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Abstract: In this paper, we target the tasks of fine-grained image–text alignment and cross-modal
retrieval in the cultural heritage domain as follows: (1) given an image fragment of an artwork, we
retrieve the noun phrases that describe it; (2) given a noun phrase artifact attribute, we retrieve the
corresponding image fragment it specifies. To this end, we propose a weakly supervised alignment
model where the correspondence between the input training visual and textual fragments is not
known but their corresponding units that refer to the same artwork are treated as a positive pair. The
model exploits the latent alignment between fragments across modalities using attention mechanisms
by first projecting them into a shared common semantic space; the model is then trained by increasing
the image–text similarity of the positive pair in the common space. During this process, we encode
the inputs of our model with hierarchical encodings and remove irrelevant fragments with different
indicator functions. We also study techniques to augment the limited training data with synthetic
relevant textual fragments and transformed image fragments. The model is later fine-tuned by
a limited set of small-scale image–text fragment pairs. We rank the test image fragments and
noun phrases by their intermodal similarity in the learned common space. Extensive experiments
demonstrate that our proposed models outperform two state-of-the-art methods adapted to fine-
grained cross-modal retrieval of cultural items for two benchmark datasets.

Keywords: attention mechanism; hierarchical representation; indicator function

1. Introduction

With the rapid progress of digitization, millions of cultural items have been featured
on websites such as Europeana (https://www.europeana.eu/en Accessed 20 July 2020)
and the online source of the Metropolitan Museum of Art (https://www.metmuseum.org/
Accessed 20 July 2020). In this scenario, the cross-modal search of artwork plays an
important role in facilitating the interaction between online art users and cultural objects.
In this paper, we focus on the tasks of fine-grained image–text alignment and cross-modal
retrieval in the cultural heritage domain. Cross-modal retrieval takes one type of data
as the query to retrieve relevant data of another type. Hence, it comprises two tasks:
(1) image annotation: given an image fragment of an artwork, we retrieve the relative
noun phrases that describe it; (2) image search: given a noun phrase artifact attribute, we
retrieve the corresponding image region it specifies. An example is given in Figure 1 to
make our tasks more intuitive. Previous works on the cross-modal retrieval of artwork
items [1–5] focus on the coarse-grained full-image and text levels, while this work pushes
cross-modal retrieval further to the fine-grained fragment level to make it easier for online
art users to obtain detailed information on cultural objects. In addition to the benefits
for online art users, our research could also assist offline visitors in physical museums by
searching the related noun phrases for a picture of an artwork fragment and vice versa.
From a technical perspective, the task here also provides an easy way to quantitatively
evaluate region-wise alignment for visual and textual data. We can evaluate the alignment
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performance by performing a fragment-level cross-modal search instead of visualizing the
image–text fragment correspondence with attention maps for a small number of examples.
We alternately refer to the noun phrases mentioned in this paragraph as textual fragments
in the following sections.

Figure 1. Our system performs two cross-modal tasks: image annotation and image search.

Fine-grained cross-modal retrieval for cultural items presents three key domain-
specific difficulties that tend to be more challenging than in cases of cross-modal retrieval
of natural images [6,7]. First, there are large visual variations in shape, texture, and style
among artworks because they tend to have unique meanings. Second, the image fragments
in this domain are not as well annotated as the popular Visual Genome dataset [8] that has
been frequently used for similar tasks for natural images. Their textual attributes often
provide only partial information for an image fragment, leading to information asymmetry
between the two modalities. For example, the noun phrases that describe a human face
often do not provide full detailed information on the eyes, cheek, ears, etc. This makes it
difficult to identify the actual corresponding area between the visual and textual fragments.
Last, the text in this domain often involves content inferring historical background or the
meaning of an abstract item. This cannot be regarded as directly relevant to the visual
patterns in the image fragments.

In this work, we develop a weakly supervised model for the cross-modal retrieval task.
During training, we know the ground truth unit-level correspondence but the ground truth
fragment-level correspondence is unknown. In other words, we know which set of image
fragments and which set of text fragments refer to the same artwork, but within these sets
of image fragments and text fragments it is not known which image fragment corresponds
with exactly which text fragment. For the purpose of fine-tuning and evaluation, the ground
truth fragment-level correspondence between the textual and visual fragments is annotated
beforehand for a small set of artworks. We further refer to this small annotated set as the
golden set. During training, the input to our model are visual and textual fragment units
and the visual and textual fragment units that refer to the same artwork are treated as a
positive pair. Technically, the model first represents the visual and textual fragment units as
continuous vectors, and then projects them into a shared semantic common space during
training. In this shared semantic space, items from the two modalities hold representations
with the same dimension and are trained to have similar semantic meanings. We train
the model by making the similarity of the positive pair larger in the common space. Later,
the model is finetuned on the golden set. The outcome from training is the projection
parameters to project new data representations into this common space. In the test phase,
we project new fragment vectors to the common space using the learned parameters from
training, and then rank the image fragments and noun phrases by their intermodal similarity.
To alleviate the difficulties introduced above, we use the attention mechanisms presented
in [9] to indicate the importance of a fragment in one modality to the fragments in the
other modality when computing the global image–text similarity during training. With this
attention-based approach, fragments relevant to the shared semantic space obtain more
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attention; otherwise they gain less. To further boost the model performance, we propose a
simple yet effective indicator function in the text-to-image attention paradigm to remove
irrelevant image fragments that might disturb the training process. This indicator function is
based on the number of key points extracted from the image fragments using scale-invariant
feature transform (SIFT) features, as SIFT is capable of detecting high-contrast points in an
image. In addition, we compare and combine our proposed indicator function with the one
introduced in [10] to make the study more comprehensive. We also notice that the use of
only the fragment-level representation may result in the loss of the context information of a
fragment. Therefore, hierarchical encodings are built for the inputs of our model, including
encodings for both the visual and textual fragments and for the full images and text. These
hierarchical encodings provide an extra optimization to our model. Due to the limited
amount of training data, we additionally investigated which augmentation technique from
the visual and textual sides could help boost the retrieval performance. Visual augmentation
is realized by image fragment transformation, and textual augmentation is conducted based
on the synthetic relevance between textual fragments. It is worth noting that although this
work focuses on the cultural heritage domain, the proposed techniques are valuable for
processing other data such as fashion e-commerce items, food products, etc., where data
consist of pairs of images and text that describes item properties that are either shown in
the corresponding image or can be inferred from it. In addition, the fragment-oriented
cross-modal retrieval techniques in this work would provide more detailed visual/textual
data to users in fashion and food domains compared with full image–text retrieval.

