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Abstract: Embodiment of an avatar is important in many seated VR applications. We investigate
a Bayesian Causal Inference model of body ownership. According to the model, when available
sensory signals (e.g., tactile and visual signals) are attributed to a single object (e.g., a rubber hand),
the object is incorporated into the body. The model uses normal distributions with astronomically
large standard deviations as priors for the sensory input. We criticize the model for its choice of
parameter values and hold that a model trying to describe human cognition should employ parameter
values that are psychologically plausible, i.e., in line with human expectations. By systematically
varying the values of all relevant parameters we arrive at the conclusion that such quantitative
modifications of the model cannot overcome the model’s dependence on implausibly large standard
deviations. We posit that the model needs a qualitative revision through the inclusion of additional
sensory modalities.

Keywords: body ownership; bayesian modeling; bayesian causal inference; virtual reality

1. Introduction

In many virtual reality (VR) applications, the user is represented in the virtual envi-
ronment by an avatar. Body ownership over the avatar is often helpful, e.g., to increase
the perception of presence in the VR. We define body ownership as the experience of a
body as one’s own. A lack of body ownership would likely lead to a feeling of discomfort
and reduce the appeal of the overall user experience. For example, the user might not feel
comfortable in their “virtual skin”.

A well-founded understanding of the mechanisms underlying the occurrence of
body ownership can help VR application designers to create more appealing software
for their customers. To this end, developing accurate computational models of body
ownership is a promising approach, because they facilitate the prediction of changes in the
modeled outcome. If a certain parameter of the model proves especially predictive of body
ownership, a designer of embodied experiences might want to pay special attention to the
construct this parameter represents.

We assume that the most useful model of this kind would approximate the data-
generating process in the real world. In other words, we aim for a generative model of
how internal (e.g., neural activity) and external (e.g., sensory input) factors cause body
ownership percepts in humans. Our reasons for this assumption are two-fold: first, this aim
is very much in line with the general project of body ownership research. In computational
terms this research is an attempt to learn about the data-generating process. Second, a
generative model generalizes to a much larger number of situations than situation-specific
classifiers or similar data-driven approaches. Accordingly, a good approximation of the
generating process should avoid both under- and overfitting and can be helpful in a wide
variety of applications.
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One attempt at finding such a generative model which has been gaining traction
recently is the Bayesian Causal Inference of Body Ownership (BCIBO) model [1]. This
model assumes a seated user who can change the position of their arms, but not the
position of their torso. Therefore, it should be easily applicable to seated VR problems in
the real world.

This paper is an extended version of our proceedings article [2] presented at the
2nd Workshop on Seated Virtual Reality & Embodiment. In it, we are going to give a
brief overview of the BCIBO model and the experimental paradigm it is trying to explain
(Section 2). Our main contribution is an analysis of a flaw in the BCIBO model’s assump-
tions (Section 2.2). We report on our attempts of correcting that flaw (Section 3). Finally, we
discuss our findings (Section 4) and speculate on promising future research (Section 4.1).

2. Theory
2.1. The Rubber Hand Illusion

One of the most widespread paradigms to study body ownership is the rubber hand
illusion (RHI) [3] (for an illustration see Figure 1). In the classic version of the experiment
the participant is seated with one of their arms resting on a table in front of them. A rubber
hand is placed on the table in an anatomically plausible position. The real hand is hidden
from view and the shoulder covered by a blanket, out of which the rubber hand protrudes.
Therefore, at first sight it might look to the participant as if the hand in front of them is
their real hand.

Figure 1. Setup of the classic rubber hand illusion. The participant’s real hand is hidden inside a box
and a blanket is spread across their shoulder. From the blanket protrudes a rubber hand. Rubber
hand and real hand are stroked by the experimenter in synchrony with a brush. The image is from
Neustadter et al. [4] and was released under a Creative Commons Attribution Non-Commercial
License.

Rubber hand and real hand are stroked in synchrony by the experimenter with a brush.
This often results in referral of touch [5], i.e., feeling the touch of the brush on the rubber
hand instead of the real one. Most of the time, referral of touch is accompanied by a body
ownership illusion (BOI) towards the rubber hand [3,6]. BOI is measured by questionnaire
responses, physiological variables and involuntary protective actions towards the rubber
hand. In many RHI experiments, this so-called synchronous condition is accompanied
by an asynchronous control condition. In the latter, the series of brush strokes on the two
hands are out of synchrony. This leads to a lack of BOI [1,3].
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2.2. The BCIBO Model

Samad et al. [1] explain the RHI with the BCIBO model, a Bayesian causal inference
model applied to the RHI paradigm. Bayesian inference is a statistically optimal method
for updating current knowledge considering new observations. In the following we will
briefly outline how Bayesian inference works.

Constructs of interest are represented by random variables. In the case of the RHI, the
variable H (for hypothesis) indicates the occurrence of a BOI while D refers to sensory data.
The Bayesian framework represents the uncertainty inherent in our knowledge about the
world in the form of probability distributions over random variables. Perception is the act
of updating uncertain knowledge when sensory signals D (here: vision, touch) become
available. In statistical terms, this update is an inference. Inference is accomplished using
Bayes’ theorem:

p(H|D) =
p(D|H)p(H)

p(D)
(1)

where p(H), the prior distribution, represents our knowledge of the world before seeing
any of the data. The likelihood p(D|H) is the conditional probability of the data under
our different hypotheses. The marginal likelihood p(D) is the probability of our data,
irrespective of any of the hypotheses under consideration. By multiplying the prior with
the likelihood and normalizing it by the marginal likelihood, we arrive at p(H|D), the
posterior, which represents our knowledge about the world updated by the (sensory) data.

