
computers

Article

A Comparative Analysis of Semi-Supervised Learning in
Detecting Burst Header Packet Flooding Attack in Optical Burst
Switching Network

Md. Kamrul Hossain 1, Md. Mokammel Haque 2 and M. Ali Akber Dewan 3,*

����������
�������

Citation: Hossain, M.K.; Haque,

M.M.; Dewan, M.A.A. A

Comparative Analysis of

Semi-Supervised Learning in

Detecting Burst Header Packet

Flooding Attack in Optical Burst

Switching Network. Computers 2021,

10, 95. https://doi.org/10.3390/

computers10080095

Academic Editor: Paolo Bellavista

Received: 18 June 2021

Accepted: 30 July 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Information and Communication Technology, Chittagong University of Engineering and
Technology, Chattogram 4349, Bangladesh; muhammadkamrul@cuet.ac.bd

2 Department of Computer Science and Engineering, Chittagong University of Engineering and Technology,
Chattogram 4349, Bangladesh; mokammel@cuet.ac.bd

3 School of Computing and Information Systems, Faculty of Science and Technology, Athabasca University,
Edmonton, AB T5J 3S8, Canada

* Correspondence: adewan@athabascau.ca

Abstract: This paper presents a comparative analysis of four semi-supervised machine learning
(SSML) algorithms for detecting malicious nodes in an optical burst switching (OBS) network. The
SSML approaches include a modified version of K-means clustering, a Gaussian mixture model
(GMM), a classical self-training (ST) model, and a modified version of self-training (MST) model. All
the four approaches work in semi-supervised fashion, while the MST uses an ensemble of classifiers
for the final decision making. SSML approaches are particularly useful when a limited number of
labeled data is available for training and validation of the classification model. Manual labeling of a
large dataset is complex and time consuming. It is even worse for the OBS network data. SSML can be
used to leverage the unlabeled data for making a better prediction than using a smaller set of labelled
data. We evaluated the performance of four SSML approaches for two (Behaving, Not-behaving),
three (Behaving, Not-behaving, and Potentially Not-behaving), and four (No-Block, Block, NB- wait
and NB-No-Block) class classifications using precision, recall, and F1 score. In case of the two-class
classification, the K-means and GMM-based approaches performed better than the others. In case
of the three-class classification, the K-means and the classical ST approaches performed better than
the others. In case of the four-class classification, the MST showed the best performance. Finally,
the SSML approaches were compared with two supervised learning (SL) based approaches. The
comparison results showed that the SSML based approaches outperform when a smaller sized labeled
data is available to train the classification models.

Keywords: optical burst switching network; burst header packet flooding attack; semi-supervised
learning; self-training; clustering

1. Introduction

Machine learning (ML) and data mining has been extensively used in communica-
tion networks for its ability to respond dynamically to the changes in networks without
repetitive human intervention. Nowadays, ML is a common choice in addressing various
problems and challenges pertaining to computer networking. From the existing literatures,
we find that ML has been used in network traffic prediction, network traffic classifica-
tion, payload-based traffic classification, host behavior-based traffic classification, flow
feature-based traffic classification, encrypted traffic classification, misuse-based intrusion
detection, anomaly-based intrusion detection, deep learning for anomaly detection, hybrid
intrusion detection, etc. ML tries to construct algorithms and models that can learn to make
decisions using hidden correlations discovered from historical data. In [1], De Sanctis et.
al. presented a summary of the applications of data mining for communication network

Computers 2021, 10, 95. https://doi.org/10.3390/computers10080095 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-3396-6568
https://orcid.org/0000-0001-6347-7509
https://doi.org/10.3390/computers10080095
https://doi.org/10.3390/computers10080095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10080095
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10080095?type=check_update&version=2


Computers 2021, 10, 95 2 of 21

control and optimization by providing a comprehensive and structured review of the
works in this area. The authors identified that the behavior of a communication network
is complex, and numerous parameters that control this behavior are present. Besides,
modern networks change their structure and scale very frequently over time. Hence, in
order to achieve optimal performance, controlling the parameters of a network in real
time is important, which is very hard to achieve using traditional network controlling
software and hardware. The authors suggested that using data mining algorithms, one
can find the hidden relation or pattern of behavior related to network performance and
network control parameters. In [2], M. A. Ridwan et al. presented a detailed review on the
current trends in the application of machine learning in communication networks. The
authors efficiently surveyed the existing literatures published in the period between 2017
and 2020 and listed the significant works on the application of machine learning in vulner-
ability prediction, routing, Quality of Service enhancement, intrusion detection, resource
management, etc. This showed that machine learning models can be used to efficiently
reduce the gap between the computational complexity of modern communication networks
and their performance. Since machine learning models can respond dynamically to the
changes in networks without repetitive human intervention, it can be leveraged to satisfy
the bandwidth-hungry and rigorous delay demand of modern communication networks.
In [3], Boutaba et al. mentioned a wide-ranging applications of ML in communication
networks.

In this paper, we chose to study a particular security problem in the optical network,
more specifically in the Optical burst switching network. In an Optical burst switching
(OBS) network, when a sender transmits a packet for destination, it first goes to an ingress
node, which is an optical router. Other packets from various sources may join it in the
aforementioned node. This collection of packets are then called data burst (DB). After
waiting for a very short period, a control packet (also known as burst header packet (in
short, BHP)) is generated from the ingress node, which attempts to allocate resources for
the waiting packets. If the BHP can successfully manage resources, then the DB can start
travelling to the destination using the allocated path. Optical communication technology
found one of its most effective leverages in the optical burst switching network (OBS).
OBS is a compromise between optical packet switching (OPS) and optical circuit switching
(OCS), but at the same time it removes some major drawbacks in the aforementioned
technologies [4]. In an OBS network, when packets are received by optical routers (also
called ingress nodes), they are buffered for a small amount of time (not as long as OCS).
This data payload is called a data burst. Then, a BHP is generated in the corresponding
ingress node. Its aim is to travel towards the destination and ask the optical switches
along the path to reserve a wavelength for the upcoming payload in the buffer. The BHP
includes necessary information about the DB packets, such as the arrival time, burst length,
offset time, etc. After waiting for a threshold time, the DB within the buffer is transmitted
towards the destination. The DB and BHP are sent in a separate channel and the DB does
not wait for any feedback from the corresponding BHP. The success of this scheme depends
on the outcome of the reservation request by the BHP. If the BHP cannot reserve resource
due to unavailability, then the corresponding DB will be dropped. OBS is preferred over
OPS and OCS because it can ensure low setup latency, high bandwidth utilization, finer
granularity, etc.