Overall, the main contributions of this work are as follows:

1. Our approach focuses on the fine-grained cross-modal alignment and retrieval of
visual and textual fragments, while previous approaches on artwork item retrieval
focus on a coarse level of full images and text.

2. We propose a novel indicator function on top of the current text-to-image attention
function to remove irrelevant image features when computing image–text similarities.
This approach significantly improves the retrieval performance for image annotation.

3. We encode the inputs of our alignment model with hierarchical encodings to provide
both local information and global context to the model during training. This approach
enhances the retrieval ability in both the image search and annotation.

4. We investigate multiple visual and textual augmentation techniques and determine
the one that is most helpful for our task.

5. The proposed alignment and retrieval models are compared with three baseline
models. Two of them are state-of-art methods adapted to the fine-grained cross-modal
retrieval of cultural items. An extensive analysis of our proposed models and the
baseline models is given to guide future research.

2. Related Work

Several studies have contributed to coarse-grained image–text alignment and cross-
modal retrieval in the cultural heritage domain [1–5]. These works seek to learn the image–
text alignment of artworks by first projecting both the image and text into a common space
and then training the models with a semisupervised or supervised approach. In the semisu-
pervised approach, the image–text pairs from a particular source domain, e.g., MSCOCO [11]
and Flickr30K [12], are used to train the alignment models with a maximum mean discrep-
ancy (MMD) loss to compare image and text distributions [1–3]. Then, the image and
text similarity are compared in the target domain in the common space learned from the
source domain. In contrast, in the supervised approach, the image–text pairs in the target
domain are directly used to train the image–text alignment. The authors of [1] compared
two alignment models, one implemented with a supervised approach and the other with
a semisupervised approach and determined that the supervised approach was superior.
Ref. [4] compared a canonical correlation analysis (CCA) model with a deep learning-based
approach to induce a common space and demonstrated that the deep learning-based ap-
proach was more effective than the CCA model. No attention mechanisms were applied in
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the above works. The authors of [5] introduced a new visual-semantic dataset in the cultural
heritage domain named ArtPedia, where the sentences are provided with their context. They
also built a supervised model on top of the stacked crossed attention image–text matching
model (SCAN) proposed in [9] to find word-image correlations using two attention schemes.
Based on this pioneering research on image–text alignment for cultural heritage, we adopt
a deep learning-based approach to induce the shared common space, but in contrast to
previous works, focus on cross-modal retrieval at a fine-grained fragment level.

The authors of [13] built an alignment model using fragment embeddings and aimed
to find the latent alignment between the visual and textual fragments. However, they
encoded the fragment-level alignment with a multiple-instance learning approach with
many statistical constraints and they did not evaluate the retrieval performance on a
fragment level; in contrast, we implement attention schemes to model the fragment-level
alignment, and our model is graded on visual and textual fragments. The SIFT-based
approach, designed to remove irrelevant image fragments in this study, is mainly inspired
by the bidirectional focal attention network (BFAN)-based image–text matching model
introduced in [10], where the authors proposed removing unrelated visual and textual
fragments since these items would disturb the learning process. Their method is based on
intramodal similarity and removes the image fragments that are dissimilar to the highly
relevant image fragments for a given text. However, this approach could delete useful
image fragments when all image fragments of an artwork are relevant to the textual frag-
ments. We therefore propose a SIFT filter approach to remove obviously unrelated image
fragments with few high-contrast key points. The hierarchical representation approach
that encodes both local and context information of the image and text is derived from
the hierarchical question-image coattention model presented in [14], where hierarchical
encodings were shown to be helpful in visual question answering (VQA). Different from
the hierarchical encodings that are only applied to the textual questions in [14], we create
hierarchical representations for both the image and text and use a different approach to
produce the text hierarchy.

3. Datasets

The two datasets we use are adapted from the ancient Egyptian and Chinese art image
captioning datasets introduced in [15] and we call the adapted datasets Egyptian art alignment
dataset and Chinese art alignment dataset further in this paper. For the training and validation sets
in our alignment datasets, an image–text pair refers to the visual and textual data on the same
artwork. The visual data in this pair are a unit consisting of both the full image of an artwork
and the image fragments extracted from this full image. The textual data for an artwork are
a unit composed of textual fragments that are either noun phrases or tokens or noun tokens
extracted from the original captions in the captioning datasets. The correspondence between
the visual and textual fragments in an image–text pair is not known in the two sets. Therefore,
we have also built a golden set consisting of image–text fragment pairs for each alignment
dataset. The image–text fragment pairs in the golden sets are used to fine-tune and evaluate
the models trained on the image–text pairs in the training sets with a 4-fold cross-validation.
The textual fragments in a golden set are noun phrases and the image fragments in this set are
obtained by manually marking the regions with objects for part of the custom captioning test
images. These image fragments correspond to different numbers of manually created ground-
truth noun phrases but a noun phrase has only one specified image fragment. A noun phrase
refers to only one image fragment because the phrases in the golden set are specific, i.e., a
phrase tries to describe all the details of an image fragment and different phrases therefore
describe distinct image fragments. Another reason is that our golden set is not large, a noun
phrase has higher chance to have multiple corresponding image fragments in a larger dataset.

Table 1 provides statistical information about our training, validation and golden datasets.
Table 2 gives statistical information on the textual data regarding three variants in the training
sets. The average noun phrase frequency is around 2 for both alignment datasets, which is
extremely low. This proves the challenge of our task: learning shared semantics from such
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data with each noun phrase holding few training examples. The textual descriptions in the
Chinese art alignment dataset on average are longer than these in the Egyptian art alignment
dataset as we can see in Table 2.

Table 1. Statistics of the alignment datasets: Num.atks (number of artworks), Num.frags (number
of image fragments), Num.phrs (number of unique phrases extracted from the captions), Num.tks
(number of tokens extracted from the captions) and Num.nns (number of nouns extracted from the
captions). ‘-’ means calculation not applicable.

Split Num.atks Num.frags Num.phrs Num.tks Num.nns

Chinese art alignment dataset

Train 6086 6086 × 10 43,212 8592 4765
Val 761 761 × 10 7095 2855 1555

Golden 500 1134 2234 - -

Egyptian art alignment dataset

Train 14,352 14,352 × 10 60,805 13,420 7598
Val 1795 1795 × 10 11,105 5246 2890

Golden 536 1225 2724 - -

Table 2. Statistics of the textual fragments in the training set with respect to three variants: Aver.frq
(average frequency), Aver.snt.len (the average text length measured by number of tokens per text
in the training set), Std.snt.len (standard deviation of the text length), Frq ≥ 10 (percentage of the
occurrence more than or equals 10 times), and Frq ≥ 5 (ratio of the appearance more than or equals
5 times).