Bayesian causal inference applies Bayes’ theorem to the search for the causes of events
(such as sensory input) [7]. If two sensory inputs are assumed to have a common cause,
then an optimal inference will integrate both inputs into one percept. For example, let us
say that a person sees a dog opening and closing its mouth and at the same time they hear
a barking sound coming from the direction of the dog. If they assume a common cause for
both sensations, they will bind the auditorily perceived barking to the visually perceived
movement of the dog’s mouth, and perceive a barking dog.

The Bayesian causal inference framework codifies this search for common causes in
the form of a decision between competing models. In the context of the BCIBO model,
these competing models are: first, the common cause model (C1), which supposes a single
cause for the sensory percepts. Second, the separate causes model (C2), which supposes
a separate cause for each percept. A high degree of spatiotemporal congruency provides
evidence for C1. Spatiotemporal disparity provides evidence for C2 (pages 102–106 in
Hohwy [8]). In other words, the closer two percepts are in space and time, the more likely
they are assumed to stem from a common cause. Consequently, two spatiotemporally close
events are integrated into one percept with high probability.

The BCIBO model [1] explains the RHI as the participant’s inference of such a common
cause of multisensory input. The model abstracts the sensory input of the brain during
the RHI into two categories: spatial information which indicates the position of the rubber
and/or real hand. In addition, temporal information which indicates the time points at
which the brushes touch both (or one) of the hands. The latter models the synchronicity of
the brush stroking the hands. We will refer to these two categories of sensory information
as dimensions.

The spatial and temporal dimensions encompass two sources of sensory information,
respectively. The spatial information is provided by vision (χv) and proprioception (χp). A
glossary for the abbreviations and symbols used in this paper can be found on page 17. χv
can only provide information about the rubber hand (since the real hand is hidden from
view) and χp only about the real hand. Temporal information is provided by vision (τv),
i.e., seeing the brush strokes on the rubber hand, and tactile signals (τt), i.e., feeling the
brush strokes on the (hidden) real hand. Again, τv can only provide information about the
rubber hand and τt only about the real hand.

C1 postulates that the rubber hand causes all the sensory input. C2 postulates the true
state of affairs, namely that the rubber hand causes χv and τv and the real hand χp and
τt (compare Figure 2). If C2 is strongly favored, the participant feels as if the real hand
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belongs to them and the rubber hand is an external object. If the evidence strongly favors
C1 instead, the participant incorporates the rubber hand into their body model in place of
their real hand, leading to a BOI.

In the synchronous condition the congruency in the temporal dimension is very high,
because the experimenter applies the brush strokes as synchronously as possible. This
provides evidence for a common cause. At the same time, there is a considerable distance
between the real and rubber hand (see Figure 1), leading to a discrepancy in the spatial
dimension. This is evidence for separate causes. If the evidence in favor of C1 from the
temporal dimension overrides the evidence in favor of C2 in the spatial dimension, then
the participant experiences a BOI.

Figure 2. RHI as the decision between a common cause (C = 1, left) and two separate causes (C = 2,
right). If C = 1, all sensory input is caused by the rubber hand. If C = 2, visual input is caused by the
rubber hand and the proprioceptive and tactile inputs are caused by the real hand. Since a common
cause only assumes a single hand, there is no need to distinguish between the two hands. Hence,
under a common cause the rubber hand is simply referred to as “Hand”. X: position of hand, T: time
points of brush strokes, χv: spatial visual input, τv: temporal visual input, χp: proprioceptive input,
τt: tactile input. The image is from Samad et al. [1] and was released under a Creative Commons
Attribution License.

2.3. Related Works

Bayesian causal inference models have been successfully employed to explain a wide
variety of cognitive phenomena. For example, the paradigm has been used to model
multisensory integration in stimulus localization [7] and speech perception [9]. In these
studies, Bayesian causal inference models are usually employed as ideal observers [10], i.e.,
agents that make the best possible use of sensory information. This is also the assumption
of the BCIBO model. Modeling humans as near-optimal agents is justifiable in cases where
evolutionary adaptation has solved some important perceptual problem in a near-optimal
fashion [7]. Arguably, determining which objects belong to one’s body is such an important
problem.

The BCIBO model can account for a variety of well replicated observations in RHI
experiments. First, referral of touch (see Section 2.1) is explained by the integration of
τt into the rubber hand under the common cause model. The integration of χp into the
rubber hand captures an aspect of the RHI called proprioceptive drift. Proprioceptive drift
is defined as the difference between the estimated location of the hand before and during
the illusion. Participants typically must indicate the perceived position of their hand with
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their eyes closed, hence they must rely solely on proprioception for the task [5]. Commonly,
participants in the synchronous condition report a proprioceptive drift towards the rubber
hand [1,3,11]. It should be noted though that the drift typically does not “reach” the rubber
hand. This is indicated by an average reported proprioceptive estimate that is often 15–30%
of the distance between the real and the rubber hand [12].