In this study, we particularly chose one notable attack, called the BHP flooding attack.
Here, an adversary compromises an edge node and sends from it a sufficiently large
number of BHPs to the core switches in order to cause a denial of service (DoS) state. These
BHPs are intended to cause harm and they do not associate with the DB. This is a difference
between a legitimate node and a compromised node. The BHPs sent from compromised
node tries to reserve a resource in core switches. The core switches cannot distinguish a
legitimate node and a compromised node and hence, allocate resources for the malicious
BHPs, which results in exhaustion of resources. Figure 1 illustrates a scenario when this
can occur [5]. BHP flooding attack is a significant threat, which can adversely impact the



Computers 2021, 10, 95 3 of 21

Quality of Service (QoS) of an optical network and bring more critical problems such as
DoS. To our knowledge, very few research studies are available on the application of ML in
detecting a BHP flooding attack in an OBS network, and the application of SSML is even
fewer. Besides, the existing techniques available to counter the BHP flood attack, exhibit
low accuracy in detecting malicious nodes responsible for the BHP flooding attack. In
addition, some notable work exists on supervised classification of OBS network nodes,
but SL demands a lot of labeled data for satisfactory accuracy. Obtaining a fully labeled
dataset for SL is challenging and time consuming. On the other hand, SSML which uses
unlabeled data and simultaneously provides high accuracy result, is certainly a better
choice. Moreover, semi-supervised learning methods have not been thoroughly examined
for this scenario in existing literature. This motivated us to perform a comparative study of
the existing works on SSML based BHP flooding attack detection, so that the outcome of
this study will help the researchers to better diagnose the existing SSML based methods for
OBS network related issues.

Figure 1. BHP flooding attack model.

This paper presents a comparative analysis of four semi supervised machine learning
(SSML) approaches on an OBS network dataset for detecting a BHP flooding attack. In our
previous studies [6–8], we applied four SSML approaches for detecting a BHP flooding
attack. In [6], K-Means clustering technique was used in an SSML framework. In [7],
Gaussian mixture model (GMM) was used in the same fashion. In [8], a classical self-
training (ST) algorithm was examined and a modified version of the classical self-training
algorithm was proposed for BHP flooding attack detection. In this study, we present
a comparative analysis of these four SSML approaches on an OBS network dataset for
detecting a BHP flooding attack. The contributions of this paper are outlined as follows:

• This paper presents a comparative study of the existing works on semi-supervised
machine learning (SSML) based BHP flooding attack detection in OBS network. The
outcome of this study will help the research community to better understand the
SSML-based models for optical burst switching network related vulnerabilities.

• This study found that the SSML-based approaches outperformed the supervised
learning-based approaches when a smaller sized labeled data is available to train the
classification models.

The rest of the paper is organized as follows: Section 2 discusses some related works
from the same problem domain. Section 3 describes the methodology for this study.
Section 4 presents the experiments and analysis with the mentioned algorithms, and
Section 5 concludes this study with a few remarks.



Computers 2021, 10, 95 4 of 21

2. Literature Review

OBS networks are susceptible to various attacks. Very few studies exist on the applica-
tion of machine learning to classify OBS nodes. In [9,10], authors studied the application
of ML in OBS networks. In [6], authors classified the nature of data burst loss in the
OBS network into two categories, i.e., loss due to contention and loss due to congestion.
After computing observed losses, called the number of bursts between failures (NBBF),
they used both SL and USL (unsupervised learning) techniques on the observed losses.
They showed that the results had 95% confidence level. The authors in [7] proposed a
proactive approach for contention resolution in OBS network. They introduced a new
routing system called ‘Graphical Probabilistic Routing Model’ that chooses less frequently
used links with the help of a Bayesian network. Using simulation software, they showed
that the approach outperformed other static approaches in terms of burst loss ratio. In [11],
the authors proposed a new approach to prevent such attacks by routing the light paths
in a different manner. In [12], the authors studied the subject of data traffic with a view
to reinforce network resource management by allowing the network admin to identify
different types of data traffic. Precisely, the authors intended to determine a key issue
relative to network performance with respect to source and destination. They collected
data traffic features such as connection duration, byte counts, packet size, and inter-arrival
statistics. Using EM based clustering algorithm, the dataset was clustered. The traffic
flows were divided into a set of groups. The outcome showed that at least 6 key clusters
(based on single and bulk transactions) were differentiable between the traffic flows. In
a survey [13], the authors described various ML approaches dealing with categorization
of IP traffic within diverse types of computer networks. They centered their study on the
existing classification methods. Both SL and USL approaches were examined for traffic
flow classification across several commonly used computer networks. They observed USL
using the concepts of clustering, EM, and K-Means. For SL, they used several techniques
such as Genetic Algorithm, Naïve Bayes, and K-Nearest-Neighbor.

The ML approaches discussed above focused on data traffic recognition, while this
study is solely focused on BHP flooding in OBS network and its SSML-based classification.
In [14], the authors explored the BHP flooding attack and proposed some solution to
filter the malicious BHPs. They proposed a countermeasure module for a DoS attack that
performs the fake BHP filtering at the optical layer using the idea of optical “codewords”.
When a received BHP comes from an illegitimate source node indicated by codewords, it
was dropped. In [15], authors designed an architecture of a firewall node to defend
OBS networks against physical layer attacks such as BHP flood attack. The firewall
filters by comparing the offset time of BHP and the real delay between the BHP and
the accompanying DB. In [2], the authors designed and implemented an algorithm to
classify the ingress nodes of an OBS network into three classes, i.e., Trusted, Blocked, and
Suspicious. Based on the node’s behavior and the amount of unutilized reserved resources,
the classification was performed. According to the authors, the model can be integrated in
the OBS core switch, which can enable it to classify the nodes. The methods described above
make heavy use of expert’s opinion to assign labels to the behavior and collected data, i.e.,
marking whether a behavior is good or bad. Getting an expert’s hand-assigned data is not
always feasible. In [16], authors proposed a decision tree-based supervised classification
model. A decision tree algorithm was used to extract If-Then, rules which were used to
classify the ingress nodes of OBS network into either Behaving or Misbehaving nodes.
The authors further classified the Misbehaving ingress nodes into four sub-classes, i.e.,
Misbehaving-No Block, Misbehaving-Wait, Misbehaving-Block, and Behaving-No Block.
First, they built a dataset of 1075 records using network simulation software and expert’s
hand-assigned target class labels. Then, the dataset was used to perform the training and
testing of decision tree model. Their model showed 93% detection accuracy for two class
classification, and 87% detection accuracy in case of four class classification. In [17], the
authors applied deep learning method in a supervised fashion. The malicious OBS network
nodes were detected from an existing BHP flooding attack dataset. The authors concluded



Computers 2021, 10, 95 5 of 21

their work with a comparison between their work and work based on support vector
machine, Naïve Bayes, and k-nearest neighbors.