Variants Aver.frq Aver.snt.len Std.snt.len Frq≥ 10 Frq≥ 5

Chinese art alignment dataset

Phrases 1.9 13.2 13.7 1.6% 3.9%
Tokens 13.1 18.5 17.0 15.8% 26.2%
Nouns 11.2 8.7 7.0 14.6% 25.1%

Egyptian art alignment dataset

Phrases 2.1 8.7 15.1 2.2% 6.6%
Tokens 14.2 13.3 23.8 21.5% 33.8%
Nouns 12.1 6.4 9.8 19.5% 31.9%

4. Methodology

The training of our alignment model is split into two phases. In the first phase,
the model is trained on the image–text pairs in the training set introduced in Section 3,
and in the second phase, it is fine-tuned by the image–text fragment pairs in the golden set
that is not part of the test set. In this section, we first introduce all the details about the first
phase of our model, including how we extract image fragments from an artwork image
and the approach used to produce hierarchical representations for the artwork images,
the textual fragment extraction methods and the process used to develop hierarchical
encodings for the text, and the objectives to align the image–text pairs. We then present the
differences between the second and first training phases of the model. Finally, the baseline
alignment methods and the cross-modal fragment search method for all the models are
described. The model inputs in the first training phase are image–text pairs where both
the visual and textual data are represented at two levels. The global level representation
encodes the original full image for the visual data and the full textual fragment unit for the
textual data. The fragment-level encodings represent the visual and textual fragments as a
set of vectors with each vector encoding one fragment. Figure 2 gives an overview of our
model framework using noun phrases as the textual fragments in the training set. Symbols
used to denote important concepts are summarized in Table 3.
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Table 3. Symbol table in alphabetic order.

h1 Dimension of the visual input space

h Dimension of the common space

h2 Dimension of the textual input space

s f
j Vector representation of a textual fragment

S f A matrix of n textual fragment vector representations

sc
j Vector representation of a textual fragment in the common space

sc
i
′ Attended vector representation of a textual fragment

sc Vector representation of a textual fragment unit in the common space

Sc A matrix of n textual embeddings in the common space

v f
i Vector representation of an artwork image fragment

V f A matrix of m image fragment vector representations

vg Vector representation of a full artwork image

vc
i Vector representation of an artwork image fragment in the common space

vc
j
′ Attended vector representation of an artwork image fragment

vc Vector representation of a full artwork image in the common space

V c A matrix of m image embeddings in the common space

Wv A weight matrix that projects a visual input vector to the common space

Ws A weight matrix that projects a textual input vector to the common space

Figure 2. Overview of the model framework using noun phrases as the textual fragment training
data. The vectors in gray are representations that encode the image and text fragments, and those in
green are global representations that encode full images and text.

4.1. Image Region Extraction and Representation

We use Faster R-CNN [16] in conjunction with ResNet-101 [17] pretrained on Visual
Genome [8] to extract and represent the image fragments in an artwork image following
the approach introduced in [18]. Faster R-CNN is a two-stage object detection framework.
In the first stage, a grid of anchors tiled in space, scale, and aspect ratio are used to generate
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bounding boxes, or regions of interest (ROIs), with high objectness scores. The step size for
the bounding box generation is 16 pixels in this process. In the second stage, the representa-
tions of the ROIs are pooled from the intermediate convolution feature map for region-wise
classification and bounding box regression. The multitask loss considering both classifica-
tion and localization is minimized in both stages. To learn feature representations with rich
semantic meaning, the model in [18] predicts attribute classes and instance classes instead
of object classes. The instance classes contain objects and other salient information that is
difficult to localize, e.g., ‘sky’, ‘grass’, and attributes such as ‘furry’.

Given an artwork image I, its hierarchical representations are V f = {v f
1 , v f

2 , . . . , v f
u},

which encode its image fragments, and vg, which encodes the full original image. v f
i , vg ∈ Rh1

and u is the number of image fragments extracted from I. The fragment-level representa-
tions v f

1∼v f
u in the training and validation sets are produced by the Faster-RCNN approach

introduced above. However, the global-level visual representation vg is obtained by skip-
ping the first stage and feeding the full image into the second stage because it does not
need the bounding box generation portion of the Faster-RCNN approach. We project both
representations into a shared common space S of dimension h, i.e.,

vc
i = Wvv f

i + bv (1)

vc = Wvvg + bv (2)

with Wv ∈ Rh∗h1 the image projection to the common space.
We additionally explore whether performing visual fragment augmentation with color

jitter and Gaussian blur would be beneficial for this task through two approaches: the
addition of image fragments transformed from those extracted by Faster-RCNN to the
visual data, and the representation of an image fragment and its augmented counterparts
as a single representation with average pooling.

4.2. Textual Fragment Extraction and Representation

Given an artwork image caption, we extract the textual fragments in three formats:
(1) an ordered sequence of noun phrases; (2) an ordered sequence of tokens without stop
words; and (3) an ordered sequence of noun tokens. The NPFST scheme proposed in [19] is
adopted to extract noun phrases from the image captions. This approach first uses a part-of-
speech tagger to identify the token taggers, and then a finite state transducer is created to
extract multiword phrases according to a set of self-defined noun-phrase grammar rules.
The approach performs well without configuration on many different kinds of English text.
The token set is obtained with tokenization, and the noun tokens are collected with the
part-of-speech tagger. We use noun-phrase textual fragments as an example to illustrate our
approach further in this paper.

The resulting text for an image description is a sequence T consisting of noun phrases.
S f = {s f

1 , s f
2 , . . . , s f

r } is the fragment-level representation for T, s f
j ∈ Rh2 represents the

j-th phrase in T and r is the number of noun phrases in T. s f
1∼s f

r are obtained from the
second-to-last hidden layer of the BERT-base model [20] pretrained on Wikipedia data.
We project this representation into the common space S using a fully connected layer
as follows:

sc
j = ReLU(Wss f

j + bs) (3)

sc =
1
r

r

∑
j=1

sc
j (4)

with Ws ∈ Rh∗h2 indicating the phrase projection to the common space. The rectified linear
unit (ReLU) in Equation (3) performs the operation f (x) = max(0, x). The global-level
representation sc for T in the common space is produced by an average pooling of its
phrase representations, as shown in Equation (4).
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It is worth noting that the NPFST scheme extracts noun phrases with shared tokens
for most captions. For example, for the text Porcelain straight-sided bowl with underglaze
blue and overglaze enamels in ‘doucai’ style, NPFST produces the noun phrase set {straight-
sided bowl, straight-sided bowl with underglaze blue, bowl with underglaze blue, underglaze blue,
overglaze enamels, overglaze enamels in ‘doucai’, enamels in ‘doucai’}, in which different phrases
have overlapping tokens. This augments the textual fragment data and can be treated as a
similar measure to the image fragment data augmentation performed in the first approach.
Similar to the second data augmentation approach performed in the visual part, we also
investigate the effect of augmenting the textual data by representing the synthetic relevant
phrases introduced above as a single representation. This is realized in two steps: first,
we use an unsupervised string kernel method [21] to find a cluster of synthetic relevant
noun phrases for T; second, we represent the cluster as an average pooling of its element
encodings. We also explore approaches to represent a cluster with the vector encoding of
its longest noun phrase.

