt.

The novelty of the proposed approach consists, first of all, in the use of dynamic
ObS models in terms of structure and behavior, which are built and maintained up-to-
date automatically.

6. The Conceptual Model of the DA

The conceptual model describes a generalized DA mechanism. The proposed model
is based on the well-known JDL model, which is adapted to the DAS and differs from
the latter in its content. The proposed DIK fusion model (DIKFM) of DA is a system of
models that describes a multi-level DA procedure and is defined as: DIKFM = <FMi, IMij>,
where FMi is a set of models which describe the DA process at the i-th level, and IMij is a
set of mechanisms for interaction between levels.

It is necessary to consider that the levels of the suggested model correspond to the lev-
els of the known JDL model, but, in general, it is impossible to determine an unambiguous
correspondence between these levels and the levels of the previously considered AmI CPS.

Within the DIKFM, there are five levels: (i) log processing and distribution level,
(ii) object assessment, (iii) situation assessment, (iv) thread assessment, and (v) DA process
estimation and refinement.

The generalized structure of the model in the form of virtual Fusion machine (F ma-
chine) is shown in Figure 3. At the L0 level, the procedures for working with logs (querying,
clearing, pre-processing logs) are implemented. At the L1 level, the information about
individual objects (subsystems) is processed; the models used on the level are constructed
in terms of information. At the L2 level, the information about the ObS is processed. At the
L3 level, the procedure of analyzing information about the ObS status and evaluating
potential ObS problems and various threads is implemented. At the L4 level, the process of
managing the DA procedure is implemented.

Figure 3. Fmachine.

This model resembles the well-known JDL model of data fusion, but the proposed
model has several fundamental differences. The JDL model assumes the operation of a

Computers 2021, 10, 101 7 of 30

data fusion system on the principle of a pipeline, when raw data are received at the input,
and the model of the situation appears at the output. Suggested F machine operates as an
event driven system.

7. Multilevel Structural and Behavioral Models

Let us take a closer look at the DA process in AmI CPS. As mentioned earlier, one of the
distinguishing features of modern AmI CPSs is the high level of structural and behavioral
dynamic. Sometimes, obtaining information about the structure and/or BP occurring in
the distributed systems is the ultimate goal of DA, sometimes it is an intermediate result.
The task of determining the structure and behavior of the ObS can be correlated with L1
level (object assessment) in terms of the F machine.

DA tasks. In the most general form, the DA can be defined as the process of obtaining
the required DIK based on the available DIK about the ObS and the results of executing a
certain procedure (DA Procedure Results, DAPR) DIKti = f(DIKti-1, DAPR), where DIKti
is a required DIK and DIKti-1 is an available DIK. In turn, the DAPR is formed based
on the DA goals and the available knowledge about the ObS. DAPR = f(NDIK, DIKti),
where NDIK is needed DIK. NDIK can be obtained either because of the operation of the
DAPR, or because of the transformation chains of the results of DAPR execution (DAR).

<NDIK> ::=<DAPR>| <DARP–>DARi

The DA task can be formulated in terms of eight entity classes.

DAS = <SH, ObS, DASS, DALRQ, DALRS, POL, SCR, LOGS>,

where SH is a set of observers (stakeholders), ObS is an observable system, DASS is a DA
subsystem, DSLRQ, DSLRS are a set of DSL requests and a set of DSL responses, POL—a set
of policies, SCR—a set of scripts, and LOGS—a set of log files or just logs. The solution
of DA task in this statement assumes solving two main subtasks: (i) the formation and
presentation of requests to the DA System (DAS), (ii) the presentation of results in terms of
DSL. The first task involves performing the transformations DSLRQÔVu and VkÔDSLRS,
where Vu is the vector of values to be determined because of the DA procedure realization,
and Vk is the vector Vu, populated with parameter values. DSLRQ and DSLRS are DSL
requests and responses (note that different user groups may use different DSLs). The second
problem involves the trans formation Vu ÔVk or Vk = f (Vu, ObSP), where ObSP are the
ObS parameters. Separate parameters of the ObSP may be unknown.

DA procedure. The DA procedure can be described as a BP or as an automaton.
Description of the DA procedure in the form of a BP. The DA procedure itself can be

defined as a transition from vector X to vector Y:XÔY, where X is the input vector and Y
is the output vector. The input vector X contains an arbitrary finite number of elements,
each element can be either simple or complex (include an arbitrary number of simple or
complex elements). The number of nesting levels can be any, but not infinite. Each element
is assigned a vector of parameters of arbitrary length.

Each element vi has at least three attributes: (i) ID, (ii) parameter value, and (iii) a
reference to the source. ID is the unique element identifier; reference is the pointer to
the method for getting DIK about the value of the element. Each element may have any
number of parameters.

The value vi can have a certain value vi = known (1) (1) or an indefinite valuevi = unknown
(0). The set of elements having the type known can be considered as a priori knowledge about
the ObS. All elements of the output vector Y have the values vi = known.

The reference field specifies how to get the DIK about the element. It can be pre-
sented as

<Reference>::=<Data Source> | <Rule Set> | <Procedure>.

In the special case, each element X corresponds to an element Y that has similar
attributes. This is the case of a static ObS structure. If the structure of the ObS is dynamic

Computers 2021, 10, 101 8 of 30

(i.e., new elements may appear in the process of functioning, and old elements may
disappear), then the structure of the vectors X and Y does not coincide. Then fusion
mechanisms are used. In relation to the subject of the study, the second (general) case is
of interest.

The values of the parameters of the output vector Y are used to form the required
representations. It may take several steps to move from the source vector to the final vector.
Then we have a chain of transformations of the form XÔT1ÔT2ÔTiÔTkÔYÔP, where Ti
is the results of the intermediate transformations, and P is the required representation.
This chain defines the order in which the required values are defined.

Description of the DA procedure in the form of an automaton. The automata (A) rep-
resentation of the DA procedure is shown in Figure 4. Logs are sent to the machine’s input.
In this case, the machine switches from the current state St to the state St+1. The output is
a representation that is formed in accordance with the user’s request: St+1 = f(St, log, P),
P = f(St, RQ), where St is the current state, P is a view, RQ is the user’s request.

Figure 4. DAS as an automaton.

Basic strategies of DA. There are three basic options for organizing the DA process
(DA strategies): direct DA, model based DA, and mixed strategy.

Direct DA. The procedure for direct DA can be defined as Vk = f(Vu, ObSP), where Vkis
the vector of parameter values, Vu is the vector of parameters to be determined, and ObSP
are the known parameters of the ObS. When a request is received, a script is generated based
on the knowledge about the ObS, and the DSLRS is generated based on the results of its
execution. When a new request appears, the required DIK about the ObS is searched again.

Model based strategy. This strategy, in contrast to the previous one, assumes that
when a DSLRQ is received, it is addressed not to the ObS itself, but to its model. At the
same time, there is a separate process that is responsible for keeping the model up to
date. The procedure includes two parallel and asynchronous processes: the process of
executing user requests and the process of keeping the model up to date. These processes
can be represented as follows: Vk = f1(Vu, ObSM), ObSM = f2(ObSP), where ObSM is an
ObS model.

The monitoring process is continuously running in the system. This process is respon-
sible for keeping the ObS model up to date. When a request is received from a user, the ObS
model is queried. Different user groups have different concerns and use different DSL.

Compared to direct DA, the model approach has two advantages: the ability to reduce
response time and the ability to work with historical states. The main drawback is the need
to build and store models. As the size of the system increases, it becomes impossible to
have a complete model of the whole system and keep it up to date.