The research studies discussed above are either rule-based or based on supervised
learning (SL). However, SL demands a lot of labeled data for satisfactory accuracy. Obtain-
ing a fully labeled dataset with thousands of data for SL is expensive, time consuming,
and sometimes impossible. In comparison, Semi-supervised machine learning (SSML)
which can leverage unlabeled data and at the same time provides high accuracy result,
is certainly a better choice. Moreover, semi-supervised learning methods have not been
thoroughly examined for attacks in the OBS network. Various methods are found in exist-
ing literatures for exploiting unlabeled data in SSML. Among them, generative models,
low-density separation, Laplacian regularization, and heuristic approaches are mostly used.
Generative model is an effective method that works by approximating the distribution
of data points for each class of a dataset. The probability that any given point ‘a’ has
label ‘b’ is then proportional to p(a|b)p(b) by Bayes’ rule. In [18], M. Lopez-Martin et al.
presented a novel method to synthesize intrusion data using generative model based on a
modified variational autoencoder (VAE). This method can produce synthetic data (for both
categorical and continuous feature) with behavioral and probabilistic structure similar to
the original data. In order to find the best model, the authors tried different VAE architec-
ture alternatives. The authors concluded that the model based on conditional VAE with
Gaussian and Bernoulli distributions exhibited the best performance. This outcome was
evaluated in terms of similarity of the generated data to real data and its capacity to be used
as new training data for machine learning models. Furthermore, this proposed method
was compared to several over-sampling algorithms. Synthetic data produced by both the
methods were used along with the NSL-KDD training dataset. Four common classifiers
(random forest, linear SVM, logistic regression, and Multilayer Perceptron) were trained
on the data and the classification result showed that the proposed method outperformed
the others in terms of classification accuracy. In [19], D. P. Kingma et al. presented a
noble probabilistic method of semi-supervised learning using deep generative models.
The authors leveraged approximate Bayesian inference combined with scalable variational
methods in order to produce synthetic data with a behavioral and probabilistic structure
similar to the original data. Besides, in order to make their proposed system scalable, a new
stochastic variational inference algorithm was designed. The proposed deep generative
model was evaluated on multiple benchmark datasets and it outperformed the previously
known best methods. The authors outlined that a limitation of the proposed model is that it
linearly scales according to the number of classes in a dataset, which requires to re-estimate
the generative likelihood for each of the classes during training. In [6–8], the authors
discussed some SSML approaches for detecting BHP flooding attack using recorded OBS
network data. In [6], K-Means clustering technique was used in an SSML framework. The
authors applied K-means to the whole dataset and found some groups of data. Then, using
available labeled data, those groups were identified with class names. In [7], Gaussian
mixture model (GMM) was used in the same fashion as mentioned in [6]. In [8], a classical
self-training (ST) algorithm and a modified version of the classical self-training algorithm
was proposed for a BHP flooding attack detection using an OBS network dataset. The
self-training [20–22] algorithm is a common choice for SSML. It uses available truly labeled
data to initially train a base classifier and then uses the model to predict the unlabeled data.
The predicted data are then filtered to choose only high confidence predictions. These high
confident samples are then added to the original truly labeled data. This process continues
until all the unlabeled data are labeled or a max iteration is reached. In [5], the authors pro-
posed a new algorithm based on the self-training algorithm, called Modified self-training
algorithm. The method applies multiple classifiers on the same dataset and combines the
outcomes using some heuristics. These methods ([6,7]) gave good accuracy for binary
classification of an OBS network dataset but were not good for three- and four-class. The
self-training and its modified version were found to be good for all cases.



Computers 2021, 10, 95 6 of 21

As per our study, very few works exist on the application of ML in detecting BHP
flooding attack of OBS network. Among them, semi-supervised learning-based works
are fewer. To the best of our knowledge, the works [6–8] are the only available works on
SSML approach for detecting BHP flooding attack in an OBS network dataset. SSML is
very helpful when the available amount of labeled data is relatively much smaller than
the unlabeled data. Manually labeling a large dataset is complex and time consuming,
especially for OBS network data. SSML can be used to leverage the unlabeled data for
making a better prediction than what would be possible if only the labeled data were used.
In this work, we presented a comparative analysis of the SSML approaches used in [6–8]
for detecting BHP flooding attack in an OBS network dataset.

3. Materials and Methods

In this section, we present the underlying algorithms and their setups for each of the
four SSML approaches that were examined in this paper. For convenience, this section is
divided into four sub-sections.

3.1. Study 1: SSML with K-Means Clustering

A K-means based SSML approach is used for detecting BHP flooding from an OBS
network dataset in [3]. With some modifications, we examined the method for a compara-
tive analysis. In this approach, a dataset of OBS network node’s data was selected. The
dataset was split into two parts: a smaller validation set and a large test set. The whole
dataset was used for the K-means clustering [23]. The associated true labels were removed
from the test set. The validation set was very small compared to the whole dataset and
it holds true labels of each sample. After the K-means clustering, the obtained clusters
were given labels based on the validation set. Using this validated model, the test set was
classified (predicted) and assigned labels. Finally, the evaluation metrics for the model were
calculated. Figure 2 depicts the whole procedure in a block diagram and in Algorithm 1,
the K-means algorithm [24] is presented. The symbols used in Algorithm 1 is explained in
Table 1.

Algorithm 1 k-Means Algorithm [19]

Input: data point for dataset X, i.e. (x є X) and number of centers k
1. Select an initial partition with k clusters
2. Repeat
3. Compute a new partition by assigning each data point to its nearest cluster center
4. Generate new cluster centers
5. Until cluster membership become stable

Figure 2. Block diagram of K-means algorithm in the SSML approach.



Computers 2021, 10, 95 7 of 21

Table 1. List of symbols of Algorithm 1.

Symbol Meaning

X Unlabeled dataset

x single data point from X

k number of clusters

3.2. Study 2: SSML with Gaussian Mixture Model (GMM) Clustering

A GMM based SSML approach is used for detecting BHP flooding from OBS network
dataset in [4]. With some modifications, we examined the method for the comparative
analysis. The Gaussian mixture model [25] is a probabilistic model that calculates the
joint probability for a data point to determine the most probable cluster by leveraging
the expectation maximization (EM) algorithm [26,27]. Here, the means and covariance of
GMM are initialized using available labeled data. In Figure 3, the block diagram of the
method used by the author for clustering OBS network data is depicted. Additionally, the
EM for the GMM algorithm is shown in Algorithm 2. The symbols used in Algorithm 2 are
explained in Table 2.

Algorithm 2 EM Algorithm for Mixture of Gaussians

1. Given: All points x є X that are mixtures of K Gaussians
2. Goal: Find π1, . . . , πk and Θ1, . . . , Θk such that

L(Θ) =
n
∑

i=1
ln
{

K
∑

k=1
πkF(xi|Θk)

}
is maximized

3. Initialize the means µk, variances Σk for each component
4. Initialize the mixing coefficients π and evaluate the initial value of log likelihood L(Θ)
5. Expectation step: Evaluate weights wik
6. Maximization step:

Re-evaluate parameters µnew
k , Σnew

k and πnew
k

7. Evaluate L(Θnew)
8. if L(Θnew) converged then stop
9. else goto 4
10. end if

Figure 3. Block diagram of the GMM-based SSML approach.



Computers 2021, 10, 95 8 of 21

Table 2. List of symbols of Algorithm 2.

Symbol Meaning

µk mean of k-th gaussian

Σk variance of k-th gaussian

x data point for dataset X, i.e., (xєX)

n total data points in dataset X

k mixture components

wik probability that point xi is generated by the k-th Gaussian

Nk
n
∑

i=1
wik i.e., the effective number of data points assigned to k-th Gaussian

πk prior probability(weight) of k-th gaussian

Θk (µk, Σk)

F(xi|Θk) probability distribution of observation xi, parameterized on Θ

In this paper, we implemented the GMM for SSML in the same fashion as the K-
means-based SSML approach. Before applying the method, some preprocessing, such as
Normalization and Principal component analysis (PCA) was done in order to make the
dataset more suitable for the model.

3.3. Study 3: SSML with Self-Training

In [5], the authors discussed the traditional self-training algorithm in comparison to a
modified version of it. In this work, we shall examine the method in context of OBS network
dataset classification for a comparative analysis. Self-training is an old but effective method
for SSML [20,21,28]. A classical version of the self-training method (say it, ST) makes use
of the true-labeled data (L) in order to train a base classifier (C). Here, some true-labeled
data are needed before the algorithm can start its job.