4.3. Alignment Objectives

With the approaches described in the above two sections, we obtain two levels of repre-
sentation for an image–text pair from the datasets: global representations vc and sc for the
image I and text T, respectively; and fragment-level representations V c = {vc

1, vc
2, . . . , vc

m}
for the image I and Sc = {sc

1, sc
2, . . . , sc

n} for the text T in the shared common space. m
and n denote the number of visual and textual fragments per artwork in the common
space, they have the same values with u and r for the approach without data augmentation.
To find the intermodal correspondences, a triplet loss function is created for a custom-level
representation as expressed in Equations (5) and (6). The final loss for the neural network
is the sum of the two individual losses.

lgb =
N

∑
i=1
{

loss f or a given image︷ ︸︸ ︷
(d(vc, ŝc)− d(vc, sc) + α)+ +

loss f or a given sentence︷ ︸︸ ︷
(d(sc, v̂c)− d(sc, vc) + α)+} (5)

l f g =
N

∑
i=1
{

loss f or a given image︷ ︸︸ ︷
(k(V c, Ŝc)− k(V c, Sc) + α)+ +

loss f or a given sentence︷ ︸︸ ︷
(k(Sc, V̂ c)− k(Sc, V c) + α)+} (6)

l = lgb + l f g (7)

The image–text similarity d(vc, sc) in the global-level loss function lgb is computed
simply by a cosine function, i.e., d(vc, sc) = < vc, sc > /|vc||sc|. In the fragment-level
loss function l f g, we adopt two attention schemes to indicate the cross-modal fragment
importance when calculating the image–text similarity k(Sc, V c): image-to-text attention
and text-to-image attention. A triplet loss function ensures that the similarity between
the image and text referring to the same artworks is larger than that referring to different
artworks by a margin α. However, instead of considering all the negative text for a given
image I, here lgb and l f g consider only the most difficult negative text encoded by Ŝc and
ŝc, respectively, in a mini-batch, where Ŝc = argmaxSc

p 6=Sc k(V c, Sc
p) in l f g. Likewise, given

a text T, we only consider the most difficult negative image in a mini-batch, which is
obtained by V̂ c = argmaxV c

q 6=V c k(Sc, V c
q ) in l f g. ŝc and v̂c in lgb are derived with the same

approach as Ŝc and V̂ c, respectively. N in Equations (5) and (6) denotes the number of
image–text pairs in the training set, and [x]+ computes max(x, 0).

4.3.1. Text-to-Image Attention

The text-to-image attention paradigm recomputes the fragment-level image representa-
tion for an image I as vc′

j by attending the importance of the j-th textual fragment in its text

into V c. Specifically, the attended image encoding vc′
j for an artwork image is a weighted

combination of the fragment vectors in V c as represented in Equation (8). The weight factor
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αij indicates the importance of the j-th textual fragment in a text to the i-th image fragment.
It is computed in three steps as follows.

vc′
j =

m

∑
i=1

αijvc
i (8)

pre_αij =
exp(λ1g(sc

j , vc
i ))

∑m
k=1 exp(λ1g(sc

j , vc
k))

(9)

g(sc
j , vc

i ) =
[d(sc

j , vc
i )]+√

∑n
j=1[d(s

c
j , vc

i )]
2
+

(10)

Step one We follow the SCAN model [9] to assign the weights by the approaches expressed
in Equations (9) and (10). Equation (9) introduces an adapted softmax function that com-
pares the relevance of text fragment sc

j to image fragment vc
i with its correlation to all image

fragments in the image. This equation is also called the partition function or energy func-
tion in some works. Here, λ1 is the inversed temperature of the softmax function, and the
correlation g(sc

j , vc
i ) between sc

j and vc
i is computed by the approach given in Equation (10),

in which d(sc
j , vc

i ) is their cosine similarity. It is beneficial to threshold the similarity function

score d(sc
j , vc

i ) to zero and normalize it with
√

∑n
j=1[d(s

c
j , vc

i )]
2
+, as described in [9].

Step two The weights computed in step one consider all image fragments in an image.
This is problematic because irrelevant image fragments carrying no information are also
incorporated into the computation; these image fragments can mislead the training process
and thus decrease the model’s learning performance. Figure 3 gives some examples of image
fragments unrelated to any noun phrases. These images either have a uniform color, are very
blurred or contain object fragments that are too fine-grained to be expressed. We propose a
novel indicator function to remove irrelevant image fragments from the SIFT-based weight
computation. Specifically, rather than use SIFT to represent an image fragment as is tradition,
we instead use SIFT to build our indicator function according to the number of key points
extracted from an image fragment. An image fragment is considered relevant when the
number of key points nb_p is greater than a threshold z. We define the indicator function
HS(vc

i ) for image fragment vc
i as in Equation (11). The weight factor pre_αij obtained from

step one is then reassigned by an elementwise product with the indicator function HS(vc
i )

as defined in Equation (12). With this equation, irrelevant regions will not contribute to the
representation computation, as their attention score is zero. We call this approach the SIFT
filter in the remainder of this paper.

HS(vc
i ) =

{
0 nb_pi < z

1 nb_pi ≥ z
(11)

pst_αij = pre_αijHS(vc
i ) (12)

Step three If application of the SIFT filter is sufficient to remove unrelated image fragments,
we simply renormalize the weight obtained from Equation (12) as the final weight for
vc

i , i.e., αij = pst_αij/ ∑m
k=1 pst_αkj. However, if the SIFT filter only removes obviously

defective image fragments, we also follow the BFAN model [10] to further clean the image
representation computation according to the intramodal similarities between the fragments
of an artwork. The intuition behind this idea is that irrelevant fragments always obtain lower
importance to the shared semantic meanings than other relevant fragments. The scoring
function that evaluates this fragment importance is:

F(vc
i ) = ∑

vc
a∈V f c

f (vc
i , vc

a)l(v
c
a) (13)
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where f (vc
i , vc

a) comprises a pairwise function that computes the importance of the target
image fragment vc

i relative to that of another image fragment vc
a for an artwork. l(vc

a) is
the confidence score for the image fragment being compared. The summation operation
compares vc

i with all other image fragments for an artwork. We define the pairwise function
as f (vc

i , vc
a) = pst_αij − pst_αaj and the confidence score as l(vc

a) = pst_αaj.