Mixed strategy. This strategy is a combination of the two strategies discussed above.
The idea is that two strategies are used. If the request to the model does not give a result,
the model is being completed or direct approach can be used. Using this approach allows,
first of all, reduce the size of the model to an acceptable size. In general, this approach can
be described as follows Vk = f0(Vm, Vd), Vm = f1(ObSM), Vd = f2(ObSP), where Vm is a
vector of parameters that can be obtained from the ObS model, Vd is a vector of parameters
that can be obtained by direct polling of ObS resources.

A generalized sequence of actions that implements a mixed strategy is shown in
Figure 5. When implementing a mixed strategy, three processes are involved: the process
of monitoring the ObS resources, which is responsible for maintaining the relevance of the

Computers 2021, 10, 101 9 of 30

model to a certain level of detail, the process of executing a user request, and the process of
collecting missing parameters values.

Figure 5. Mixed DA strategy.

Description of the AmICPS in the form of a multi-level relative finite state operational
automaton (MLRFSOA). It is known that the functioning of the systems that implement
adaptive behavior can be described using automata models [1,2]. In particular, the function-
ing of the CPS AmI can be described using a MLRFSOA. Figure 6 shows an automaton that
describes the functioning of systems in terms of transitions between architectural states.

Figure 6. Transitions between ASt.

The architectural state can be described in various ways, depending on the goals of
the DA. If the goal of the DA is to obtain DIK about the structure and behavior of the ObS,
then the architectural state at time t ASt can be defined as ASt = <MS, MB>, where MS is
the structural model, MB is the behavior model, the automaton changes its state under the
influence of internal or external events. In relation to other classes of DA tasks, for example,
tasks related to monitoring social networks, the concept of the ASt can be defined in a
different way. In a certain sense, an ASt can be considered as some data structure that is
used to accumulate the collected data.

The automaton according to Figure 6 is a distributed MLRFSOA operating in discrete
space and discrete time. Several levels are fixed and do not exceed six. The distributed
MLRFSOA has a tree-like structure with links between siblings.

MLRFSOA is a class of automata in which the sets of admissible parameters are,
in general, finite only at the interval of one step of behavior. It is possible to rebuild the
sets of admissible input, internal and output states in the automaton, as well as the set of
admissible functions of transitions and outputs of the automaton, i.e., completely rebuild
the automaton.

MLRFSOA is an automaton with a variable structure, in which the functions of
transitions and outputs explicitly depend on time Ai+1 = F(Ai, t) or A = (X(t), Y(t), S(t),
T(t), s0), where X is a set of inputs, Y is a set of outputs, S is a set if internal states, T is a
transition function and s0 is initial automaton state.

Computers 2021, 10, 101 10 of 30

Since the automaton, A, operates in discrete time and with discrete states, it can be
assumed that at each moment of time that the automaton is in some specific state si and
then it can be defined as A = (X(si), Y(si), S(si), T(si), s0).

If the automaton A with a variable structure runs long enough then the number of
its states in the general case for ordinary automaton becomes very large. It is known that
automaton with a variable structure can generally be reduced to ordinary automata, but the
number of states becomes very large, which makes it difficult to synthesize them. This can
be dealt with, i.e., by generating a new automata on the fly. Thus, it seems appropriate
to consider special cases when, switching to a new state, a new automata is not assigned,
but only individual elements of the description are changed. In this case, an automata with
a variable structure can be defined as a set of automata.

It should be noted that only in the simplest cases the structure of the considered au-
tomata is fully known, most often there is some incomplete knowledge about the structure
of the automata. In this case, it is necessary to solve the problem of constructing (synthesiz-
ing) an automata. These issues are discussed in sufficient detail in the works [28–31].

Structural and behavioral model (SBM) of the ObS. For AmI CPS the ASt can be
defined in terms of a structure and a BP. As a model, it is proposed to use a graph model
that describes both the BP and the resources used.

The ASt is described by a multigraph that includes four attributed relationship graphs:
a control flow graph, a data flow graph, a query flow graph and a resource graph.

The data flow graph (DFG) describes the relationships between data. It can also be
marked up with tokens.

A control flow graph (CFG) describes only the order in which operators are executed.
This graph may or may not be marked up with tokens.

The request (demand) flow graph (RQFG) describes the CPS in terms of calling
procedures or accessing services. The request to execute an operator may or may not be
associated with the creation of an operator. A resource graph (RSG) describes a structure in
terms of subsystems and links. The considered model of ASt will be called an operating
scheme (OPS).

The dynamics of the implementation of OPS can be described using the mechanism of
tokens as it is done in data flow diagrams or in Petri nets.

The OPS describes the dynamics of the algorithm execution in the virtual machine
that has a fixed set of resources. OPS can be considered as a functional scheme (FS) with
additional restrictions on the order of execution of operators.

OPS can be defined as OPS = <O, DL, CL, RQL, RSL>, where O is a set of operators,
DL is a set of data relations, CL is asset of control links, RQL is a set of query relations,
and RSL is a set of resource relations.

The dynamics of the BP execution can be described in terms of defining the operator’s
readiness for execution. The following conditions are used: the presence of input data,
the presence of the necessary resource, the presence of a request and the presence of a
control signal to run the operator.

The decision on the operator’s readiness is made in run time mode. However, some of
the readiness conditions can be checked in statics at the level of input language or even
at the level of the algorithm design, others in run time are considered fulfilled by default.
In other words, a limited number of conditions are checked in run time.

BP management strategies. A set of special cases of building BP management systems
can be described in terms of management strategies. The idea is to use a meta model,
in terms of which various management models or management strategies are defined.

BP meta model. The meta model is intended primarily for describing machine-
executable BPs from the point of view of the DAS.

The BP metamodel can be defined as MM = {O, R, STR}, where O are operators, R are
resources, and STR are BP management strategies. In turn, the operators can be defined
as O = {Ot, Om, Oc}, where Ot are data transformation operators, Om are data handling
operators (storage, search, retrieval), Oc are control flow operators. Resources management

Computers 2021, 10, 101 11 of 30

can be defined as follows R = {Rp, Rtn, Re}, where Rp is the resource allocation actor (pick
up), Rtn is the resource tuning actor (tuning), Reis the resource engage actor. In addition,
other types of resource actors can be used.

Strategies can be defined as a high-level description of the BP management methods in
terms of the guard conditions for launching operators STR = {GRi}, where guard condition
GRi is the i-th variant (guard condition, trigger function, trigger) of defining the conditions
for launching operators. In the most general form, the conditions for starting a certain
operator within a certain strategy can be defined as GR = GRctrˆ GRdatˆ GRresˆ Greq,
where GRctr is a signal that prescribes the start of the execution of the operator, GRdat
is data availability, GRres is the availability of resources, and GRreq is the presence of a
request for the execution of the operator (Figure 7).

Figure 7. Generalized model of information presentation about ObS.

The vector Vgr = {GFctr, GFdat, GFres, GFreq},where GF is the use of separate mech-
anisms for determining the readiness of actors (operators), which can take the value 0
(the condition is not checked at run time) or 1 (the condition is checked at run time) can be
defined. Obviously, all the conditions must be checked. This can be done in different ways:
statically (at the compilation time) or in run time, in centralized or distributed manner.
Thus, it is possible to define 16 different strategies of BP managing (Table 1).

Special case BP management models. The strategies presented in Table 1 can be
divided into pure and mixed strategies.

Pure strategies. In the scope of the developed approach, four pure strategies are
distinguished.