In addition to referral of touch and proprioceptive drift, the BCIBO model can ac-
count for the synchronicity effect: the observation that synchronous stroking induces the
illusion while asynchronous stroking does not. This effect has been replicated numerous
times [1,13,14]. Since the BCIBO model postulates the congruency on the temporal di-
mension as the driving factor behind the RHI, it follows that the temporal discrepancy of
the asynchronous condition would not induce a BOI. In the synchronous condition the
model’s predictions for χp are close to the rubber hand, i.e., it predicts proprioceptive drift.
In the asynchronous condition they are close to the real hand, i.e., no multisensory inte-
gration occurs [1]. Furthermore, the model predicts a BOI probability close to one for the
synchronous condition, and a probability close to zero for the asynchronous condition [1].

To our knowledge, there is only one study beside this one that has approached the
BCIBO model from a computational perspective: Schürmann et al. [15]. Chancel et al. [16]
also implemented a Bayesian causal inference model for body ownership, but it differs
from Samad et al.’s [1] model in significant ways—the most prominent of which might
be that it only has a temporal and no spatial dimension. In contrast to our paper, which
focuses on the posterior distribution of the probability for a common cause, Schürmann
et al. [15] looked at the posterior predictive distribution of the sensory signals. A posterior
predictive distribution describes the predictions of future data given a model’s posterior.

Another difference between our study and Schürmann et al. [15] is that we focused
on the RHI, while they applied the BCIBO model to the rubber foot illusion [17,18]. As
the name suggests, rubber foot illusion experiments try to induce body ownership over
a rubber foot instead of a rubber hand. However, in both cases synchronous visuotactile
stimulation is usually the driving factor behind the illusion.

Schürmann et al. [15] adapted the BCIBO model [1] to the rubber foot illusion and
termed it the uniform model. They compared it with an empirically informed model. For
the latter they sampled the mean of χp’s sensory prior from a real-world data set [19],
while keeping the standard deviation constant and identical to Samad et al. [1]. Another
data set taken from Flögel et al. [18] provided the ground-truth proprioceptive drift. They
compared the posterior predictive distributions of the position of the rubber hand (i.e.,
X, see Figure 2) of the two competing models with the empirical distribution of Flögel
et al. [18]. The empirically informed model strongly outperformed the uniform model,
as indicated by Bayes factors. The uniform model (i.e., BCIBO model) in its current form
overestimated both the strength (i.e., the mean) and the precision of the proprioceptive
drift as reported in Flögel et al. [18].

2.4. Specification of the BCIBO Model

In this subsection we are going to describe the BCIBO in greater detail, to provide a
basis for our modifications of the model.

As explained in Section 2.2, if the probability of C1 is high, the model predicts the
occurrence of a BOI. The posterior probabilities of C1 and C2 can be calculated by applying
Bayes’ Theorem:

p(C|χv, χp, τv, τt) =
p(χv, χp, τv, τt|C)p(C)

p(χv, χp, τv, τt)
(2)

where C is a binary variable with C = C1 indicating a common cause and C = C2 indicating
separate causes.

The BCIBO model represents the hands’ perceived positions (χv and χp) in millimeters
on a horizontal line relative to the body midline. It is assumed that the body and the table
are roughly parallel to each other. The perceived timing of the brush stroke sequence
(τv and τt) is represented by the time of the first brush stroke (in milliseconds) after the
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beginning of the trial. Assuming that all the brush strokes are separated by the same time
interval (e.g., 1000 milliseconds), the time point of the first brush stroke provides enough
information to represent the entire time series of strokes. The closer τv to τt, the higher the
synchronicity of the brush strokes.

In the following we are going to list all the distributions that are part of the model and
establish some other important terminology. We will also interpret what these distributions
mean on a psychological level.

X and T denote the position of a hand and the time point of the first brush stroke,
respectively. The likelihoods for the spatial dimension are p(χv|X) and p(χp|X) and the
ones for the temporal dimension are p(τv|T) and p(τt|T). On a psychological level, these
likelihoods represent our predictions about the sensory input given our knowledge about
the state of the world. For example, p(χv|X) can be read as “given that my hand is at
position X I expect visual input in the shape of a hand at the position χv, with probability
p”. Put more plainly, if I think that my hand it at a certain position on the table in front of
me, then I expect to see a hand there.

Sometimes in this article it will be important to distinguish between the likelihoods
under C1 and the ones under C2. Recall that C1 presumes there to be only a single position
X (i.e., a single hand) and a single time point T (i.e., a single brush touching the hand). In ac-
cordance with this, we termed likelihoods under C1 p(χv|Xhand), p(χp|Xhand), p(τv|Thand)
and p(τt|Thand), where “hand” stands for the single hand that is assumed under C1 (see
Figure 2). C2 presumes two separate positions Xrub and Xreal and two separate time points
Trub and Treal, where “rub” refers to the rubber hand and “real” to the real hand. Accord-
ingly, the likelihoods under C2 are denoted as follows: p(χv|Xrub), p(χp|Xreal), p(τv|Trub)
and p(τt|Treal).