Figure 3. Four exemplary non-informative image fragments from the training set obtained by the
Faster-RCNN approach.

Consequently, a fragment evaluated by the scoring function to have high importance
is retained for the image representation computation and is otherwise discarded. This
yields another indicator function H I(vc

i ) shown in Equation (14). The final weight for vc
i is

then computed as given in Equation (15):

H I(vc
i ) =

{
0 F(vc

i ) < 0

1 F(vc
i ) ≥ 0

(14)

αij =
pst_αijH I(vc

i )

∑m
k=1 pst_αkj H I(vc

i )
(15)

With the attended image vector vc′
j for image I computed in Equation (8), we measure

its relevance to the j-th text fragment by their cosine similarity, denoted by d(vc′
j , sc

j ).
Then, the similarity between the image and text to which the textual fragment belongs is
calculated by the log-sum function expressed in Equation (16):

k(V c, Sc) = log(
n

∑
j=1

exp(λ2d(vc′
j , sc

j )))
1/λ2 (16)

where λ2 is a factor that magnifies the importance of the most relevant pairs of text phrases
sc

j and attended image vector vc′
j .

4.3.2. Image-to-Text Attention

The image-to-text attention paradigm recomputes the fragment-level textual represen-
tation of a text as sc′

i by attending the importance weight of the i-th image fragment in its
corresponding image into Sc. More precisely, sc′

i is a weighted sum of the textual fragment
vectors in the fragment representation unit Sc, i.e., sc′

i = ∑n
j=1 α′ijs

c
j , where α′ij represents the

importance of the i-th image fragment in an image to the j-th noun phrase. α′ij is obtained
in two steps, where the first is similar to step one in the text-to-image attention subsection.
The difference between the steps lies in the normalization approach given in Equation (10).
Here, the cosine similarity between an image fragment and a textual fragment is normal-
ized by all image fragments for an artwork. We skip the step to remove obviously defective
textual fragments because the noun phrase extraction approach introduced in Section 4.2
is a data cleaning process and helps remove irrelevant textual content. Quantitatively,
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this process filters out approximately 50% of the tokens in the original captions for the
Chinese alignment dataset. Similar to step three in the text-to-image attention paradigm, we
further remove the latent unrelated textual fragments based on intramodal similarity by
comparing the textual fragments for an artwork.

Given the attended text vector sc′
i for sequence T, we measure its correlation with the

i-th image fragment vc
i via their cosine similarity d(vc

i , sc′
i ). The similarity between sc′

i and
the image to which vc

i belongs is calculated with the following log-sum equation:

k(V c, Sc) = log(
m

∑
j=1

exp(λ2d(vc
i , sc′

i )))
1/λ2 (17)

4.4. Training Parameters and Model Fine-Tuning

The training parameters in our alignment model are Wv, bv, Ws, and bs, introduced
in Sections 4.1 and 4.2. Our model is based on the SCAN or BFAN model but adds global
representation and the corresponding objective. We also propose removal of irrelevant im-
age fragments in the text-to-image attention mechanism with the SIFT filter. Since we have
tried different combinations of additional approaches, we call our model SCAN_SF_GB
if we use both the global representation approach and the SIFT filter on top of SCAN.
Likewise, if we use only the global representation method without the SIFT filter, we call
our model SCAN_GB, and the model is named SCAN_SF if we use only the SIFT filter and
leave out the global representation method. Similar rules are applied to name our models
with additional approaches built upon the BFAN model.

We fine-tune and evaluate our alignment models with the image–text fragment pairs in
the small golden set with a 4-fold cross-validation. The difference between the fine-tuning
and the first training phase is that in the fine-tuning phase, both the visual and textual
fragments are manually annotated, while in the first training phase they are extracted with
Faster-RCNN and NPFST. The visual fragments in the fine-tuning phase are represented
with the approach expressed for the global visual representation in the first phase.

4.5. Baseline Alignment Approaches

We experiment with three baseline image–text alignment approaches adjusted from
three existing image–text matching models.

(1) The DeepFrag [13] model consists of a fragment alignment objective and a global
ranking objective. The fragment objective adopts a multiple-instance learning method
and encourages that the inner product of vc′

i and sc′
j is greater than 1 if they are

semantically correlated and below −1 otherwise. The global ranking objective is
similar to the loss function introduced in Section 4.3, but it sums over the loss between
the image/text and all its negative examples instead of only the most difficult negative
one. In addition, it considers the image–text similarity as a normalized sum of its
fragment similarities calculated by the inner product, and no attention is involved in
the objectives. Please refer to [6] for more details.

(2) The SCAN model [9] is different from our approach in two ways, as mentioned in
Section 4.3: (1) It utilizes a single-level representation for both the image and the text
in an image–text pair and therefore has one corresponding loss function. (2) For the
attention schemes introduced in Section 4.3.1, it employs only step one to calculate
text-to-image attention and does not filter out irrelevant image fragments.

(3) The BFAN model [10] does not have global-level representations or a SIFT filter to
remove irrelevant image fragments.

4.6. Cross-Modal Search

For both the baseline alignment models and our proposed models, we use the inferred
intermodal representations obtained from the alignment model for fragment-level image
annotation and search. In image annotation, given a query I f in the form of an image
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fragment, the models return the p noun phrases that obtain the highest relevance scores
with respect to the given image fragment I f in the learned common space. This is realized
by computing the similarities between I f and all P textual fragments and returning the
ones with the top p scores. In image search, we calculate the similarity between a textual
fragment Tf and all Q image fragments, and the q image fragments having the highest
similarity scores to the given noun phrase Tf are retrieved. There are b different ground-
truth noun phrases to an image fragment query, but only one relevant image fragment exists
for a given noun phrase query. The relevance between the fragments across modalities in
this section is computed with the inner product, as this approach was used to compute the
similarity in our first baseline model [13].

5. Experimental Set-Up

The experiments are implemented in Pytorch [22], a widely adopted deep-learning
framework. The dimension of the image feature vector h1 is 2048, and the word embedding
dimension h2 is 768. This is decided by the neural network structure we use to represent
the visual and textual data. The threshold value z of the SIFT filter is 2 in which case most
irrelevant image fragments are removed for a random sample set with 200 full images.
For the common space representation dimension, we experiment with h = 500, 800, 1000,
1200 and 2000 for model BFAN_SF, and h = 1000 works best. λ1 and λ2 in the text-to-
image and image-to-text attention paradigms are selected with a validation dataset: λ1 = 9
and λ2 = 6. The Adam optimizer [23] is adopted in the back-propagation process with a
learning rate of 0.0002, and no drop out is involved. In the Faster-RCNN model introduced
in Section 4.1, we retain the image fragments with the top 10 objectness scores for each
artwork image, i.e., u = 10. The models are trained on the global image–text pairs in
the training sets for 50 epochs and then fine-tuned with the image–text fragment pairs
in the golden sets for 20 epochs. The word embeddings are obtained using the bert-as-a-
service library (https://github.com/hanxiao/bert-as-service Accessed 4 May 2020), and the
image fragments are extracted and represented with Detectron2 (https://github.com/
facebookresearch/detectron2 Accessed 6 May 2020), released by Facebook AI Research.