Next, C is used to predict pseudo labels for unlabeled data (U). Then, a calculated
portion (P) from those pseudo labeled instances is separated from U with their associated
labels. The calculation we are talking about typically works based on prediction confidence
(H). The separated portion can then be combined with the truly labeled data L. The outcome,
i.e., P + L dataset is stored and then used to re-train C. This aforementioned process is
repeatedly done until either U is empty, or a preset number of iterations is achieved. This
whole procedure and steps are shown formally in Algorithm 3 and a block diagram is
shown in Figure 4.

Algorithm 3 Classical Self-Training Algorithm (ST) [17]

1. N: Iteration counter = 1; C: Base classifier, L: Labeled data, U: Unlabeled data, maxCount:
number of iterations allowed, H: Confidence Threshold

2. while (U! = empty) and (N < maxCount) do
3. Train C on L
4. for each di inU do
5. Assign pseudo-label to di based on prediction confidence
6. end for
7. Select a set P of the high-confidence predictions from U based on threshold H
8. Update N = N + 1; U = U - P; L = L U P



Computers 2021, 10, 95 9 of 21

Figure 4. Block diagram of self-training algorithm.

However, the problem with this method is that it is very slow, especially for big
datasets because it keeps on iterating until the constraints are met. Another shortcoming
outlined by researchers is that inaccuracy in primary stages may be reinforced in future
iterations [29]. In this work, the Extra Tree classifier [30] was used in Algorithm 3 as the
base classifier. Then, following the method suggested in [22,31], confidence threshold H
was determined. Accordingly, after the model predicted labels for U, the top 10% from
the highly-confident predictions are separated and the mean value of their probability
estimation was computed. This mean value was set as H. In the algorithm, the value for
the variable ‘maxCount’ was set to 40 based on the recommendation mentioned in [32].

3.4. Study 4: SSML with Modified Self-Training

In [5], a method developed from the idea of self-training was proposed. It is called
modified self-training method (in short, MST). The method applies multiple (N) classifiers
(A1, A2, . . . , AN) on the same dataset and combines the outcomes using some heuristics.
Moreover, the agreement among those classifiers was exploited in a two-stage selection
pipeline. At stage one, different ML classifiers are trained by the instances available at
hand (L). The resulting models then work on the unlabeled dataset (U) and each model
produces a pseudo-labeled dataset from U. After that, the first level decision fusion was
applied by preserving only those instances whose labels were agreed by a fixed number
of models among the available models. Assume P is the output which is the subset of U
chosen by a fixed number of models label agreement. This concludes the first stage voting.
In the next stage, different classifiers are trained by L as the first stage. Then, the resulting
models work on P and assign labels. This produces a collection of labeled datasets. At this
point, a subset from P was selected based on two thresholds: prediction probability and
label agreement. The labels of P are chosen based on these two thresholds. For example, if
for an instance in P, a label was agreed by a specific number of models and each of those
models had prediction probability above a specific threshold, then the instance (along with
the label) was selected and preserved. Let us say that the subset of P selected in this way is
called S. Then, S is merged with L. The resulting dataset is the final dataset (say, F) which
can be used for training a classifier in future. Algorithm 4 presents the steps and Figure 5
depicts the methodology in a block diagram.



Computers 2021, 10, 95 10 of 21

Algorithm 4 Modified Self-Training Algorithm (MST) [5]

1. C1: A set of N classifiers, C2: A set of M classifiers, F: Final classifier,
L: Labeled data, U: Unlabeled data, K: Set of empty datasets, P, S: Empty dataset, V1: 1st stage
pseudo-label agreement threshold, V2: 2nd stage pseudo-label agreement threshold, H:
Classification confidence threshold

2. C1 = {C11,C12,...C1N}, C2 = {C21,C22,...C2M}, i = 1, K = {K1,K2,...KN}
3. for each c in C1 do
4. Train c by training set L
5. for each d in Udo
6. Assign pseudo-label to d based on prediction confidence
7. Save d along with the pseudo-label in set Ki
8. end for
9. i = i + 1
10. end for
11. for each d in U do
12. compute pseudo-label agreement (votes) for d in K
13. if votes >= V1 then
14. copy d and save in set P
15. end if
16. end for
17. i = 1 and K1,K2,...KN = {}
18. for each c in C2 do
19. Train c by training set L
20. for each d in P do
21. Classify d by model c
22. if classification confidence >= H then
23. Save d along with the pseudo-label in set Ki
24. end if
25. end for
26. i = i + 1;
27. end for
28. for each d in P do
29. compute pseudo-label agreement(votes) for d in K
30. if votes >= V2 then
31. copy d in set S
32. end if
33. end for
34. Update U by removing S from U: U = U - S
35. Update L by joining S with L: L = L U S
36. Train classifier F by training set L
37. Classify U by F and predict labels for all the points in U
38. Output: Fully labeled dataset

Figure 5. Modified self-training (MST) method in block diagram.

In this paper, according to Algorithm 4, eight classifiers (i.e., n = 8) were used at
the first stage of voting. It includes Extra Tree classifier [30], Gaussian Naive Bayes [33],



Computers 2021, 10, 95 11 of 21

Gradient boosting classifier [34], Logistic regression classifier [35], Random Forest clas-
sifier [36], XGBoost classifier [37], Quadratic discriminant analysis [38] and Multi-layer
perceptron classifier [39]. At the second phase of the voting, six ML classifiers were used
(i.e., M = 6), which included the above listed classifiers except for the Extra tree classifier
and Random Forest classifier. The reason for not including these two in the second stage
is that the standard decision tree classifier produces unreliable probability estimation to
its predictions, which cannot be an appropriate selection criterion in self-training [17].
The value of the three tuning parameters (or, Thresholds) mentioned in parameters (or,
Thresholds) mentioned in Algorithm 4 (V1, V2, and H) were obtained empirically following
the suggestion given by [5]. Once the final training dataset (fully labeled by MST) was
produced, an Extra Tree classifier was trained by it for the intended comparative analysis.

4. Experiment and Analyses

In this section, the experimental results and related analyses are presented. For
convenience, this section was divided into following sub-sections: experiment setup,
dataset preparation, evaluation metrics, and results and analyses.

4.1. Experimental and Environmental Setup

During the experiments, we used a Lenovo PC with an Intel core i-7, 3.40 GHz proces-
sor, 8 GB RAM. We performed ML tasks in Windows 10 (×64). For coding environment,
we used ‘Jupyter Notebook’ which is available in Anaconda [40] distribution.

It was stated earlier that the dataset has a target attribute named ‘Node Status’. It
holds one of three values for each row: B, NB, and PNB. It also has a target attribute
named ‘Class’ which holds one of four values for each row: No-Block, Block, NB-wait, and
NB-No-Block. The label ‘PNB’ means ‘potentially not behaving’, i.e., the node has high
packet drop rate but not as high to be labelled as malicious. The label ‘NB-No-Block’ means
that the node is misbehaving but we do not block it immediately. The label ‘No- Block’
means that the node is not malicious and hence should not be blocked. The label ‘Block’
means that the node is malicious and hence should be blocked. The label ‘NB-Wait’ means
that the node is misbehaving and should be blocked temporarily (i.e., for a time specified).
Based on this, for each of the four studies mentioned in Section 3, we divided our test cases
into the following three categories:

• First Case: we trained SSML models to classify the nodes (i.e., data instances) in the
dataset into two distinct classes: Behaving (B) and Not Behaving (NB) based on the
target attribute ‘Node Status’.