We call the prior distributions of X and T the sensory priors. In psychological terms,
they refer to the expected positions of one’s hand and the time points at which one expects
touch events on the hand to occur. We denote the spatial sensory prior under the common
cause model as p(Xhand|C1) and the temporal prior as p(Thand|C1). We denote the spatial
sensory priors under the separate causes model as p(Xreal|C2), p(Xrub|C2) and the temporal
sensory priors as p(Treal|C2), p(Trub|C2).

Finally, the prior of the two models is called p(C). p(C1) = p(C = C1) denotes the
prior probability of the common cause and p(C2) = p(C = C2) the prior probability of the
separate causes model. We will sometimes refer to this distribution as the model prior. The
psychological interpretation of p(C) is the tendency to assume that all hand-shaped objects
in spatial proximity belong to one’s own body (C1) or not (C2).

Samad et al. [1] used Gaussians for all the distributions listed above except the model
prior. This decision was probably made for both theoretical and practical reasons, since
Gaussians allow for comparatively easy algebraic manipulation. For the model prior, they
used a Bernoulli distribution with p = 0.5, meaning they assumed equal a priori probability
for both hypotheses. Samad et al. [1] strove to choose “realistic values” (page 6) for all
parameter values and—for the most part—succeeded in this endeavor.

All the σ values (i.e., standard deviations) for the likelihoods were based on empirical
results. σ of p(χp|X) was set to 15 mm [20,21] and the σs of p(τv|T) and p(τt|T) were set
to 20 ms [22] respectively. The standard deviation of p(χv|X) was based on the visual
precision of 0.36 degrees reported by van Beers et al. [21]. Samad et al.’s [1] own RHI setup
had a distance of ∼ 35− 45 cm between the participant’s eye and the rubber hand, which
in accordance with van Beers et al. [21] translates to a standard deviation of a couple of
millimeters. Samad et al. [1] settled on σ = 1 mm for p(χv|X) and pointed out that the
predictions of the model are affected very little by the exact value of this parameter.

The likelihoods inherit their µ value (i.e., mean) from their respective prior. These
µ values are derived from the characteristics of the experimental setup. p(Xrub|C), the
prior distribution of the rubber hand’s position, has a mean 160 mm away from the
body’s midline, which is a position commonly used in RHI experiments [1]. In a review of
methodological variability in the RHI, Riemer et al. [23] reported a typical distance of 15 cm,
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i.e., very close to the 16 cm of the BCIBO model. For p(Xreal|C), the mean is 320 mm, which
is equivalent to the placement of the real hand typically found in RHI experiments [1].
Finally, in the synchronous condition the time points of the first brush strokes are both set
to 0 ms, i.e., the brush stroking starts at the same moment as the experimental trial.

By setting the sensory priors’ mean values to the actual values of the experimental
setup we are using an informed prior [15]. This contrasts with Körding et al. [7] who first
proposed the Bayesian causal inference model. They used an uninformed prior, meaning
that they set the sensory priors’ mean values to 0. They did this to implement a “bias to
perceive stimuli straight ahead” (page 3 in Körding et al. [7]). In the context of the RHI this
would translate to a bias to perceive stimuli close to the midline.

Schürmann et al. [15] have argued that it is more appropriate to use an informed prior,
because humans constantly update their internal representations based on sensory input.
From this perspective, it is likely that by the time of the brush stroke onset the participants
have inferred the correct position of the hands. Since participants have no idea when the
brush strokes are going to set in, this updating can only occur on the spatial, but not the
temporal dimension. Hence, we use an informed prior for the spatial and an uninformed
prior for the temporal dimension.

Samad et al. [1] chose a “large number” (page 6) as the standard deviation σ for all
sensory priors to approximate a uniform distribution. The exact value is not mentioned in
the paper, but according to private correspondence it was 1035 mm|ms (“the parameters I
used for the spatial and temporal prior’s variances were extremely large (1e35 each)”, M.
Samad, personal communication, 5 March 2021). We use “ mm|ms” to indicate “millimeter
or milliseconds”.

2.5. Critique of the Model

We criticize Samad et al. [1] for their choice of the sensory priors’ width, because
we maintain that a model attempting to approximate the data-generating function of an
aspect of human cognition should use psychologically plausible values for its parameters.
1035 is an unimaginably large number for humans and therefore it is implausible that
such a number would be used in computations in the human mind, when body part
placement is concerned. To put the magnitude of this number into perspective: On the
spatial dimension of the model, 1035 mm is around 1000 times larger than the length of the
observable universe (Bars et al. [24], page 27), and on the temporal dimension 1035 ms is
several orders of magnitude larger than the age of the universe. On top of this, a standard
deviation covers only around 68% of a normal distribution, i.e., the values we could
reasonably expect with this prior are even larger.

Bayesian models have been criticized for being underconstrained. Jones and Love [25]
point out that without proper constraints Bayesian models can fairly easily be fitted to
empirical data. According to them often “the prior is chosen ad hoc, providing substantial
unconstrained flexibility to models that are advocated as rational and assumption-free” (Jones
and Love [25], page 174). Bowers and Davis [26] have also criticized Bayesian models for
their flexibility, pointing out the danger of them being mere ad hoc “just so” stories without
any explanatory potential.