Directive (control flow) strategy. This strategy assumes that all actors are defined
before the BP starts execution and are launched by only one control signal. Data presence
is controlled in run time mode. Resources are also assigned in statics and at the execution
stage it is assumed that all the necessary resources are defined and free. Concurrency is
described by the branch and merges operators. This strategy option can be considered as a
pure control flow.

Data flow strategy. This strategy assumes that we have only data flow graph. Re-
sources are assigned at run time, and directive management is not used. This option can be
considered as a pure data flow [32].

Computers 2021, 10, 101 12 of 30

Table 1. Strategies.

CDRZ Strategy Name Acronym Guard Conditions

1 0000 Dedicated nil GR = 1
2 0001 Demand Driven Z GR = GFreq
3 0010 Resource Driven R GR = GFres
4 0011 Demand-Resource Driven ZR GR = GFresˆ GFreq
5 0100 Data Flow D GR = GFdat
6 0101 Data Flow-Demand Driven DZ GR = GFdatˆ GFreq
7 0110 Data Flow-Resource Driven DR GR = GFdatˆ GFres
8 0111 Data Flow-Resource-Demand Driven DZR GR = GFdatˆ GFreqˆ GFres
9 1000 Control Flow C GR = GFctr

10 1001 Control Flow-Demand Driven CZ GR = GFctrˆ GFreq
11 1010 Control Flow- Resource Driven CR GR = GFctrˆ GFres
12 1011 Control Flow-Demand-Resource Driven CZR GR = GFctrˆ GFreqˆ GFres
13 1100 Control Flow-Data Flow CD GR = GFctrˆ GFdat
14 1101 Control Flow-Data Flow-Demand Driven CDZ GR = GFctrˆ GFreq
15 1110 Control Flow-Data Flow-Resource Driven CDR GR = GFctrˆ GFdatˆ GFres
16 1111 Full CDRZ GR = GFctrˆ GFdatˆ GFresˆ GFreq

Resource or R-strategy. This strategy assumes that all actors are ready for execution
start and the only need to assign resources to execute them. In this case, the strategy is
defined as a set of business rules. This strategy is used when actors are not linked in any
way. For example, this situation takes place when the OS assigns independent processes
to run.

Demand driven or request strategy (Z strategy). This strategy, also known as demand-
driven computing, assumes that all actors are ready for execution, and the order of their
execution is determined by the need for the results of actors’ execution. It is also known
as a demand driven computations. The two options can be selected: (1) all actors are
created and the rules only determine the order of their launching; (2) actors can be created
during the execution of the BP. Recursive machines worked on this principle, and a similar
principle is used in functional programming languages, as well as in systems that work on
the Map Reduce principle [33].

Mixed strategies. Pure strategies are used in practice rarely. More often some combi-
nation of strategies is used.

Demand driven-resource strategy. The strategy is used as the main strategy. Compu-
tations start by calling some root program, which can call nested programs. The number of
available resources is limited. This strategy is used, for example, when implementing a
Lisp program on a single-processor system.

Data flow-demand driven strategy. This strategy assumes that the process is executed
in two passes. On the first pass, a calculation tree is built using the query engine, and when
the tree is built, the program is executed in data flow mode. At the same time, it is
considered that the number of resources is unlimited. This situation occurs when using
virtual resources.

Data flow-resource strategy. This strategy is like the data flow-demand driven strat-
egy. The difference is that resources are limited, for example, multiple statements can be
assigned to execute on a single processor.

Directive-demand driven strategy. A directive-demand driven strategy can be defined
as a strategy that combines directive and query management. An example is traditional
procedural programming. At the same time, it is considered that the number of resources
is not limited. This situation occurs when using virtual resources.

Directive-demand driven-resource strategy. This strategy is like the directive-demand
driven strategy, but the number of available resources is limited.

Directive-data flow strategy. This strategy uses both data flow and directive manage-
ment mechanisms. This strategy was used in data flows machine and was implemented in
the form of acknowledgments [32].

Computers 2021, 10, 101 13 of 30

Directive-data flow-resource strategy. This strategy is a combination of data flow and
directive strategies in conditions of limited resources. This strategy may be interesting
when the BP is organized on two levels. At the top level (at the level of large modules),
the query strategy is implemented, and at the bottom—the data flow strategy is realized.

A generalized model for presenting information about ObS is shown in Figure 7.
The model is based on data flow graph that defines data dependencies. At the same time,
as conditions for the readiness of the operator O for execution, in addition to the availability
of data, the presence of a request Z for its execution, a signal C that prescribes the execution
of the operator O and the readiness of the resource R for the execution of the operator
are required. The availability of data D is determined by the arrival of data from other
operators. The Z requests and C signals instructing the operator to start executing are
generated by the control unit.

The available resources are described by a separate graph. Information r about the
state of resources is also received at the inputs of operators O. It should be noted that the
considered model describes the functioning of the ObS only at one level. In relation to the
class of systems under consideration, it is necessary to describe the ObS at several levels.
Different models can be used at different levels.

A virtual machine for implementing management strategies. BP management strate-
gies can be described in terms of a virtual machine which implements BP management
strategies. The structure of such machine is shown in Figure 8.

Figure 8. Strategies realization virtual machine.

The machine includes three subsystems: an actor repository, a resource pool, and an
actor readiness checking subsystem.

The actor repository stores an arbitrary number of actors (operators). Each actor can
be either an actor or a container that stores an arbitrary number of actors. The depth of
nesting is unlimited. All actors belong to the same BP and the links between actors are part
of the description of the actors themselves. The resource pool defines the set of available
resources. A state vector (free or busy) is assigned for each resource. The actor readiness
subsystem determines the order of actors are started. The execution of the BP is considered
as the process of firing actors in accordance with certain rules. The rules are determined by
the strategy used.

Approaches to implementation and tasks to be solved. It should be noted that the
use of the proposed meta-model can be considered as a generalization of the models used
in the field of process mining [34]. At the same time, the use of the proposed approach
allows build more complex models that can be useful for solving problems of monitoring
and managing complex technical systems with a dynamic structure and behavior such
as: (i) implementation of BP restructuring algorithms, (ii) optimization of resource usage,
(iii) monitoring of BP, and (iv) tracking of services requests.

The task of restructuring may arise for several reasons. The structure of the hardware
and software platform where the observed BP runs can be changed (contextual restructur-
ing). The BP can be restructured for adaptation to incoming data (content restructuring) or
changes of the context. It seems appropriate to use strategies based on the reconstruction of
the data flow graph with the subsequent superimposition of the resource graph for solving
this problem. A business rule system can be used for this purpose.

BPs that use query management strategies. Query strategies are increasingly used in
real distributed systems. The use of these strategies is closely related to use of functional

Computers 2021, 10, 101 14 of 30

programming languages. It is obvious that the considered BP management mechanisms
are quite general and defined by metamodels. Based on these metamodels, private models
depending on the purposes of data collection are built.

The necessary data for building the required models can be obtained from two sources:
logs and DIK contained in the current model. New information comes in the form of logs,
which are formed either as the results of the scripts execution or as information about
events in the ObS.

8. Automatic Generation of the ObS Model

Obviously, for systems with a dynamic structure and behavior manual construction of
their models does not make sense. This is expensive, it is associated with very large delays
and expert errors are not excluded. A human who performs the functions of an expert can
be involved on demand. For automatic building and/or keeping the ObS model up to date
it is necessary to solve two main problems: (i) building a multi-level ObS structure model
based on incoming logs, (ii) building a BP model in C, D, Z, R terms.

Typical tasks of BP building. It is difficult to imagine a situation when there is no
knowledge of both the ObS structure and behavior. As a rule, the target model is built
based on existing model and contextual knowledge:

Mt←<Mc, LOGS, CDIK>, where Mt is a target model, Mc, is a known (current) model,
LOGS are the logs from ObS, and CDIK is a contextual knowledge.