• Second Case: models were trained to classify the nodes into three distinct classes:
Behaving (B), Not Behaving (NB) and Potentially Not Behaving (PNB) based on the
target attribute ‘Node Status’.

• Third Case: models were trained to classify the nodes into four distinct classes based
on the target attribute ‘Class’, which has four distinct class values: No-Block, Block,
NB- wait, and NB-No-Block.

It should be noted that the target attribute ‘Node Status’ was used for the ‘First Case’
and ‘Second Case’ while the target attribute ‘Class’ was used for the ‘Third Case’. The
original OBS dataset has 760 instances for ‘First Case’ and 1075 instances for ‘Second Case’
and ‘Third Case’.

In Table 3, the ML algorithms and their parameters used in this study are listed. All the
ML algorithms were implemented using Scikit-learn [41] which is a free machine learning
library for the Python programming language. In this experiment, the parameters for the
ML algorithms were kept in default setting as specified by Scikit-learn, except for a few,
which are listed below.



Computers 2021, 10, 95 12 of 21

Table 3. List of modified parameters of algorithms used in this work.

Algorithm Name Modified Parameters

Gaussian Mixture Model covariance_type= [‘spherical’, ‘diag’, ‘tied’, ‘full’], maximum
iteration = 100, radom_state or seed = 120

K-Means No parameter modified

Extra Trees Classifier random_state or seed = 120

Random Forest Classifier random_state or seed = 120

XGBoost Classifier random_state or seed = 120

Gradient Boosting
Classifier random_state or seed = 120

Gaussian No parameter modified

Logistic Regression maximum iteration = 1000, random_state or seed = 120

Multi-Layer Perceptron
Classifier maximum iteration = 1500, random_state or seed = 120

Quadratic Discriminant
Analysis No parameter modified

4.2. Dataset Preparation

This work utilizes an OBS network dataset related to BHP flooding attack available in
UCI Machine Learning Repository [42]. The dataset has 1075 records with 22 attributes.
Below, a brief intro of the attributes is provided in Table 4.

Table 4. Meaning of the attributes of the OBS dataset.

Sl. Attribute name Meaning

i. Node This is the label of edge node

ii. Full bandwidth This is a user allocated initial reserved bandwidth for an individual node. It is also called
reserved bandwidth

iii. Utilized bandwidth rate The amount which can be reserved from the allocated bandwidth, i.e., from full
bandwidth column

iv. Packet drop rate Packet drop rate for individual node, in percentage

v. Percentage of lost packet rate Packets drop rate, in percentage for individual node

vi. Average delay time per sec Average of delay per second for individual node

vii. Packet received rate Total packets received per second for individual node on the basis of reserved bandwidth

viii. Percentage of lost byte rate Lost byte rate, in percentage for individual node

ix. Amount of used bandwidth The amount each individual node could reserve from allocated bandwidth

x. Packet size byte Packets size allocated in byte for individual node to send

xi. Received byte This is the total byte received per second for an individual node on the basis of reserved
bandwidth

xii. Lost bandwidth The lost amount of assigned bandwidth

xiii. 10-run-avg- drop-rate This is the average of packet drop rate for ten successive iterations in simulation

xiv. 10-run-delay The average of delay time for 10 successive iterations in simulation

xv. 10-run-avg- bandwidth use This is the average of bandwidth utilized for 10 successive iterations in simulation

xvi. Packet transmitted The amount of total packets transmitted per second for individual node on the basis of
allocated bandwidth

xvii. Packet received The amount of total packets received per second for individual node on the basis of
reserved bandwidth



Computers 2021, 10, 95 13 of 21

Table 4. Cont.

Sl. Attribute name Meaning

xviii. Packet lost The amount of total packets lost per second for individual node on the basis of lost
bandwidth

xix. Transmitted byte Total bytes transmitted per second for individual node

xx. Flood status The amount of flood per node, in percentage on the basis of packet drop rate

xxi. Node Status The classification of nodes into one of three classes, behaving, potentially not behaving,
and not behaving

xxii. Class It is the classification of the nodes into one of four classes; NB-No- Block, block, NB-wait,
no-block

The dataset was built from rigorous simulation runs using an OBS network simulator
software [43]. With the assistance of a domain expert, the authors labeled the dataset’s two
categorical attributes, i.e., (B and NB) for the ‘Node Status’ attribute, and then “No-Block”,
“NB-No-Block”, “Block”, “NB-Wait” for the ‘Class’ attribute. The category wise label
assignments were done based on the intentional false resource utilization rate and the real
packet drop rate. Three attributes: 10-run-avg-bandwith- use, 10-run-avg-drop-rate, 10-
run-delay, each one symbolizes an average value calculated from 10 consecutive iterations
in the simulator. This was done to retain the statistical significance and minimize the bias
within the node performance results [13]. The attributes ‘Node Status’ and ‘Class’ are the
target attributes.

Necessary data cleaning was done and then feature selection was applied. With the
help of Pearson correlation coefficient (PCC), 11 attributes were identified as redundant
and hence can be removed from the dataset. As a result, apart from two target attributes
‘Node Status’ and ‘Class’, 8 attributes are available to be used in training the desired ML
model. Those are:

1. Average delay time per sec
2. Amount of used bandwidth
3. Packet transmitted
4. Packet lost
5. Received byte
6. 10-run AVG drop rate
7. 10-run delay
8. 10-run AVG bandwidth use

We further scrutinized these eight attributes using CHI and CHF filtering method [44,45].
The CHI filtering technique was employed to choose significant features and the CFS filter-
ing technique was used to confirm the result. It indicated that the following features are
the most significant:

1. 10-run AVG drop rate
2. 10-run delay
3. 10-run AVG bandwidth use

These three attributes were used for training ML models in all the SSML approaches.

4.3. Evaluation Metrices

We chose four commonly referred metrics to assess the performance. Those are:
accuracy score, precision score, F1 score, and recall score. Since these metrics function
differently for binary and multi-class dataset, we measured them appropriately. In case
of multi-class classification, the learning algorithm is wrapped in a one-vs-rest fashion to
produce binary comparisons for each class. Accuracy is the ratio of correctly predicted
labels to the total labels. It is expressed in percentage. Precision, for the binary labeled
dataset, is the ratio of correctly predicted positive labels to the total predicted positive
labels. Recall, for the binary labeled dataset, is the ratio of correctly predicted positive



Computers 2021, 10, 95 14 of 21

labels to the total observations in actual positive label. F1 Score returns the weighted
average of precision and recall. In case of multi-class dataset, precision, recall and F1 score
are computed differently. We calculated the metric for each label and then computed their
unweighted mean (macro average) [46]. The value of recall, precision and F1 score range
from 0 to 1—the bigger the better.