We agree with the need for constraints to guide Bayesian modeling and pose the
psychological plausibility of the model’s parameter choices as one such constraint. We
do not suggest that this is the only relevant criterion. For example, experiments that
test hypotheses derived from the BCIBO model are crucial for its further development.
Nonetheless plausibility is a relevant factor, especially because the authors of the model
seemed to have adhered to it in the selection of all parameter choices except for the sensory
priors’ widths [1].

Given these overly wide priors, we think that the model is need of revision. The goal
of our revision is to reduce the widths of the sensory priors to a plausible, human-level
scale while maintaining the agreement with empirical results. Thus, in this study we are
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going to present our exploratory attempts to overcome the implausibility of the sensory
priors’ width in the BCIBO model.

We will keep the structure of the original model and change the values of the distribu-
tions’ parameters. The distributions of the model can be grouped into likelihoods, sensory
priors and the model prior. As we pointed out above (see page 6 in Section 2.2), Samad
et al. [1] put the parameter settings of the likelihoods on firm theoretical ground. Hence,
we see no justification for changing their parameter values.

Instead, we are going to discuss the effect of changing the parameter values of the
sensory priors (Section 3.1) and the model prior (Section 3.3) on the predictions of the model.
Next to these changes of parameter values, we are also going to consider a more drastic
change, namely exchanging distributions of the model while keeping the relationship
between these distributions (i.e., the structure) intact. Specifically, we will exchange
the sensory priors’ astronomically wide normal distributions with normal distributions
truncated to more sensible bounds. We are going to explore whether this change yields
empirically sound predictions in Section 3.2.

3. Results

All our results reported in this section were computed with the programming language
Python [27–29], version 3.9.6. We used an open-source language to make the model more
accessible to the scientific community. We released our code as open-source under the MIT
license on a repository hosted by the University of Marburg at https://doi.org/10.17192
/fdr/66.2 (tagged as version 3), accessed on 12 August 2021. Included in the repository are
also files for recreating the virtual environment in which the code was run. For increased
transparency, we included the randomizer seed we used for the generation of all the results
presented in this paper. Furthermore, we included csv files containing the exact results for
all simulation runs mentioned in this section. We indexed these files in the Supplementary
Materials Section as data S1, data S2, etc. and will refer to them below whenever their
contents are summarized.

3.1. Change in the Sensory Priors

Samad et al. [1] ran the model for the different levels of a distance factor d. Distance
refers here to the distance between the real and rubber hand. The levels of the factor were
di ∈ [160, 180, . . . , 340, 360] mm, i.e., the lowest was 160 mm and the distances increased by
20 mm until they reached a maximum of 360 mm.

Lloyd [30] found that an increased distance between the real and rubber hand leads
to a decrease in body ownership. Samad et al. [1] computed the posterior probability of
C1 for the distance factor (s. Figure 3, left) and found results similar to Lloyd [30]. An
increase in the distance factor level can be interpreted as placing the rubber hand further
and further away from the real hand across different experimental conditions, similar to
Lloyd’s [30] setup.

We attempted to replicate Samad et al.’s [1] simulation by running the model for
the same distances between the real and rubber hand. In addition to this distance fac-
tor, we also introduced a σ factor, whose levels encompass different widths for the
sensory priors. We included this second factor to test whether the model can predict
empirical results for σs smaller than 1035 mm|ms. The levels of the factor were σi ∈
[100, 105, . . . , 1030, 1035] mm|ms, i.e., we started with 100 (i.e., 1) mm|ms and increased the
exponent in steps of 5 until we reached Samad et al.’s original value of 1035 mm|ms.

For each combination of factor levels, we sampled N = 10,000 artificial datapoints
from the likelihood distributions χv ∼ N(320− di, 1) mm, χp ∼ N(320, 15) mm and both
τv, τt ∼ N(0, 20) ms. These means and standard deviations are derived from experimental
data as explained on page 6 in Section 2.2.

https://doi.org/10.17192/fdr/66.2
https://doi.org/10.17192/fdr/66.2
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Figure 3. (Left): posterior probability of C1 for different distances between real and rubber hand
as presented by Samad et al. [1]. The image was released under a Creative Commons Attribution
License. (Right): posterior probability of C1 for different distances between real and rubber hand
and across different magnitudes of σ value for the sensory priors.

As stated above, the distance factor simulated moving the rubber hand away from the
real hand. Therefore, the visual input across the different levels of the distance factor was
calculated by 320− di, i.e., by subtracting the distance from the position of the real hand.
Explicitly, the µ values of the χv distribution were µi ∈ [160, 140, . . . ,−20,−40] mm. In
terms of the experimental setup, this means that the rubber hand moved closer and closer
to the participant’s body’s midline and eventually crossed it, as indicated by µi taking on
negative values.

Under a common cause (C1), an observer would expect the visual signals of their own
hand to be a reliable source of information about the actual hand position. Hence, we
chose the mean of p(Xhand|C1) equal to the mean of the data-generating distribution of
χv. Under separate causes (C2), it is less clear which prior expectations one should have
about the visual signals emitted by the rubber hand. Here, we chose the mean p(Xrub|C2)
equal to the mean of the generating distribution of χv, too. For a more formal and concise
version of the model specifications outlined above see Appendix A.1.