Special cases of DA task statements. Depending on available knowledge and goals of
DA, four basic variants of DA task statement can be defined (Table 2).

Table 2. DA task types.

Tasks Structural Models Behavioral Models

A Known Known
B Known Unknown
C Unknown Known
D Unknown Unknown

Task A. Checking the model relevance. It corresponds to the case when both the static
model (the ObS structure) and the dynamic model are known, i.e., the models related
to all the ObS structural levels that are of interest are known. In general, Task A can be
formulated as follows. Using the well-known static and dynamic models of the ObS and
logs, check the relevance of the models and build up-to-date static and dynamic models
with a given quality indicators if the models are not up to date.

Task B. Building a behavior model based on the structural model and logs. In this
case, the structure of the ObS is known, but there is no knowledge about the BP occurring
in the ObS. This task can include the classic process mining problem [34] of restoring the
structure of the BP either from scratch or according to a known BP dynamic model of a
higher-level.

Task C. Building a structural model based on the behavior model and logs. The BPs
that are running in the ObS are known or can be recovered from the logs. It is necessary to
determine the real structure of the ObS.

Task D. Construction of structural and behavioral models by the descent method.
There is no complete information about both the ObS structure and the BP. There is only a
set of logs. It is assumed that the structure and semantics of the logs are known. This task
can be solved with the step-by-step procedure when using available knowledge, i.e.,
about the ObS structure on i-th level and log information we build the BP model for i-th
level etc.

A more detailed analysis of the tasks can be found in [34] where reduction of the tasks
to two tasks that are the task of synthesizing multi-level BP model from logs and the task
of synthesizing multi-level structures from logs is shown.

Computers 2021, 10, 101 15 of 30

The problem of automatic BP models building has been known for a long time. In the
scope of the process mining approach, solutions of this problem are proposed in different
statement sin [34]. Building models of multi-level processes in terms of data flows and
query flows does not cause big problems in general.

The solution of the multi-level models of dynamic structures building problem can be
found in the publications of the authors [28–31]. Thus, we can assume that the algorithms
for solving problems of automatic construction and maintenance of ObS structural and
behavioral models are known.

9. Implementation of the DA Procedure Using Policies and Contexts

As mentioned earlier, according to suggested approach the two key procedures related
to DA can be defined: the procedure for constructing an up to date ObS model and
executing DA script. The procedure for constructing the model was discussed earlier in
Section 8. The DA procedure is discussed below. The DA procedure is implemented via a
script. Since the ObS has a dynamic structure and behavior, the model is changing all the
time. This makes it impossible to build a script in statics, i.e., the script must be built in
dynamics according to the REQUEST–> SCRIPT–> RESULT scheme.

The script can be compiled or executed by an interpreter. The script generation task
can be defined as SCRIPT = F (REQUEST, MODEL). In fact, this is the task of automatic
program building. It should be noted that the problem of program synthesis is not new, it is
solved in different statements when building Prolog machines [2]. In addition, an approach
to network management using the policy mechanism is of significant interest [35–37].
The approach to automatic script construction developed in this paper is based on the ideas
listed above.

The use of policy mechanism has a certain difference from the classical approach used
in relation to network management. The difference is that in the case of using policies
in the DA, policies are used as a mechanism for managing the DA process. The overall
transformation chain is as follows: DSL_REQUEST–> Policy–> Script–> DSL_RESPONSE.

Usage of the policy engine allows manage the DA process using a system of rules.
The rules can be formulated in business terms, i.e., in DSL. The system of rules forms a
hierarchy. Movement in the hierarchy is carried out from top to bottom.

In the scope of the proposed approach, the key concept is the concept of policy,
which is defined as “a policy is a set of rules that are used to manage and control changes
and/or maintain the state of one or more managed objects,” according to [37].

More formally, a policy can be defined as POL = < GOAL, RULESET>, where GOAL
is the goal of DA and RULESET is an ordered set of rules for achieving the goal. Obviously,
the policy can be represented in the form of an object (Figure 9). The specifics of applying
the policy mechanism in relation to the DAS are as follows: (i) the input of the policy
processor, which realizes policies, receives requests that are initially formulated in terms
of one of the DSLs used, i.e., the dictionary in which the requests are formed can be
significantly limited, (ii) different user groups use different DSLs, (iii) different dictionaries
are used at each level of the AmIS CPS stack.

The Policy and Script Processor (PSP). PSP is a distributed processor. At each ObS
structural level, in addition to the PSP, there is a repository of policies and rules (Policy
and Rule Repository, PRR), repository of models (Model Repository, MR) and gateways
(GW) (Figure 10).

Computers 2021, 10, 101 16 of 30

Figure 9. Policy conceptual model.

Figure 10. Policies and scripts distribution by FC platform structural levels.

A generalized algorithm for the functioning of the PSP. A policy is defined as a goal
and a way to achieve it. Policy is a multi-level concept. Each level implements its own set
of policies.

A i-th structural level policy can be defined as <POLij>:: = <GOALi+1> <{SubGOALi}>
<Fusion Procedure i>, where POLij-j-th policy, GOALi+1 is a higher level goal, SubGOALi
is the list of subgoals of the Level i, Fusion Procedure i is the reference to the DIK fusion
procedure of the i-th level.

In the most general form, the idea of working with policies is as follows. It is assumed
that the PSP has a five-level tree structure. The top-level PSP (PSP 4) receives a request
from the user as a DSL request and transforms it into a policy DSLRQ–> {POL}. DSLRQ is
a DSL request. For example, it can be a request from a service engineer about the status of
a device, or a request from an operator about a situation.

For each goal, the policy is defined. The policy selection is made considering the
context (CTX). Therefore, POL = F(GOAL, CXT). (Usage of the context will be discussed be-
low).

In addition to the goal, the policy includes a list of sub-goals and a pointer to the
fusion procedure. A sub-goal is a DIK identifier that refers to the underlying level. For each
of the sub-goals, the PSP runs the corresponding policy at the underlying level, accessing it
though the gateway. When all the required DIKs at the i-th level for the j-th request are
collected, the fusion procedure is started, which outputs a pointer to the resulting object
that contains results of fusion.

Computers 2021, 10, 101 17 of 30

The step-by-step algorithm of PSP functioning for Levels 2–4 looks like the following:
Step 1. Define a policy based on the goal and contextual information
Step 2. If you can collect data at the current level by getting it from the model,

then realize DA procedure
Step 3. For each of the sub-goals, run the policy at the underlying level
Step 4. Wait for all the DIK arrival
Step 5. If all DIK are received, then run the fusion procedure.
Step 6. Move the result to the top level.
The difference is that the list of goals is determined from the DSL request and the

result is transformed into a DSL response for the top level. Further, if you cannot get the
required data, an error message is returned at the lower level.

The process described above corresponds to the PSP operating as an interpreter.
A script can be compiled and saved as an executable file. In this case it is possible to use
script many times, but before usage, it is necessary to check the model for relevance. In this
case, the typical query strategy is realized. Nowadays there is a rich experience in building
various types of systems that implement this strategy [2,33].

Using contexts when building an AmI CPS DAS. The concept of context is actively
used in various subject areas like linguistics, translation theory, system software, in the
study of formal languages and grammars, as well as in the development of decision support
systems. However, in different subject domains this term has different meaning.

As applied to the DA domain, the concept of context and context processing is closely
related to the concept of pervasive computing. From this point of view, this concept is
defined as “context is any information that can be used to characterize the situation of the
subject” [27].