4.4. Results and Analyses

In this subsection, the experimented outcomes are discussed. In Tables 5–7, classifica-
tion results are shown for all three test cases mentioned in the experimental setup. Table 5
shows the result of two class classification of the OBS network dataset. Four evaluation
metrics are listed for all the four SSML methods described in Section 3. The number of
truly labeled instances used in this part of the experiment was five. That is, every model
was given five labeled samples and the remaining instances were unlabeled. From Table 5,
the following observations can be shown. In terms of evaluation metrics, K-means and
GMM-based SSML approach performed best among the four listed SSML approaches. Both
performed identical for the dataset. The other two approaches, ST and MST, were very
close to the other two approaches in terms of evaluation metrics. The main reason for the
success of K-means and GMM-based SSML is that the OBS dataset for two class exhibits an
easily separable spherical-like shape when plotted as illustrated in Figure 6.

Table 5. Evaluation metrics for two class classification.

SSML Method Accuracy F1 Precision Recall

K-means- based 99 0.992 1.000 0.99

GMM-based 99 0.992 1.000 0.99

ST 98.013 0.973 1.000 0.947

MST 98.675 0.982 1.000 0.965

Table 6. Evaluation metrics for three class classification.

SSML Method Accuracy F1 Precision Recall

K-means-based 87.32 0.879 0.890 0.891

GMM-based 64.98 0.631 0.619 0.819

ST 90.038 0.779 0.923 0.728

MST 89.089 0.784 0.818 0.762

Table 7. Evaluation metrics for four class classification.

SSML Method Accuracy F1 Precision Recall

K-means-based 55.69 0.576 0.569 0.701

GMM-based 54.86 0.573 0.575 0.696

ST 89.229 0.889 0.879 0.903

MST 89.229 0.893 0.884 0.905

In Figure 7, the training time for the four methods is illustrated. Here, K-means has
the fastest training time and GMM has a slightly larger time than K-means. The other two
methods, ST and MST, showed significant difference in training time than the former two.
ST was the slowest among the four methods as per our experiment. It is to be mentioned
that GMM was run for four different covariance types. It was found that each of four
covariance types show a slightly different performance for a different number of classes.
Here, we only reported the one with the best result.



Computers 2021, 10, 95 15 of 21

Figure 6. Plot of three attributes against other three.

Figure 7. Training time for binary classification.

In Table 6, the result of three class classification of OBS network dataset is shown. Four
evaluation metrics are listed for all the SSML methods described in Section 3. The number
of truly labeled instances used in this part of the experiment was 21. That is, every model
was given 21 labeled samples and the remaining instances were unlabeled. From Table 6,
the following observations can be achieved. In terms of evaluation metrics, ST, MST, and
K-means-based SSML performed very well among the four listed SSML approaches. They
showed a very similar performance for the dataset. In terms of accuracy and precision,
ST was better than the rest. In terms of F1 and recall score, K-means-based SSML was
better than the rest. MST was better than ST in terms of F1 and recall score. From the
table, it can be concluded that, in terms of performance, K-means-based SSML was overall
better than MST and overall similar to ST. At the same time, ST was overall similar in
performance to MST. Lastly, the remaining method, GMM-based SSML, performed very



Computers 2021, 10, 95 16 of 21

poor in terms of accuracy, precision, and F1 score. The problem that occurred here with
GMM is that it might have converged quickly to a local minimum that is not very optimal
for the three-class OBS network dataset. Using better initialization technique for GMM
may help perform better.

In Figure 8, training time by the three-class dataset for the four methods is illustrated.
Here, K-means has the fastest training time and GMM has slightly larger time than K-
means. The other two methods, ST and MST, showed significant difference in training time
than the former two. ST was the slowest among the four methods as per our experiment.

Figure 8. Training time for three class classification.

Table 7 shows the result of four class classification of the OBS network dataset. Four
evaluation metrics are listed for all the four SSML methods described in Section 3. The
number of truly labeled instances used in this part of the experiment was 193. That is, every
model was given 193 labeled samples and the remaining instances were unlabeled. This is
to be mentioned because, for each of the cases mentioned in Section 4.1, we started with a
smaller number of labeled data and gradually increased the number until a high accuracy
result was achieved. For the case of three-class classification, K-means and GMM based
SSML methods failed to produce high accuracy even with a large number of labelled data.
That means, increasing the labelled data size does not help here. For ST and MST, increasing
the labelled data helped achieve better performance. So, we increased the labelled data
size until the accuracy exceeded the related work’s accuracy. This resulted in the amount
of labelled data being 193. Hence, from Table 7, the following observations can be drawn.
In terms of evaluation metrics, K- means and the GMM-based SSML approach performed
the worst among the four listed SSML approaches. Both of these two performed almost
identical for the dataset. The reason behind the poor performance of K-means-based SSML
is that the 4 class OBS dataset has a very complex geometric shape as illustrated in Figure 9.

Besides, K-means, when attempting to minimize the intra-cluster variation, gives
more weight to larger clusters than smaller ones. This situation can be improved using
a method called the ‘kernel method’, which tries to transform the current data points to
a higher dimensional representation in order to make the data linearly separable. The
reasons mentioned here are more or less responsible for the poor performance of GMM-
based SSML. However, GMM might have converged quickly to a local minimum here as
well, which is not optimal for the data points. Using a better initialization technique for
GMM may help improve the situation. Apart from this, the other two approaches, ST and
MST, were far better in terms of evaluation metrics. Both ST and MST showed very good
performance, though there is a difference of performance. In terms of accuracy, both were
identical but in terms of other three evaluation metrics, MST performed better than ST,
which makes MST superior to ST in case of four class classification of the OBS dataset. In



Computers 2021, 10, 95 17 of 21

Figure 10, training time of the four-class dataset for the four methods is illustrated. Here, it
followed the same pattern as the previous two cases. K-means has the fastest training time
and GMM has slightly larger time than K-means. The other two methods, ST and MST,
showed a significant difference in training time than the former two. ST was the slowest
among the four methods as per our experiment.

Figure 9. Plot of three attributes against other three.

Figure 10. Training time for four class classification.

During the experiment, it was found that when the number of classes increased, more
labeled data was required to detect those classes accurately. For each of the cases, we
started with a smaller number of labeled data and gradually increased the number until
a high accuracy result was achieved. The reasons behind the three different figures of
labelled data in detecting three different number of classes are two-fold: firstly, to make
a valid comparison among the four SSML methods and secondly, to produce the same



Computers 2021, 10, 95 18 of 21

accuracy as some related work in order to show a comparative comparison. For example,
in case of two-class classification, less than five labelled data produce erroneous result in
some SSML methods. Using five data, all the methods showed good results.

In Table 8, two related works [13,14] are listed, which are supervised learning-based
classification of the same OBS network dataset used in this paper for detecting BHP flooding
attack. These two works are referred here for a comparison with this study because they
share the same goal, that is, detecting BHP flooding attack from OBS network dataset
using machine learning. Though these works are not based on an SSML approach, they are
selected for comparison because there is no SSML based work in the available literature on
this dataset as per our study.

Table 8. Related works that used the same OBS dataset.