Evaluation Recall@K, a mainstream evaluation metric in cross-modal retrieval
tasks [9,10,13], is used to grade the image search and annotation performance in this paper.

6. Results and Discussion
6.1. Quantitative Results

We use the two golden datasets introduced in Section 3 to evaluate all the models.
Since 4-fold cross-validation is applied to make the evaluation, the results showed in this
section are averaged ones from the four folds in each alignment dataset. We can see in
Table 4 that our proposed alignment and retrieval models outperform all baseline models
in both the image annotation and image search tasks. Overall, the models perform better on
the Chinese art alignment dataset than on the Egyptian art alignment dataset, which conforms
with the captioning models’ behavior when conducted on the two datasets [15] from which
our alignment datasets are adapted. This again confirms the conclusion that the annotation
data for the Chinese art images are better than those for the Egyptian art images. More
concretely, the annotations in the Chinese art alignment dataset are less noisy and contains
more detailed and accurate phrases for the artwork images.

https://github.com/hanxiao/bert-as-service
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
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Table 4. Evaluation results obtained from testing models with the two alignment datasets using
noun phrases as textual fragments in the training set. (ens) means that the model used both the
image-to-text and text-to-image attentions. r@k stands for recall@k.

Model Image Annotation Image Search
r@1 r@5 r@10 r@1 r@5 r@10

Chinese art alignment dataset

DeepFrag [13] 5.0 23.1 36.2 6.0 20.3 34.0
SCAN [9] (ens) 6.8 28.0 41.4 8.6 29.2 43.5
BFAN [10] (ens) 7.5 26.6 43.3 7.2 23.9 38.5

SCAN_SF (ens) 7.0 24.1 38.2 8.1 28.2 43.6
SCAN_GB (ens) 7.4 26.7 41.7 8.9 29.6 44.2

SCAN_SF_GB (ens) 8.3 28.4 45.1 8.1 26.7 41.4
BFAN_SF (ens) 9.1 31.0 47.8 7.6 27.8 43.0

BFAN_SF_GB (ens) 9.0 31.7 49.0 8.6 27.3 42.7

Egyptian art alignment dataset

DeepFrag [13] 5.2 16.6 29.0 3.6 13.2 22.0
SCAN [9] (ens) 5.0 18.2 30.5 6.1 21.2 33.7
BFAN [10] (ens) 5.4 20.5 33.7 5.4 19.2 30.7

SCAN_SF (ens) 5.2 18.2 30.5 6.3 21.5 32.9
SCAN_GB (ens) 5.2 17.9 30.2 6.4 21.8 33.7

SCAN_SF_GB (ens) 4.8 18.3 31.1 6.0 20.6 33.1
BFAN_SF (ens) 7.3 25.1 39.6 6.2 21.3 33.2

BFAN_SF_GB (ens) 5.4 20.6 34.6 5.2 19.3 30.9

6.1.1. Image Annotation

In this task, the BFAN_SF_GB (ens) model is superior to all other models for the
Chinese art alignment dataset for most evaluation metrics. It improves the best baseline model
BFAN (ens) significantly by 5.7% for recall@10 and by 1.6% for recall@1, which is also
promising. For the Egyptian art alignment dataset, the BFAN model with the additional SIFT
filter approach, i.e., the BFAN_SF (ens) model, works best. It surpasses the best baseline
model, BFAN (ens), by 5.9% for recall@10 and by 1.9% for recall@1. Since the results above
indicate an average performance achieved by the four folds in the golden test sets, we
conduct the F-test (ANOVA) [24] with a significance level of 0.05 to compare the models’
performance variance for the four folds. In this test, the null hypothesis is that the best
working model we propose has the same performance variance on the four folds with regard
to the best baseline model, i.e., model BFAN_SF_GB versus model BFAN for the Chinese
golden test set, and model BFAN_SF versus model BFAN for the Egyptian golden test set.
One model works significantly better than another if its average performance is higher and
when there is no obvious performance variance difference between them. Table 5 shows the
p-values obtained by the F-test experiments. We can see that none of the p-values are under
the significance level of 0.05. This means there is no reason to reject the null hypothesis
and we can conclude that for both datasets the best working model performs significantly
better than the best baseline model on image annotation. We have also further checked the
models’ performance variance listed in the table for the 4-fold cross-validation, and our
proposed models have smaller performance variance on most evaluation metrics. Therefore,
we argue that the best working models proposed in this paper are more robust than the
baseline models.

(1) Comparison of the use of different variants as textual fragment data. Table 6 shows
the results achieved by the BFAN_SF (ens) model when different textual formats are
used as training data. The performances obtained for the ‘tokens’ and ‘nouns’ variants
are very poor. We assume this is the result of the large syntactic gap between the
training and test data.
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(2) Efficiency of using attention. The results obtained by the model DeepFrag using no
attention are lower than all other models with attention to both datasets, as shown
in Table 4. This proves the power of the attention schemes in calculating fragment
importance. The improvements in recall@1 for the Chinese and Egyptian alignment
datasets are 4.1% and 2.1%, respectively.

(3) Effect of the SIFT filter. We check the effect of the SIFT filter by comparing the results
obtained by model SCAN_SF (t2i) and the baseline models conducted with the same
settings except for the SIFT filter in Table 7. These results show that the SCAN_SF (t2i)
model yields better performance on most evaluation metrics for the image annotation
task on both datasets. Compared with the best SCAN baseline model (t2i), the SIFT-
enhanced model gains 1.2% improvement for the Chinese art alignment dataset and
competitive results for the Egyptian art alignment dataset in terms of recall@1. This
improvement is more distinct for recall@10, with the largest achievement gain of 2.9%
for the Egyptian art alignment dataset. The baseline BFAN (t2i) model also removes
irrelevant image fragments in the text-to-image attention mechanism but in a different
way, i.e., based on intramodal similarity. It does not have improved performance
over SCAN (t2i) but does decrease the recall scores in all rank cut-offs. This implies
the difficulty in pursuing a performance increase by filtering out irrelevant image
fragments and verifies the excellence of our SIFT filter approach. However, when
we combine model SCAN_SF (t2i) and model SCAN (i2t) into the ensemble model
SCAN_SF (ens), the advantage of using the SIFT filter approach over the SCAN (ens)
approach disappears, as we can see from Table 4. This phenomenon suggests that
using a weighted sum for multiple loss functions as expressed in Equation (7) is not
optimal when using a fixed weight value for a certain loss. It is very rigid because the
weight is the same for all the batches/training samples. However, finding appropriate
custom weights for a certain loss with respect to different batches/training samples
is very challenging. The SIFT filter also helps when we combine it with the BFAN
model, as shown by a comparison of the results obtained by models BFAN_SF (ens)
and BFAN (ens) in Table 4.