Contexts can include information like location (for example, people or objects), time,
application execution status, computing resources, network bandwidth, activity, user
intentions, user emotions, environmental conditions [26], etc. Thus, the concept of context
turns out to be related to the concept of situation, which is defined as “a description of the
states of the relevant subjects”. Other definitions of the concepts of context and situation
can be found in [26,27].

Therefore, using contexts, it can be assumed that each statement is true if the conditions
defined in the context are fulfilled: P = F(CTX, p), where p is the original statement, CTX is
the context.

From the acquisition of DIK point of view, the context should be understood as the
area where the specified DIK were acquired and within which it should be considered as
trusted. Thus, the context can be defined as a system of constraints.

It is possible to use another interpretation of the term context, when different DIK
elements have different importance or weights in different contexts. In this case the context
defines the DA procedure minimizing the volume of analyzed information coming from
various devices.

Classification of contexts. The concept of context has many aspects. Contexts can be
used for a variety of purposes like supporting pervasive computing mechanisms, meta-
rules, a repository of shared DIK, a way to accumulate DIK about the environment, or a
DIK caching method.

In terms of behavior, contexts can be divided into passive and active contexts. The pas-
sive context is a simple DIK storage, but the active context can initiate some actions.

From the point of view of the described by the context subject, internal contexts which
describe the DAS itself and the external context can be distinguished.

From the time point of view (time aspect) contexts can be classified as the current
context, which are relevant at the given moment of time, the historical, which relates to a
certain moment of time in the past, the static (not changed during the time of the problem
solving), the dynamic (which can change while solving the problem), the temporary or
auxiliary (TMP), which is created for the convenience of processing.

Computers 2021, 10, 101 18 of 30

A variety of approaches can be used to implement the context like flat databases (key-
value), object-oriented (OO) models, and graphs it can be knowledge graphs, ontologies,
different XML schemas, analytical models that are defined using various logics.

Contexts can be formed both manually and automatically.
From the user’s point of view, contexts can be divided into physical contexts (user

location and time), environmental contexts (weather, light, and noise level), user contexts
(health status, mood, planned activities), social contexts (group activity, presence of group
members), etc.

Context-aware policies. The term “context-aware policies” (CAP) can be defined as
policies which implementation can be influenced by the context. Three main types of CAP
can be defined. The first type of CAP assumes the influence of the context on the policy
choice POL = <GOAL, RULESET, CTX>. The second type of CAP assumes the influence
of the context on the set of rules that implement the policies POL = <GOAL, RULESET>,
RULESET = F(RULESETi-1, CTX). CAP of the third type assumes the influence of the
context on the rules themselves that implement the policies POL = <GOAL, RULESET>,
RULESET = <r0,...ri, ... rn>, where ri is the i-th rule. It is obviously possible to combine
these approaches.

In the first case, one simply selects a policy from the list of available policies. The list
of policies and the policies them self-remain unchanged. The context processor implements
two parallel and asynchronous processes: the process of keeping the context up to date
and the process of selecting the current policy. The process of keeping the context up to
date can be described as CTXt = F(CONTEXTt-1, Event), event—a context-relevant event.
The process of selecting the current policy can be defined as POL = sim (CONTENT, {Policy
Condition}), where {Policy Condition} are attributes of POL objects stored in the policy
repository. The operation of finding the nearest similarity sim is quite well known [38].

The second approach is more flexible. Policies are formed from a set of ready-made
rules using met rules. Meta rules are rules for defining policies. This approach corresponds
to the case when the script and the policy processor uses compiled files. In this case,
the scripts are saved and then executed. This mode can be useful when, for example, it is
necessary to track history.

The third approach assumes the automatic construction of rules based on the collected
data, context DIK and metrics of the DA process. This approach makes it possible to
overcome the main drawback of rule-based systems, when rules based on the knowledge
of a human expert are used, but the expert may be wrong, and his knowledge may be
uncertain or received in different context. In this case, data mining algorithms as a means
of optimizing the DA process can be used. The proposed algorithm is the following:

Step 1. Manually define the original set of policies
Step 2. Accumulate statistics on the effectiveness of DA
Step 3. Start the rule generation procedure
Step 4. Using the data mining algorithms find the required rules
Step 5. Compare the used and received rules
Step 6. Correct the rules
Step 7. Go to step 4.
Nowadays, the problem of finding the rules can be considered as solved. Detailed

descriptions of the algorithms of rules mining are described, e.g., in [39]. However, to use
them, you need data sets that can be obtained from a ready-made DAS. Therefore, it seems
that the solution is to use expert knowledge as a zero iteration with the possibility of
correction. The correction can be performed at any of two levels of contextual processing:
at the policy level and at the level of individual rules. The generalized structure of a virtual
machine that uses context-sensitive policy mechanisms is shown in Figure 11.

The virtual machine in Figure 11 includes the following main elements: the DIK
repository, the Context, Policy, and Rule Repository (CPRR), the Observable System (ObS),
the Log Processor (PL), the Model Processor (PM), the Policy and Script Processor (PPS),
the Context Processor (PC), the Rule Mining Processor (RM), and the DSL Processor (DSL).

Computers 2021, 10, 101 19 of 30

The RM module scans the collected data sets and data describing the DA process and
generates rules that are used for the policies formation.

Figure 11. Virtual machine, which uses policies and contexts.

For different levels of FC platform different approaches for working with context can
be used.

The semantics of operations on contexts are essentially determined by the way the
context is represented. It is possible to define the following core operations for context
processing:

1. Creating the context (context element), CrC;
2. Deleting the context (context element), DelC;
3. Changing the context element, ChC;
4. Compare contexts, SIM;
5. Set the value of the context element, SetE;
6. Read the value of the context element, GetE;
7. Subcontext selection, SelSubC;
8. Merge contexts, MergeC;
9. Context import, ImportC;
10. Context export, ExportC.
As mentioned earlier, different mechanisms can be used to represent contexts, such as

flat databases (key-value, K-V), object-oriented (OO) representations, graphs. One can
use knowledge graphs, ontologies, XML, analytical representations that are defined using
various logics. In the Table 3. The typical ways of representing contexts for different
structural levels of FC platform are given.

Table 3. Presentation of context on different levels.

Levels/Contexts K-V OO Graphs Ontology XML Knowledge Graph Analytical Models

Sensor +
Fog + + +

Cloud + + + + + +
CPS + + + + + + +

SoCPS + + +
AmI + + + +

“+”—marked if the context presented.

10. Architectural Solutions of DAS

The architectural solutions of DASs are focused on DAS in AmI CPS, they are essen-
tially determined by the way of interaction of DAS and ObS. As mentioned earlier, AmI

Computers 2021, 10, 101 20 of 30

CPS are mostly distributed systems, and at the lower levels (sensor and fog), they can
be considered as loosely coupled systems due to limitations on the bandwidth of com-
munication channels. There are three basic variants of realizing interfaces between the
ObS and the DAS: (i) remote monitoring, (ii) standalone DAS, (iii) build in DAS. These
options are shown in Figure 12. In a remote monitoring DAS, the ObS and the DAS are
connected by a telemetric channel. In this case, postmortem processing is most often imple-
mented (Figure 12a). In the second case (standalone DAS) ObS and DAS are connected by
numerous communication channels (Figure 12b). In this case, the communication channels
with the ObS usually have limited bandwidth. In the third case (Figure 12c), the DAS
elements are built into the ObS subsystems (build in DAS). In addition, there may be many
intermediate variants.

Figure 12. Interfaces between ObS and DAS, (a)—remote monitoring, (b)—standalone DAS,
(c)—build in DAS.