We treated the samples as sensory input across N trials and calculated p(C1|D), i.e.,
p(C = 1|χv, χp, τv, τt) (see Equation (2)) for each trial. As a point estimate, we took the
mean of p(C1|D) across the entire sample. The results can be seen in Figure 3 (right) and
in data S1. The standard errors of the mean (SEMs) for every factor combination were all
below 0.002, thus we did not draw them in the graphs.

As can be seen in Figure 3 (right), our results for the σ value used by Samad et al. [1],
1035 mm|ms, closely resemble their results (compare Figure 3, left), indicating a successful
re-implementation of the BCIBO model.

Furthermore, Figure 3 (right) shows that the posterior probability of C1 for all distances
declines with smaller choices of the prior’s σ value. To be in line with empirical results [30],
a good model of body ownership should predict high chances of a BOI occurring for a
160 mm distance. However, for σ = 1010 mm|ms the chance of experiencing a BOI at
160 mm is below 0.05. To illustrate the magnitude this ’small’ prior, consider that 1010 mm
is equivalent to 10,000 km, longer than the Great Wall of China, i.e., still a very implausible
presupposition for the location of one’s hand in space relative to one’s body.

We ran the model for a σ value at a human scale, 104 mm|ms (see data S2, all
SEMs < 0.001). On the spatial dimension this translates to σ = 10 m and on the tem-
poral to σ = 10 s. The resulting values for p(C1|D) were tiny (<10−7), indicating virtually
no sense of body ownership.
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3.2. Truncated Model

At this point we would like to remind the reader that Samad et al. [1] used the same
σ value for all the sensory priors. Since we demonstrated in the previous subsection that
systematically narrowing such a “one size fits all” prior down to a psychologically plausible
scale yields unsatisfactory results, a new approach seems in order. One option for reducing
the widths of the sensory priors down to a psychologically plausible scale is to truncate
their normal distributions. A truncated normal distribution is a normal distribution that is
cut off at the two ends of an interval, such that the probability of a value outside of this
interval is zero.

Truncating the sensory priors therefore means that the model will deem any sensory
data-generating processes outside of this interval impossible. In psychological terms this
could be understood as higher levels of cognitive processing flat out rejecting any processed
sensory signals that that are incongruent with its model of the world.

We now turn to the question which intervals should be chosen for the sensory priors’
truncation bounds. We argue that the “one size fits all” approach should be abandoned.
Instead, we assert that the sensory priors should differ across sensory modalities. Below
we are going to suggest truncation bounds for the sensory priors in the BCIBO model. All
these bounds are on a human scale and well below 1035 mm|ms.

3.2.1. Truncation Bounds
Proprioceptive Input

Although it is admittedly difficult to define reasonable priors for some of the sensory
modalities represented in the BCIBO model (see below), there is one exception: χp, the
proprioceptive input. Under normal circumstances it is impossible for proprioceptive input
to indicate a position of the hand outside of arm’s reach. Hence, the truncation boundaries
for the prior on χp’s likelihood should correspond to the reach of one’s arm.

It should be noted that by truncating the proprioceptive prior this variation of the
model is not able to account for certain abnormal experiences of embodiment outside
of the bounds of proprioception. One example for this is Kilteni et al.’s [31] very long
arm illusion, in which the authors induced ownership over an elongated virtual arm in
participants. However, since these kinds of experiences usually only occur in artificial
situations or in atypical states of consciousness, we think this limitation is not relevant for
our intended application.

We assumed arm span to be roughly equivalent to height in many humans [32]. It
should be noted that this is a vast simplification for the sake of the model. In reality, this
relationship depends on characteristics such as sex and ethnicity [33]. We took the average
height of Germans as a proxy value. According to the Federal Statistical Office of Germany
the average height in the German population was ≈ 1.7 m in 2017 [34]. In accordance with
this number, we chose [−850 mm, 850 mm] as the truncation bounds for proprioception.

Under C1 χp and χv share the same prior, p(Xhand|C1), because this hypothesis as-
sumes that there is only a single location (i.e., a single hand). This means that the prior for
the visual input is also cut off at arm’s length, because expecting to see a hand outside of
arm’s reach is incompatible with a healthy internal body model. However, under C2 χp
and χv are independent of one another. Therefore, we used the same proprioceptive trun-
cation boundaries of [−850 mm, 850 mm] for p(Xreal|C2), but chose different boundaries
for p(Xrub|C2) (see below).

To summarize, let a be the distribution’s lower truncation bound and b the upper
truncation bound. We denote a truncated normal distribution as N(µ, σ, [a, b]). Then,
under the truncated model p(XH |C1) = N(160 mm, 1035 mm, [−850 mm, 850 mm]) and
p(Xreal|C2) = N(160 mm, 1035 mm, [−850 mm, 850 mm]).

Spatial Visual Input

Although the spatial visual prior under C1 is coupled with the proprioceptive prior,
these two are separated under C2. An attempt to find a reasonable σ value for p(χv|Xrub) is
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difficult. Perhaps most importantly, the environment in which the experiment is conducted
in must be taken into account. If objects (e.g., a room’s walls) block the participant’s view,
this sets a natural boundary for where the participant would be able to spot the rubber
hand. Hence one option would be to truncate p(χv|Xrub) to the distance between the
participant’s midline and the walls of the room.