Works ML Method

Detection Accuracy (in Percentage) and
the Amount of Truly Labeled Instances Used

In Detecting Two Classes
(B, NB)

In Detecting Three
Classes

(B, NB, PNB)

In Detecting Four
Classes

(Block, No-Block,
NB-Wait,

NB-No-Block)

Rajab et al. [16] Decision tree rule learning
93% accurate

using 1075 truly labeled
instances

NA
87% accurate

using 1075 truly
labeled instances

Hasan et al. [17] Deep neural networks NA NA
99% accurate

using 1060 truly
labeled instances

Based on
Kamrul et al. [6] K-means based SSML

99% accurate
using 5 truly labeled

instances

87.32% accurate
using 21 truly labeled

instances

55.69% accurate
using 193 truly labeled

instances

Based on
Kamrul et al. [7] GMM-based SSML

99% accurate
using 5 truly labeled

instances

64.98% accurate
using 21 truly labeled

instances

54.86% accurate
using 193 truly labeled

instances

Based on
Kamrul et al. [8] Self-training

98.01% accurate
using 5 truly labeled

instances

90.04% accurate
using 21 truly labeled

instances

89.23% accurate
using 193 truly labeled

instances

Based on
Kamrul et al. [8] Modified self-training

98.68% accurate
using 5 truly labeled

instances

89.09% accurate
using 21 truly labeled

instances

89.23% accurate
using 193 truly labeled

instances

In the table, the amount of truly labeled data used by the authors [16,17] and the
obtained accuracy is shown. When comparing this with the result shown in this study
(Tables 5–7), it reveals that the SSML approaches give superior performance than the SL
based methods while leveraging comparatively much smaller amount of truly labeled
samples.

5. Conclusions

SSML has an additional advantage over the SL approach. Here, we particularly
explored the dataset classification strategy, as it is one of the efficient methods to counter
a BHP flooding attack. Collecting an unlabeled dataset from an OBS network is not very
difficult. Then, only a few labeled samples are needed for SSML methods to produce a
good classification with reasonable accuracy. In this study, four existing SSML approaches
were examined. We found that, in the case of two class classification of the OBS network
dataset, K-means and GMM-based SSML approach exhibited the best performance among
the four SSML approaches in terms of four evaluation metrics. Here, only five truly labeled
samples were used. In the case of three class classification of the OBS network dataset,



Computers 2021, 10, 95 19 of 21

K-means based SSML and ST method performed better than the rest of the methods. Here,
only 21 truly labeled samples were used. Lastly, in the case of four class classification
of the OBS network dataset, MST method showed superior performance than the rest
of the methods in terms of overall evaluation metrics. Here, 193 truly labeled samples
were used. The OBS dataset chosen here for examining BHP flooding is very imbalanced
when four class classification is concerned. So, to obtain a good performance one may
try the over- or under-sampling technique. Another observation is that misclassifying a
new observation as false positive or false negative has a different cost. Therefore, one may
consider cost sensitive ML techniques [47] to get a realistic accuracy. The clustering-based
SSML methods that have been referred and demonstrated, work well on datasets that have
normal distribution for each of the possible class-label. In addition, data for each group
of labels should be well separated from other groups. Besides, they should be spherical
or circular in shape when plotted in a graph. Otherwise, K-means based SSML method
may produce poor result. It was found that the GMM based SSML method converged
quickly to a local minimum, which was not optimal for the case of 3 class OBS network
dataset. Using a better initialization technique for GMM may help it perform better. In the
case of modified self-training method, the values for the three thresholds were determined
empirically in this study. Although the authors of MST suggested some rules to find those
values, the procedure needs more research so that they can be found more quickly and
optimally. Besides, optimal selection of classifiers for decision fusion from a set of candidate
classifiers needs further attention from the researchers.

Author Contributions: Conceptualization, M.K.H., M.M.H. and M.A.A.D.; methodology, M.K.H.
and M.M.H.; software, M.K.H.; validation, M.K.H., M.M.H. and M.A.A.D.; formal analysis, M.K.H.;
investigation, M.K.H.; resources, M.K.H. and M.M.H.; data curation, M.K.H.; writing—original draft
preparation, M.K.H.; writing—review and editing, M.M.H. and M.A.A.D.; visualization, M.K.H.;
supervision, M.M.H. and M.A.A.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here: https://
archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+
Burst+Switching+%28OBS%29+Network (accessed on 2 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Sanctis, M.; Bisio, I.; Araniti, G. Data mining algorithms for communication networks control: Concepts, survey and guidelines.

IEEE Netw. 2016, 30, 24–29. [CrossRef]
2. Ridwan, M.A.; Radzi, N.A.M.; Abdullah, F.; Jalil, Y.E. Applications of Machine Learning in Networking: A Survey of Current

Issues and Future Challenges. IEEE Access 2021, 9, 52523–52556. [CrossRef]
3. Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on

machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 1–99. [CrossRef]
4. Al-Shargabi, M. The impacts of burst assembly parameters on optical burst switching network performance. Int. J. Emerg. Trends

Eng. Res. 2020, 8, 4916–4919. [CrossRef]
5. Rajab, A.; Huang, C.T.; Alshargabi, M.; Cobb, J. Countering burst header packet flooding attack in optical burst switching

network. In Proceedings of the International Conference on Information Security Practice and Experience, Zhangjiajie, China,
16–18 November 2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 315–329.

6. Hossain, M.K.; Haque, M.M. A Semi-Supervised Machine Learning Approach Using K-Means Algorithm to Prevent Burst Header
Packet Flooding Attack in Optical Burst Switching Network. Baghdad Sci. J. 2019, 16, 804.

7. Hossain, M.K.; Haque, M.M. A semi-supervised approach to detect malicious nodes in OBS network dataset using gaussian
mixture model. In Lecture Notes in Networks and Systems; Springer: Singapore, 2020; Volume 89.

https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network
https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network
https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network
http://doi.org/10.1109/MNET.2016.7389827
http://doi.org/10.1109/ACCESS.2021.3069210
http://doi.org/10.1186/s13174-018-0087-2
http://doi.org/10.30534/ijeter/2020/04892020


Computers 2021, 10, 95 20 of 21

8. Hossain, M.K.; Haque, M.M. Semi-supervised learning approach using modified self-training algorithm to counter burst header
packet flooding attack in optical burst switching network. Int. J. Electr. Comput. Eng. 2020, 10, 4340–4351. [CrossRef]

9. Jayaraj, A.; Venkatesh, T.; Murthy, C.S.R. Loss Classification in Optical Burst Switching Networks using Machine Learning
Techniques: Improving the Performance of TCP. IEEE J. Sel. Areas Commun. 2008, 26, 45–54. [CrossRef]

10. Levesque, M.; Elbiaze, H. Graphical Probabilistic Routing Model for OBS Networks with Realistic Traffic Scenario. In Proceedings
of the IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009.

11. Skorin-Kapov, N.; Chen, J.; Wosinska, L. A new approach to optical networks security: Attack-aware routing and wavelength
assignment. IEEE/ACM Trans. Netw. 2010, 18, 750–760. [CrossRef]

12. McGregor, A.; Hall, M.; Lorier, P.; Brunskill, J. Flow Clustering Using Machine Learning Techniques; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 205–214.