If the remote monitoring mechanism is implemented, then usually a part of the DAS
can be placed inside the ObS. In this case, a compromise between increasing the volume
of data transmitted through telemetry channels and the cost of additional equipment for
pre-processing collected data is to be found. In the second case, the DAS is realized as
standalone system, and DAS can be built on the principle of edge computing. In the
third case, the structure of the DAS is completely determined by the structure of the ObS,
the nodes of which are the objects of observation.

If the DAS is implemented as the stand-alone system, then it can be a physical system.
When DAS is realized as a build-in system, then most often virtual machine solutions
are used.

A typical variant of the distributed DAS deployment for AmI CPS is shown in
Figure 13. Each level as a rule uses its own F machine. For the sensor and the fog levels
the Sensor F machine (SF) and the Fog F machine (FF) are used. At the Cloud level XaaS
services are deployed, which are used by all levels except the sensor level. SoCPS level
is an integration layer that can be implemented, for example, with the help of Enterprise
Service Bus (ESB). The AmI level can be implemented in the form of a portal, which realizes
the pervasive computing mechanisms.

Depending on the specifics of the problem statement and the subject domain, different
architectural solutions can be used to implement context aware DAS, a complete description
of which can be found, e.g., in [17,40,41]. When building a DAS, such architectural styles
as service (micro service) architectures, multi-agent systems, and systems built on the
blackboard principle can be used.

One can define three main approaches to the realization of the model according
to Figure 7: the implementation of the model in JAVA in the form of an object model,
ontologies [42] and knowledge graphs based solutions [43,44]. JAVA based solutions
allows receive minimal delays, but this approach is rather complex from the point of view
of programming. The use of ontologies and knowledge graphs (KG) provides slower
solutions, but allows use of existing tools, such as SPARQL [45]. An agent-Based approach
also can be used [46].

Since the models are quite complex, it is advisable to implement them as cloud services.

Computers 2021, 10, 101 21 of 30

Figure 13. Distributed F machine.

11. Use-Case

The main goal of this example is to illustrate: (i) how suggested approach can be
tailored to concrete problem solving; (ii) how ontologies and knowledge graphs can be used
for models implementation. In the use-case, a cable TV operator telecommunication net-
work that provides services, applications, and sells access to content is considered. The task
is to check the states of set top boxes (STB) which are functioning in a telecommunication
network (TN).

Specialists of customer support service define a set of policies for checking STB states
or their elements. The values of the parameters are split into Green (normal functioning of
STB/STB element), Yellow (borderline functioning of STB/STB element) and Red (failure
of STB/STB element) zones.

The policies are defined for two situations (contexts): (i) all the parameters that should
be considered according to the policy are in the green zone; (ii) any parameter is in a yellow
or red zone.

The analyzed STB parameters are split into upper level parameters and lower level
parameters (Figure 14).

Figure 14. Upper-level and lower-level parameters of STB.

Policies are defined as:

• If all the upper-level parameters are in green zone—the further parameters gathering
is not required.

• If one of the upper-level parameter is in yellow or red zone, the corresponding lower-
level parameters must be collected.

Computers 2021, 10, 101 22 of 30

The sequence diagram of checking the state of an STB using polices is shown in
Figure 15.

Figure 15. Upper-level and lower-level parameters of STB.

The sequence diagram details are:
Step 1. The operator creates the request about user device state to TN monitoring sys-

tem.
Step 2. According to policy rules, the set of requests for device upper-level parameters

values is built, than these requests are sent to the device directly or via a TN monitoring sys-
tem.

Step 3. The monitored device sends the parameters values to the TN monitoring sys-
tem.

Step 4. The TN monitoring system writes the received parameters to knowledge graph
and notifies the policy processor that implements policy control functions about the device
data update.

Step 5. Policy processor analyzes the results and if all the upper-level parameters
are in the green zone, results are sent to the operator with no further data processing.
If not—execute Step 6.

Step 6. According to policy rules, the requests for the values of device lower-level
parameters are built. Than these requests are sent to the device directly or via a TN
monitoring system.

Step 7. The monitored device sends the parameters values to the TN monitoring
system.

Computers 2021, 10, 101 23 of 30

The activity diagram of checking the state of an STB using polices is presented in
Figure 16. The workflow consists of the following steps:

1. Get upper-level parameters from STB.
2. If all the parameters are in the green zone—return answer with green STB state.
3. If any parameter is in yellow or red zone—request daughter parameters from lower

level then return details about the yellow or red state.
4. Step #3 can be repeated according to parameters hierarchy structure.

Figure 16. The policy processing activity diagram.

For checking the states of STBs using TN monitoring system based on knowledge
graph, the knowledge graph ontology has been created (Figure 17).

Computers 2021, 10, 101 24 of 30

Figure 17. The policy ontology.

The suggested ontology contains the policy entity-relation model. This model includes
the following:

Classes:

• Policy;
• Action;
• Policy Action;
• Policy Condition;
• Policy Goal;
• Policy Rule;
• Policy Rule Set;
• Rule Invocation;

Object Properties:

• Has Condition;
• Has Goal;
• Has Rule Set;
• Include Action;
• Include Rule;
• Use Action;
• Use Rule Invocation

Computers 2021, 10, 101 25 of 30

Data Properties:

• Has Description;
• Has ID;
• Has Name.

Based on the suggested policy ontology, the following KG for the TN monitoring
system was built (Figure 18).

Figure 18. The structure of the knowledge graph for the TN monitoring system.

The suggested KG structure contains the following elements:

1. Static KG nodes:

• net: device—user device;

2. Dynamic TN monitoring nodes:

• tnmo: Parameter_M—the identifier of a logged event (parameter monitoring);
• geo: point–geographical altitude and longitude of user device;
• tnmo: parameter—the monitored parameter;

3. Dynamic TN monitoring system data:

• Monitoring event timestamp;
• tnmo: device_state—pointer of monitoring event (KG individual);
• tnmo: parameter_monitoring—code of monitoring action (KG individual);
• Monitored parameter value.

SPARQL requests/responses to the knowledge graph are presented below.

Computers 2021, 10, 101 26 of 30

The rows of the response are shown in Table 4.

Table 4. Response for Request #1.

Monitoring Detail Parameter Parameter Name Value

<http://127.0.0.1/tnmo/Parameter_M_3/> t71 <http://127.0.0.1/tnmo/Parameter_3/> tnmo:ram_available 1,000,000 kb
<http://127.0.0.1/tnmo/Parameter_M_7/> t78 <http://127.0.0.1/tnmo/Parameter_7/> tnmo:stb_hdd_usage 15%
<http://127.0.0.1/tnmo/Parameter_M_1/> t91 <http://127.0.0.1/tnmo/Parameter_1/> tnmo:cpu_usage 30%

Computers 2021, 10, 101 27 of 30

The rows of the response are shown in Table 5.

Table 5. Response for Request #2.

Monitoring Detail Parameter Parameter Name Value

<http://127.0.0.1/tnmo/Parameter_M_12/> t66 <http://127.0.0.1/tnmo/Parameter_5/> tnmo:ram_MemFree 1000 kb
<http://127.0.0.1/tnmo/Parameter_M_13/> t69 <http://127.0.0.1/tnmo/Parameter_6/> tnmo:ram_MemAvailable 1000 kb
<http://127.0.0.1/tnmo/Parameter_M_10/> t74 <http://127.0.0.1/tnmo/Parameter_3/> tnmo:ram_available 1000 kb
<http://127.0.0.1/tnmo/Parameter_M_11/> t79 <http://127.0.0.1/tnmo/Parameter_4/> tnmo:ram_MemTotal 10,000,000 kb
<http://127.0.0.1/tnmo/Parameter_M_14/> t83 <http://127.0.0.1/tnmo/Parameter_7/> tnmo:stb_hdd_usage 99%
<http://127.0.0.1/tnmo/Parameter_M_8/> t85 <http://127.0.0.1/tnmo/Parameter_1/> tnmo:cpu_usage 95%
<http://127.0.0.1/tnmo/Parameter_M_9/> t92 <http://127.0.0.1/tnmo/Parameter_2/> tnmo:cpu_usage_top App_1:75%;

To provide an analysis of time completion of checking the STB states the following
models of the networks were considered:

• Network #1: Number of monitoring object = 100; number of parameters measure-
ments = 700.