For the purposes of the truncated model, we assumed that the participant is seated in
the middle of a room and chose 2000 mm (i.e., 2 m) as the distance to the walls on either
side. We realize that this choice is somewhat arbitrary. We would like to point out that the
main point of truncating the sensory priors is to arrive at widths that are on a scale that
humans deal with regularly. Furthermore, when trying to predict the results of a concrete
experiment the spatial visual boundaries could be set to the actual distances between the
participant’s midline and the walls of the room.

To summarize, p(Xrub|C2) = N
(
320 mm, 1035 mm, [−2000 mm, 2000 mm]

)
in our

truncated version of the model.

Temporal Input

The temporal prior refers to an extraordinarily abstract concept: the time the par-
ticipant expects to wait until they receive the first brush stroke. If the participant had
already experienced a couple of trials (e.g., as part of a training block), it would be quite
easy to define a sensory prior: Its mode should be close to the average onset times in the
previous trials and its precision should depend on the number of previous trials with more
trials leading to higher precision. However, since we are trying to model a participant
without any previous exposure the experiment, we do not consider this approach to be a
good solution.

Without presuming previous experience, it is not easy to argue for a sensible σ value
for τv and τt. On the other hand, it is far easier to discard specific suggested priors for
being too wide. For example, a time interval longer an hour seems to be unlikely for a
stimulus with such a low valence as a brush stroke. We therefore chose 3,600,000 ms (i.e.,
1 h) as the truncation bounds.

Although for the spatial dimension the lower bound a and upper bound b were
equidistant to 0, doing the same on the temporal dimension would lead to a prior that
assigns non-zero probability to brush strokes in the past, which is incompatible with the
trial starting at time zero. We therefore set the lower bound for the temporal sensory priors
to 0. To summarize, under the truncated model:

p(TH |C1) = N
(
0 ms, 1035 ms, [0 ms, 3.6× 106 ms]

)
p(Trub|C2) = N

(
0 ms, 1035 ms, [0 ms, 3.6× 106 ms]

)
and

p(Treal|C2) = N
(
0 ms, 1035 ms, [0 ms, 3.6× 106 ms]

)
.

3.2.2. Simulation Run

We ran the truncated model for the same distance × sigma factor levels described
in Section 3.1 (see data S3) and compared it with the original version of the model. For a
concise description of the truncated model see Appendix A.2.

Figure 4 shows the results of the original model on the left and the ones from the
truncated model on the right. All SEMs were <0.002.

It should be noted that the distances displayed on the x axis in Figure 4 deviate from the
ones displayed in Figure 3. Figure 4 displays the distance values [20, 40, . . . , 180, 200] mm,
while Figure 3 displays [160, 180, . . . , 340, 360] mm. As can be seen in Figure 4 (right),
the truncated model predicts posterior probabilities of C1 very close to 0 (i.e., <0.001) for
distances ≥ 140 mm across all considered σ values. However, questionnaire mean scores
indicating an RHI have often been reported for distances of 150 mm [11,35–37]. Hence,
these results show that truncating the sensory priors of the BCIBO model with intervals on
a human scale strongly decreases its agreement with empirical results.
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Figure 4. (Left): posterior probability of C1 for the original model. The parameter settings of
the model are equivalent to the one shown in Figure 3 (right), but the x axis has been shifted to
left, showing the distances [20, 40, . . . , 180, 200] mm instead of [160, 180, . . . , 340, 360] mm. (Right):
posterior probability of C1 for the truncated model. For σ > 1010 mm|ms, the lines are on top of
each other.

In Figure 4 (right) the lines for σ ≥ 1015 mm|ms are hidden beneath the line for
σ = 1010 mm|ms, because their posterior probabilities are almost identical. The reason
for this is that σ = 1010 mm|ms far exceeds even the widest bounds in the truncated
model, which are [−3.6 × 106 ms, 3.6 × 106 ms]. As a result, all the sensory priors for
σ ≥ 1010 mm|ms in the truncated model are very close to being uniform. Under the
truncated model, increases in σ beyond 1010 mm|ms only lead to microscopic changes in
p(C1|D), which can no longer be displayed in the plot.

3.3. Change in the Model Prior

We were curious how strongly the magnitude of p(C1) influences the predictions of
the model. Specifically, we wanted to determine whether increasing p(C1) would allow us
to decrease the width of the astronomically wide sensory priors. Samad et al. [1] modeled
the prior probability of C1 by a Bernoulli distribution with success probability 0.5, i.e., they
used an uninformed prior. In everyday life, the hands in front of us are nearly always
our own hands, which results in a p(oste)rior p(C1) ≈ 1. Therefore, we think that one can
reasonably assume a value for p(C1) that is close to one. Again, for a formal description of
the simulation runs discussed in this subsection see Appendix A.3.

Figure 5 shows the original uniformed prior and a prior very close to one (p(C1) = 0.99)
side by side (for the latter see data S4, all SEMs < 0.002). As can be seen, some of the individ-
ual values change noticeably. For example, the posterior probability of a BOI for a distance
of 180 mm for σ = 1015 mm|ms increases by 13 percentage points (see data S6). However,
overall the increase in the posterior probability of C1 is not enough for agreement with em-
pirical data using plausible prior widths. This is demonstrated by the posterior probability
values for σ = 105 mm|ms being visually indistinguishable from 0% in Figure 5 (right).