(4) Effect of the global representation approach. We can compare the models with and
without GB in their model names in Table 4 to see the effect of utilizing global image
and text representations: model SCAN_GB (ens) versus model SCAN (ens), model
SCAN_SF_GB (ens) versus model SCAN_SF (ens), and model BFAN_SF_GB (ens)
versus model BFAN_SF (ens). The conclusion for this comparison is that the global
representation approach yields performance improvements either on recall@1 or on
all evaluation metrics for the Chinese art alignment dataset. However, this is not true for
the Egyptian art alignment dataset, probably because the annotation data for Egyptian
artwork images are not as good as those of the Chinese artwork images and therefore
adding context information using the global representation method could introduce
noise into the alignment.

(5) Effect of augmenting the data. Among all the data augmentation approaches we
attempted, the image annotation performance was improved only by adding synthetic
relevant textual data, i.e., using the textual data extracted from NPFST. This conclusion
is derived from the fact that the model using textual fragments obtained from NPFST
performs better than that using the longest phrase that represents a cluster of similar
phrases obtained with NPFST (see Table 8). Visual augmentation did not improve
performance, likely because the augmented fragments did not align with the text any
more and thus mislead the training of our model.
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Table 5. p-values obtained by the F-test regarding different model comparisons. From left to right in
a row, the p-values correspond to r@1, r@5 and r@10 respectively for a certain task.

Model Comparison Image Annotation Image Search

Chinese art dataset BFAN vs. BFAN_SF_GB SCAN vs. SCAN_GB
0.70 0.06 0.07 0.74 0.19 0.03

Egyptian art dataset BFAN vs. BFAN_SF SCAN vs. SCAN_GB
0.89 0.63 0.35 0.39 0.37 0.85

Table 6. Comparison of the model results obtained using different variants as textual fragment data
for the BFAN_SF (ens) model tested with the Chinese art alignment dataset.

Variants Image Annotation Image Search
r@1 r@5 r@10 r@1 r@5 r@10

Tokens 0.3 1.7 2.7 0.3 1.8 3.5
Nouns 0.5 2.4 3.5 0.4 1.7 3.4
Phrases 9.1 31.0 47.8 7.6 27.8 43.0

Table 7. Evaluation results for the *(t2i) models.

Model Image Annotation Image Search
r@1 r@5 r@10 r@1 r@5 r@10

Chinese art alignment dataset

SCAN [9] (t2i) 6.0 24.6 41.2 6.9 25.0 38.4
BFAN [10] (t2i) 4.6 17.6 28.4 4.5 17.0 27.4
SCAN_SF (t2i) 7.2 25.2 40.1 8.1 28.5 43.2

Egyptian art alignment dataset

SCAN [9] (t2i) 5.0 19.2 30.4 5.6 20.1 32.1
BFAN [10] (t2i) 3.1 13.4 20.8 3.0 11.3 18.9
SCAN_SF (t2i) 5.0 20.1 33.3 6.0 19.6 32.3

Table 8. Evaluation of the BFAN_SF (ens) model tested with the Chinese alignment dataset when using
the text data obtained from NPFST versus the longest phrase in a cluster of similar phrases obtained
with NPFST.

Text Data Image Annotation Image Search
r@1 r@5 r@10 r@1 r@5 r@10

Longest 8.6 27.5 44.1 7.6 24.7 38.7
NPFST 9.1 31.0 47.8 7.6 27.8 43.0

6.1.2. Image Search

For this task, our proposed model SCAN_GB outperforms all baseline approaches on
most evaluation metrics, but the performance boost is limited. The best performance gains
are 0.6% for the Chinese art alignment dataset for recall@10 and 0.6% for the Egyptian art
alignment dataset for recall@5 over the corresponding best baseline approach. The improve-
ment for recall@1 is 0.3% for both datasets in this task. This means that only approximately
7 and 8 more textual fragment queries yield correct image fragments for the Chinese art
alignment dataset and Egyptian art alignment dataset, respectively, when using our SCAN_GB
model than when using the best baseline SCAN model. We conduct the F-test for the
proposed best working model versus the best baseline, i.e., model SCAN_GB versus SCAN
for both datasets in this task. We take the same approach as in the image annotation task
and the resulting p-values are shown in Table 5. The p-value obtained for the Chinese art
golden set on recall@10 is marked in bold because it is under the significance level of 0.05.
The null hypothesis is rejected in this case and the performance variance difference for



Computers 2021, 10, 105 16 of 20

model SCAN_GB and SCAN is huge on the four folds in the golden set. Further obser-
vation is that the variance value for our model SCAN_GB is 0.7 while for model SCAN,
the value is 8.0. Therefore, the proposed best working model in this paper is more stable
than the baseline model although the improvement is not large. We can see from Table 7
that model SCAN_SF (t2i) surpasses SCAN (t2i) for the Chinese art alignment dataset by 3.5%
for recall @10, while its improvement for the Egyptian art alignment dataset is not obvious,
as shown in Table 7. Therefore, the SIFT filter approach is not robust for image search.
For the global representation approach, model SCAN_GB (ens) optimizes model SCAN
(ens), but model SCAN_SF_GB (ens) cannot compete with model SCAN (ens). Therefore, it
is the interplay between the SIFT filter approach and the global representation method in
model SCAN_SF_GB (ens) that causes the performance to decrease for the image search
task. An empirical assumption regarding the reason why our models were not noticably
helpful in the image search task is given in the last paragraph of Section 6.2.

Table 9 gives the evaluation results of the BFAN (i2t) model, which further removes
irrelevant texts in the image-to-text attention approach based on intramodal similarity.
This approach shows promising improvement in the image annotation task for the Chinese
art alignment dataset based on the 2.3% gains in recall@10, but it is not as useful in the
image search task for the same dataset. In addition, it does not show any advantage for
the Egytian art alignment dataset in either task. We therefore can conclude that the approach
utilizing the intramodal similarity to remove irrelevant text and image fragments is not
sufficiently robust to optimize the SCAN model with respect to our art data. However,
the combination of this approach and our SIFT filter significantly enhances the text retrieval
ability of our system for the two alignment datasets, as we can see from the results for
model BFAN_SF (ens) in Table 4.