• Network #2: Number of monitoring object = 1000; number of parameters measure-
ments = 7000.

• Network #3: Number of monitoring object = 10,000; number of parameters measure-
ments = 70,000.

• Network #4: Number of monitoring object = 10,0000; number of parameters measure-
ments = 700,000.

To get data about the STBs states from the knowledge graph the SPARQL requests
considered above were used.

For each network the average execution time and the percentage of the detected
failures were calculated. The results in interval of 24 h are presented in the Table 6.

Computers 2021, 10, 101 28 of 30

Table 6. Comparison analysis of SPARQL execution time and probability of failure detection.

Dataset Request #1 Execution Time Request #2 Execution Time Failures Detected

Network #1 51 ms. 63 ms. 1 (100%)
Network #2 67 ms. 79 ms. 15(100%)
Network #3 306 ms. 387 ms. 149 (99.3%)
Network #4 387 ms. 415 ms. 1486 (99.0%)

The number of detected failures is less then 100% due to some failures cannot be
detected if a TN device was not accessible for monitoring for some time or if monitored
TN device parameters do not provide assured failure detection. The probability of the such
situations can be estimated in interval of 0.001–0.01 and depends on TN size.

The use of the proposed approach made it possible to significantly reduce the staff of
service personnel. Working in automatic mode, it makes possible to detect more than 98%
of errors and reduce the broadcast recovery time from several hours to several minutes.

12. Conclusions

The problem of DA in large-scale distributed CPS with a high level of variability of
structure and behavior is important for practice, but it is quite difficult to solve the problem.
The article offers a model approach to solving this problem. The proposed approach is
based on the following ideas: (i) the collected data is presented as a set of automata models
which describe the structure and behavior of ObS; (ii) all models are built and maintained
up-to-date automatically in run time mode; (iii) models are considered as separate entities,
the specific type of model is determined by the requirements for the concrete DA task.

The approach considered in the paper opens prospects for solving two important
tasks: (i) reaching a new level of complexity of the created systems; (ii) expanding the
scope of their application by reducing the total cost of ownership by excluding a human
from the process of keeping the model up to date.

The functioning of DAS is based on the joint use of algorithms for the structural
synthesis of ObS objects and process mining algorithms. With this problem statement,
the key requirement for the model is its synthesizability (the ability to build it in run time)
and the ability to use it to fulfill requests from different categories of stakeholders.

At present, the proposed approach is ready for practical usage: MLRFSOA synthesis
algorithms, as well as script synthesis algorithms are developed.

The experience of practical application of the proposed approach has shown that at
minimal cost, this approach can be used to solve practical problems in telecommunication
domain, it can be also successfully applied in many other subject domains, where AmI
CPS are used. Further research on this topic should be carried out in the direction of
expanding the scope of the developed multi-model approach. Within the framework of
the developed approach, the idea of using the ObS model is laid down both as a model
based on which a script is formed that implements the DA procedure and as a repository
of the collected data. If we replace the model, we can easily move to other subject domains,
e.g., socio-cyber-systems. In particular, the work of the authors [47] shows the possibility
of using this approach in industrial systems built based on IIOT [48].

Author Contributions: Conceptualization, N.Z. and A.V.; methodology, N.Z.; software, I.K.; valida-
tion, N.Z. and A.V.; formal analysis, N.Z.; data curation, I.K.; writing—original draft preparation,
S.A.; writing—review and editing, N.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data related to the Case Study section is available in open GitHub
repository—https://github.com/kulikovia/Comp-2021 (accessed on 14 July 2021).

https://github.com/kulikovia/Comp-2021

Computers 2021, 10, 101 29 of 30

Acknowledgments: The paper was prepared in Saint-Petersburg Electro technical University (LETI),
and is supported by the Agreement № 075-11-2019-053 dated 20 November 2019 (Ministry of Science
and Higher Education of the Russian Federation, in accordance with the Decree of the Government
of the Russian Federation of 9 April 2010 No. 218), project: Creation of a Domestic High-Tech
Production of Vehicle Security Systems based on a Control Mechanism and Intelligent Sensors,
including Millimeter Radars in the 76–77 GHz range.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. von Bertalanffy, L. General System Theory: Foundations, Development, Applications; Revised Edition; George Braziller Inc.:

New York, NY, USA, 1976; ISBN 10-8076-0453-4.
2. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: London, UK, 2020; 1072p.
3. Korzun, D.; Balandina, E.; Kashevnik, A.; Balandin, S.; Viola, F. Ambient Intelligence Services in IoT Environments: Emerging Research

and Opportunities; IGI-Global: Hershey, PA, USA, 2019; 199p. [CrossRef]
4. Lattanze Anthony, J. Architecting Software Intensive Systems. Practitioner’s Guide; Taylor & Francis Group, LLC: New York, NY, USA, 2008.
5. Wu, Y.; Hu, F.; Min, G.; Zomaya, A.Y. Big Data and Computational Intelligence in Networking; Taylor & Francis Group, LLC:

Boca Raton, FL, USA, 2018; 530p.
6. Buyya, R.; Srirama, S.N. Fog and Edge Computing Principles and Paradigms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; 490p.
7. Mahmood, Z. Fog Computing Concepts, Frameworks and Technologies; Springer International Publishing AG: Cham, Switzerland, 2018;

291p.
8. Open Fog Reference Architecture for Fog Computing. Available online: https://iiconsortium.org/pdf/OpenFog_Reference_

Architecture_2_09_17.pdf (accessed on 7 September 2020).
9. Prabhu, C.S. Fog Computing, Deep Learning and Big Data Analytics-Research Directions; Springer: Singapore, 2019; 71p.
10. Sanfelice, R.G. Analysis and Design of Cyber-Physical Systems. A Hybrid Control Systems Approach. In Cyber-Physical Systems:

From Theory to Practice; Rawat, D., Rodrigues, J., Stojmenovic, I., Eds.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-
6333-6.

11. Jaiswal, R.; Davidrajuh, R.; Rong, C. Fog Computing for Realizing Smart Neighborhoods in Smart Grids. Computers 2020, 9, 76.
[CrossRef]

12. Carrington, P.J.; Scott, J.; Wasserman, S. Models and Methods in Social Network Analysis; Cambridge University Press:
Cambridge, UK, 2005; 329p.

13. Cook, D.J.; Krishnan, N.C. Activity Learning Discovering, Recognizing, and Predicting Human Behavior from Sensor Data;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; 258p.

14. Marr, B. Big Data: Using Smart Big Data, Analytics and Metrics to Make Better Decisions and Improve Performance; Wiley:
Hoboken, NJ, USA, 2015; 256p.

15. Hwang, K.; Fox, G.; Dongarra, J. Distributed and Cloud Computing. From Parallel Processing to the Internet ofThings; Morgan Kauf-
mann: Waltham, MA, USA, 2012; 648p.