13. Nguyen, T.T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv.
Tutor. 2008, 10, 56–76. [CrossRef]

14. Sliti, M.; Boudriga, N. BHP flooding vulnerability and countermeasure. Photonic Netw. Commun. 2015, 29, 198–213. [CrossRef]
15. Sliti, M.; Hamdi, M.; Boudriga, N. A novel optical firewall architecture for burst switched networks. In Proceedings of the 12th

International Conference on Transparent Optical Networks, Munich, Germany, 27 June–1 July 2010.
16. Rajab, A.; Huang, C.T.; Al-Shargabi, M. Decision tree rule learning approach to counter burst header packet flooding attack in

Optical Burst Switching network. Opt. Switch. Netw. 2018, 29, 15–26. [CrossRef]
17. Zahid Hasan, M.; Zubair Hasan, K.M.; Sattar, A. Burst header packet flood detection in optical burst switching network using

deep learning model. Procedia Comput. Sci. 2018, 143, 970–977. [CrossRef]
18. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Variational data generative model for intrusion detection. Knowl. Inf. Syst.

2019, 60, 569–590. [CrossRef]
19. Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-supervised learning with deep generative models. Adv. Neural Inf.

Process. Syst. 2014, 4, 3581–3589.
20. Li, Y.; Guan, C.; Li, H.; Chin, Z. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain

computer interface speller system. Pattern Recognit. Lett. 2008, 29, 1285–1294. [CrossRef]
21. Wang, B.; Spencer, B.; Ling, C.X.; Zhang, H. Semi-supervised self-training for sentence subjectivity classification. In Lecture

Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer:
Berlin/Heidelberg, Germany, 2008.

22. Tanha, J.; van Someren, M.; Afsarmanesh, H. Semi-supervised self-training for decision tree classifiers. Int. J. Mach. Learn. Cybern.
2017, 8, 355–370. [CrossRef]

23. Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
24. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
25. Marwala, T. Gaussian Mixture Models. In Handbook of Machine Learning; World Scientific: Singapore, 2018.
26. Xuan, G.; Zhang, W.; Chai, P. EM algorithms of Gaussian mixture model and Hidden Markov Model. In Proceedings of the IEEE

International Conference on Image Processing, Thessaloniki, Greece, 7–10 October 2001.
27. Murphy, K.P. Mixture models and the EM algorithm. Mach. Learn Probabilistic Perspect. 2012, 1, 337.
28. Riloff, E.; Wiebe, J.; Phillips, W. Exploiting subjectivity classification to improve information extraction. Proc. Natl. Conf. Artif.

Intell. 2005, 1, 1106–1111.
29. Zhu, X. Semi-Supervised Learning Literature Survey; University of Wisconsin-Madison: Madison, WI, USA, 2005.
30. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
31. Kozodoi, N.; Katsas, P.; Lessmann, S.; Moreira-Matias, L.; Papakonstantinou, K. Shallow Self-learning for Reject Inference in

Credit Scoring. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 11908. [CrossRef]
32. Blum, A.; Mitchell, T. Combining labeled and unlabeled data with co-training. In Proceedings of the Annual ACM Conference on

Computational Learning Theory, Madison, WI, USA, 24–26 July 1998.
33. Chan, T.F.; Golub, G.H.; LeVeque, R.J. Updating Formulae and a Pairwise Algorithm for Computing Sample Variances. In

COMPSTAT 1982 5th Symposium Held at Toulouse 1982; Caussinus, H., Ettinger, P., Tomassone, R., Eds.; Physica: Heidelberg,
Germany, 1982.

34. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54,
1937–1967. [CrossRef]

35. Yu, H.F.; Huang, F.L.; Lin, C.J. Dual coordinate descent methods for logistic regression and maximum entropy models. Mach.
Learn. 2011, 85, 41–75. [CrossRef]

36. Kullarni, V.Y.; Sinha, P.K. Random Forest Classifier: A Survey and Future Research Directions. Int. J. Adv. Comput. 2013, 36,
1144–1156.

37. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.

38. Wang, X.; Li, X.; Ma, R.; Li, Y.; Wang, W.; Huang, H.; Xu, C.; An, Y. Quadratic discriminant analysis model for assessing the risk of
cadmium pollution for paddy fields in a county in China. Environ. Pollut. 2018, 236, 366–372. [CrossRef]

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

http://doi.org/10.11591/ijece.v10i4.pp4340-4351
http://doi.org/10.1109/JSACOCN.2008.033508
http://doi.org/10.1109/TNET.2009.2031555
http://doi.org/10.1109/SURV.2008.080406
http://doi.org/10.1007/s11107-014-0484-9
http://doi.org/10.1016/j.osn.2018.03.001
http://doi.org/10.1016/j.procs.2018.10.337
http://doi.org/10.1007/s10115-018-1306-7
http://doi.org/10.1016/j.patrec.2008.01.030
http://doi.org/10.1007/s13042-015-0328-7
http://doi.org/10.1109/ACCESS.2020.2988796
http://doi.org/10.1016/j.patrec.2009.09.011
http://doi.org/10.1007/s10994-006-6226-1
http://doi.org/10.1007/978-3-030-46133-1_31
http://doi.org/10.1007/s10462-020-09896-5
http://doi.org/10.1007/s10994-010-5221-8
http://doi.org/10.1016/j.envpol.2018.01.088


Computers 2021, 10, 95 21 of 21

40. Anaconda for Python. Available online: https://www.anaconda.com/distribution/ (accessed on 17 November 2019).
41. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
42. OBS Network Dataset. Available online: https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29

+flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network (accessed on 9 January 2019).
43. NCTUns Network Simulator and Emulator. Available online: http://www.estinet.com/ns/?page_id=21140 (accessed on

2 August 2021).
44. Pourhashemi, S.M. E-mail spam filtering by a new hybrid feature selection method using Chi2 as filter and random tree as

wrapper. Eng. J. 2014, 18, 123–134. [CrossRef]
45. Mohammad, R.M.; Thabtah, F.; McCluskey, L. An improved self-structuring neural network. In Trends and Applications in

Knowledge Discovery and Data Mining PAKDD 2016; Lecture Notes in Computer Science; Cao, H., Li, J., Wang, R., Eds.; Springer:
Cham, Switzerland, 2016; Volume 9794.

46. Ballabio, D.; Grisoni, F.; Todeschini, R. Multivariate comparison of classification performance measures. Chemom. Intell. Lab. Syst.
2018, 174, 33–44. [CrossRef]

47. Natarajan, N.; Dhillon, I.S.; Ravikumar, P.; Tewari, A. Cost-sensitive learning with noisy labels. J. Mach. Learn. Res. 2018, 18,
5666–5698.

https://www.anaconda.com/distribution/
https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network
https://archive.ics.uci.edu/ml/datasets/Burst+Header+Packet+%28BHP%29+flooding+attack+on+Optical+Burst+Switching+%28OBS%29+Network
http://www.estinet.com/ns/?page_id=21140
http://doi.org/10.4186/ej.2014.18.3.123
http://doi.org/10.1016/j.chemolab.2017.12.004

	Introduction 
	Literature Review 
	Materials and Methods 
	Study 1: SSML with K-Means Clustering 
	Study 2: SSML with Gaussian Mixture Model (GMM) Clustering 
	Study 3: SSML with Self-Training 
	Study 4: SSML with Modified Self-Training 

	Experiment and Analyses 
	Experimental and Environmental Setup 
	Dataset Preparation 
	Evaluation Metrices 
	Results and Analyses 

	Conclusions 
	References