Table 9. Evaluation of the *(i2t) models.

Model Image Annotation Image Search
r@1 r@5 r@10 r@1 r@5 r@10

Chinese Art Alignment Dataset

SCAN [9] (i2t) 6.9 23.4 37.2 8.5 26.2 40.6
BFAN [10] (i2t) 7.1 25.4 39.5 6.8 23.6 37.0

Egyptian art alignment dataset

SCAN [9] (i2t) 6.1 20.9 33.6 5.7 18.7 27.1
BFAN [10] (i2t) 5.1 18.8 31.2 4.5 17.1 27.2

Overall, the scores achieved by our proposed models are impressive given the difficulty
of the task. It is also worth noting that recall computed at the cutoff of K items regards a very
strict evaluation. Because this evaluation relies on incomplete artwork captions, it might
be that we retrieve a noun phrase for an image that is not present in the current incomplete
ground-truth reference collection but is actually relevant. The BLEU@N scores [25] compute
the n-gram overlaps between two compared texts. The BLEU@N scores obtained by the
BFAN_SF model are given in Table 10; the BLEU-1 and BLEU-2 scores are much higher than
the recall@1 scores in the image annotation task.

Table 10. BLEU scores obtained by model BFAN_SF (ens) in the image annotation task.

BLEU-1 BLEU-2 BLEU-3 BLEU-4

Chinese art alignment dataset

40.1 21.1 12.9 10.4

Egyptian art alignment dataset

37.1 18.9 11.1 8.0
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6.2. Qualitative Results

Image annotation. Figure 4 gives the top-1-ranked noun phrases returned by four dif-
ferent models for six images in the image annotation task. The first three images come from
the Chinese art alignment dataset, and the last three images are from the Egyptian art alignment
dataset. The text in red indicates the shared tokens between the phrases retrieved by the corre-
sponding model and the ground-truth noun phrase expressions. In the first image, the SCAN
model retrieves unrelated noun phrases, while the SCAN_SF and SCAN_SF_GB models
correctly retrieve the subject of the noun phrase illustrating the image, i.e., ‘two people’.
Although the text ‘in a pond besides a garden’ in this example is absent among the ground-
truth noun phrase expressions, it seems to correctly describe the image. The BFAN_SF model
successfully identifies the first image as a drawing of a landscape. The second picture in the
first row shows a similar case to the first image. The noun phrases obtained by our proposed
models in this example are actually nice. They might not be accurate enough to illustrate the
details of the image, but the content retrieved by models SCAN_SF and SCAN_SF_GB are
completely correct. The noun phrases accompanying the remaining four images indicate that
our SIFT filter approach helps to identify the noun phrases with an appropriate subject for an
image. Regarding the influence of the global representation approach, we can check its effects
by examining the first example in the second row and the last two examples. For the first
image in the second row, all four models retrieved the token ‘handle’ due to the similar shape
between a handle and the spout, but the SCAN_SF_GB model also provides a description of
the full picture to some extent, mentioning that the handle is that of a teapot. We can also
detect this effect of the global representation approach from the noun phrases retrieved for
the last image. The noun phrase retrieved by model SCAN_SF correctly identifies the subject
‘eye’ for the image query, unlike model SCAN. The SCAN_SF_GB model further improves
over SCAN and detects that the eye is carved on an amulet. Overall, these examples show
the qualitative improvements made by our proposed model. It should be noted that the
actual evaluation results for the image annotation might be higher than those reported in
Section 6.1.

Figure 4. Top-1 ranked noun phrases for six images returned by four different models.

Image search. Figure 5 shows four text queries and their top-5-ranked images found
by our proposed SCAN_GB model in the image search task. The first two images come
from the Egyptian art alignment dataset, and the remaining two images are from the Chinese
art alignment dataset. The rectangular box in red indicates the ground-truth image for a
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noun phrase expression. In the first example, we can see that the ground-truth image is
ranked first, while the remaining four images have similar colors as those of the ground-
truth image. For the second text query ‘hair of a woman’, none of the retrieved images
is among the ground-truth images, but they all have the hair of a woman no matter the
color of the hair. The fourth image for the third query ‘black inked inscriptions on a white
background’ is the ground-truth, but we argue that the top-3-ranked images are also correct
if we consider only the query. For the last query ‘head decorated with blue delineating
body parts’, our model does not manage to retrieve the appropriate image, but most of the
retrieved images correctly display the color asked by the query. Therefore, it is possible that
the evaluation results reported for the image search might be below the actual performance.

Figure 5. Top-5 ranked images for four noun phrases returned by model SCAN_GB.

We also manually checked 30 examples for which the performance of model SCAN_GB
surpasses that of model SCAN_SF_GB in the image search task. The goal is to determine
why the interplay of the SIFT filter and the global representation method decreases the
performance of model SCAN, as mentioned in Section 6.1.2. One clue we found is that the
images that are incorrectly ranked at the top of the answer list from model SCAN_SF_GB
have overlapping word tokens in their noun phrases with respect to the query text. There-
fore, compared with model SCAN, model SCAN_SF_GB is unable to distinguish images
with shared tokens. With the SIFT filter, the model discards irrelevant image fragments,
i.e., noise, and then the global representation approach provides the context of a noun
phrase. In such circumstances, it is more confusing for the model to identify the correct
image fragment related to a given text query. For example, finding the alignment between
the textual phrase ‘a large eye’ as a local noun phrase and its image fragment is much easier
than adding the phrase ‘an eye carved on an amulet’ because the extra text ‘on an amulet’
could induce more clean and partially relevant image fragments. This might also be the
reason why the performance improvement obtained by our model for the image search
task is not as obvious as in the image annotation task.

7. Conclusions

In this paper, we introduced a weakly supervised image–text alignment and retrieval
model in the cultural heritage domain. In this model, we adopted different indicator func-
tions to remove irrelevant image features when computing image–text similarity: an existing
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intramodal similarity-based indicator function and a novel SIFT-based indicator function.
We also performed experiments with the intramodal similarity-based indicator function to
remove unrelated text during image–text similarity calculation. Different from previous
cross-modal retrieval methods using a single global- or fragment-level representation, we
integrated hierarchical encodings representing local and context information for both image
and text into our models. Experiments demonstrated that the proposed alignment and
retrieval models outperform state-of-the-art models adapted to this image annotation task.
The image search results can be further improved, which will be the focus of our future work.
We can additionally expand our model to a joint multitask learning model [26] with image
captioning and explore the captioning of image fragments in the cultural heritage domain.
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