16. Huang, J.; Hua, K. Managing the Internet of Things: Architectures, Theories and Applications; The Institution of Engineering and
Technology: Stevenage, UK, 2016; 226p.

17. Perry, L. Internet of Things for Architects; Packt Publishing: Birmingham, UK, 2018; 515p.
18. Nathan, I. Sensors, Actuators, and Their Interfaces: A multidisciplinary introduction (Materials, Circuits and Devices); Scitech Pub-

lishing: Chennai, India, 2013. Available online: https://digital-library.theiet.org/content/books/cs/sbcs502e (accessed on
16 August 2021). [CrossRef]

19. Shovic, J.C. Raspberry Pi IoT Projects: Prototyping Experiments for Makers Apress Liberty Lake; Apress: New York, NY, USA, 2016;
233p. [CrossRef]

20. Ha, K.; Satyanarayanan, M. Openstack++ for Cloudlet Deployment; Technical Report CMU-CS-15-123; School of Computer Science,
Carnegie Mellon University: Pittsburgh, PA, USA, 2015.

21. Apache Edgent. Available online: https://edgent.incubator.apache.org/ (accessed on 7 June 2021).
22. Miell, I.; Sayers, A. Docker in Practice, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2019; 434p.
23. EdgeXFoundry. Available online: https://www.edgexfoundry.org/ (accessed on 7 June 2021).
24. Liggins, M., II; Hall, D.; Llinas, J. Handbook of Multisensor Data Fusion: Theory and Practice; Taylor and Francis Group:

Boca Raton, FL, USA, 2009; 849p.
25. Fowler, M. Domain-Specific Languages; Addison-Wesley: Upper-Saddle River, NJ, USA, 2014; 583p.
26. Temdee, P.; Prasad, R. Context-Aware Communication and Computing: Applications for Smart Environment; Springer International

Publishing AG: Cham, Switzerland, 2018; 148p.
27. Loke, S. Context-Aware Pervasive Systems. Architectures for a New Breed of Applications; Taylor & Francis Group: Boca Raton, FL, USA,

2007; 220p.
28. Osipov, V.Y. Automatic Synthesis of Action Programs for Intelligent Robots. Program. Comput. Softw. 2016, 42, 155–160. [CrossRef]

http://doi.org/10.4018/978-1-5225-8973-0
https://iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://doi.org/10.3390/computers9030076
https://digital-library.theiet.org/content/books/cs/sbcs502e
http://doi.org/10.1049/SBCS502E
http://doi.org/10.1007/978-1-4842-1377-3
https://edgent.incubator.apache.org/
https://www.edgexfoundry.org/
http://doi.org/10.1134/S0361768816030063

Computers 2021, 10, 101 30 of 30

29. Osipov, V.; Stankova, E.; Vodyaho, A.; Lushnov, M.; Shichkina, Y.; Zhukova, N. Automatic Synthesis of Multilevel Automata
Models of Biological Objects. In International Conference on Computational Science and ItsApplications; Springer Nature AG:
Cham, Switzerland, 2019; pp. 441–456.

30. Tianxing, M.; Osipov, V.; Vodyaho, A.I.; Lebedev, S.; Zhukova, N. Distributed Technical Object Model Synthesis Based on
Monitoring Data. Int. J. Knowl. Syst. Sci. 2019, 10, 27–43. [CrossRef]

31. Osipov, V.; Zhukova, N.; Vodyaho, A. About one approach to multilevel behavioral program synthesis for television devices.
Int. J. Comput. Commun. 2017, 11, 17–34.

32. Dennis, J.B. The Evolution of Static Data-Flow Architecture/Advanced Topics in Data-Flow Computing; Gaudiot, J.-L., Bic, L., Eds.;
Prentice Hall: Hoboken, NJ, USA, 1991.

33. Godse, J. Ruby Data Processing Using Map, Reduce, and Select; Springer: New York, NY, USA, 2018; 98p. [CrossRef]
34. Van der Aalst, W. Process Mining Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; 468p.
35. Chadha, R.; Kant, L. Policy-Driven Mobile Ad hoc Network Management; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; 394p.
36. Strassner, J.S. Policy-Based Network Management Solutions for the Next Generation; Morgan Kaufmann Publishers: Burlington, MA, USA,

2004; 516p.
37. RFC3198. The COPS (Common Open Policy Service) Protocol. Available online: https://datatracker.ietf.org/doc/rfc3198/

(accessed on 7 June 2021).
38. Van de Laar, P.; Tretmans, J.; Borth, M. (Eds.) Situation Awareness with Systems of Systems; Springer: Cham, Switzerland, 2012; 272p.

[CrossRef]
39. Liu, H.; Gegov, A.; Cocea, M. Rule Based Systemsfor Big Data. A Machine Learning Approach; Springer International Publishing:

Cham, Switzerland, 2016; 121p. [CrossRef]
40. Guo, S.; Zeng, D. (Eds.) Cyber-Physical Systems: Architecture, Security and Application; Springer International Publishing AG:

Cham, Switzerland, 2019; 249p. [CrossRef]
41. Marques, G.; Pitarma, R.; Garcia, N.M.; Pombo, N. Internet of Things Architectures, Technologies, Applications, Challenges,

and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics 2019, 8, 1081. [CrossRef]
42. Suárez-Figueroa, M.C.; Gómez-Pérez, A.; Motta, E.; Gangemi, A. Ontology Engineering in a Networked World; Springer:

Berlin/Heidelberg, Germany, 2012; 444p. [CrossRef]
43. Fensel, D.; Simsek, U.; Angele, K. Knowledge Graphs Methodology, Tools and Selected Use Cases; Springer Nature: Cham, Switzerland,

2020; 156p.
44. Blumauer, A.; Nagy, H. Knowledge Graphs Cookbook; Recipes That Work Semantic Web Company: Vienna, Austria, 2020; 346p.
45. DuCharme, B. Learning SPARQL Querying and Updating with SPARQL 1.1; O’Reilly Media: Sebastopol, CA, USA, 2013; 386p.
46. Cardoso, R.C.; Ferrando, A. A Review of Agent-Based Programming for Multi-Agent Systems. Computers 2021, 10, 16. [CrossRef]
47. Vodyaho, A.; Osipov, V.; Zhukova, N.; Chernokulsky, V. Data Collection Technology for Ambient Intelligence Systems in Internet

of Things. Electronics 2020, 9, 1846. [CrossRef]
48. Patnaik, S. New Paradigm of Industry 4.0 Internet of Things, Big Data & Cyber Physical Systems; Springer Nature Switzerland AG:

Cham, Switzerland, 2020; 187p. [CrossRef]

http://doi.org/10.4018/IJKSS.2019070103
http://doi.org/10.1007/978-1-4842-3474-7
https://datatracker.ietf.org/doc/rfc3198/
http://doi.org/10.1007/978-1-4614-6230-9
http://doi.org/10.1007/978-3-319-23696
http://doi.org/10.1007/978-3-319-92564-6
http://doi.org/10.3390/electronics8101081
http://doi.org/10.1007/978-3-642-24794-1
http://doi.org/10.3390/computers10020016
http://doi.org/10.3390/electronics9111846
http://doi.org/10.1007/978-3-030-25778-1

	Introduction
	Typical Properties of Modern Information-Oriented Systems
	DA Problems in Large Scale Distributed AmI CPS
	The Scope of the Study
	Suggested Approach
	The Conceptual Model of the DA
	Multilevel Structural and Behavioral Models
	Automatic Generation of the ObS Model
	Implementation of the DA Procedure Using Policies and Contexts
	Architectural Solutions of DAS
	Use-Case
	Conclusions
	References