Although asymptotically increasing the value of p(C1) towards 1 increases the pos-
terior probabilities considerably, even a value as close to 1 as 1− 10−16 only brings the
posterior probability of C1 for σ = 105 mm|ms up to 37 % (see data S5, all SEMs < 0.002).
At this level, the model prior has reached a value nearly as unbelievable as a sensory prior
width of 1035 mm|ms. We can therefore conclude that increasing the prior probability of
C1 is not sufficient for achieving psychological plausibility.
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Figure 5. (Left): posterior probability of C1 for a model prior of p(C1) = 0.5. The contents of the plot
are equivalent to Figure 3 (right) and are reproduced here to enable a visual comparison. (Right):
posterior probability of C1 for a model prior of p(C1) = 0.99.

4. Discussion

The ways of adjusting the BCIBO model in its current form can be sorted into three cat-
egories: changing the likelihoods, changing the sensory priors or changing the model prior.

We already discussed that Samad et al. [1] set the choice of the likelihood’s σ pa-
rameters on firm theoretical grounds (see page 6 in Section 2.2). In addition, the mean
parameters of the sensory priors represent concrete facets of the experimental setup (e.g.,
the position of the rubber hand). Hence, we believe that on the level of the likelihoods the
model should not be changed.

Truncating the sensory priors to reasonable widths (see Section 3.2) actually worsens
the model’s agreement with empirical results [30]. Finally, increasing the prior probability
of C1 (see Section 3.3) cannot fix the adverse effects of choosing sensible values for the
sensory prior’s σ values without introducing another implausible parameter setting in the
form of a p(C1) that is unreasonably close to one.

4.1. Limitations and Future Work

We stated in Section 3.2 that the truncated normal distributions with very high stan-
dard deviations come close to uniformity. However, technically they are not uniform
distributions. Hence, strictly speaking we did not implement Samad et al.’s [1] stated goal
of using uniform sensory priors.

We tried our best to come up with sensible boundaries for the sensory priors of the
truncated model, but could only make truly empirically informed decisions for p(χp|X)
(arm’s length) and p(χv|X) (horizontal distance to the nearest visual obstacle, e.g., a wall).
To be fair, trying to design experiments that could empirically inform the sensory priors
p(τv|T) and p(τt|T) poses quite the challenge. Presuming we view the temporal dimension
as modeling the discrepancy between the brush strokes, p(τv|Trub) and p(τt|Treal) could be
assessed in a round-about way: At the start of the experiment the participant could be asked
a question along the lines of “We are going to each stroke the rubber hand and your real hand
with a brush. How large do you expect the discrepancy between the two brush strokes to
be?”. In the BCIBO model either τv or τt can be set arbitrarily. What is actually relevant for the
computation of the model is the difference between τv and τt. Hence, the predicted difference
by the participant could be used to set a prior distribution for p(τv|Trub) and p(τt|Treal). The
main problem with this approach is that to our knowledge RHI participants are not typically
instructed about the exact procedure of the experiment. Hence, announcing the brush strokes
through asking the above question would confound the experiment.

Admittedly, the experimental design described above is quite peculiar. We discussed
it to showcase the difficulties of putting some of the components of the BCIBO model such
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as the sensory priors on firm empirical grounds. It seems to us that if at all, these difficulties
can only be overcome by clever experimental designs that probe for these components in
indirect ways.

The changes to the model considered in Section 3 are all quantitative in nature, i.e.,
they change the values of the model’s parameters while preserving its overall structure.
All these changes led to unsatisfactory results. Hence, we think that future research should
explore qualitative changes to the model in the form of additional likelihoods offering new
sources of sensory evidence.

Litwin [38] agrees with this assessment, but for different reasons. He points out that
the BCIBO model in its current form cannot account for certain empirical observations.
According to the model, having high proprioceptive precision increases the evidence for
the real hand being a separate cause. As a result, participants with high proprioceptive
precision should be less prone to accepting a common cause and experiencing the illusion.
However, Motyka and Litwin [39] could not find evidence for this hypothesis.

Litwin [38] concludes that the BCIBO model in its current form overemphasizes the
contribution of proprioception in the RHI. He suggests that by adding sensory signals to
the model, the influence of proprioception could be diluted and brought in line with the
findings of Motyka and Litwin [39].

We argue for the inclusion of additional sensory signals, because this could increase
the sensory evidence in favor of C1 and therefore also “overwhelm” more strongly informed
priors than those with σ = 1035 mm|ms. However, any such expansion of the model must
be carefully considered to avoid the peril of unnecessary model complexity and overfitting.

One possibility of an additional parameter suggested by the literature is the rotation
of the hand. Rotation has been shown to have a strong influence on the RHI: Kalckert and
Ehrsson [40] demonstrated that a rubber hand in an anatomically implausible position (fac-
ing towards the participant) does not induce ownership. The rotation could be represented
in relation to the anatomically plausible position typically used in RHI experiments.

The rotation of the rubber hand would be inferred from visual input, while the rotation
of the real hand would be inferred from proprioceptive input. Under C1, there would
be only one rotation prior for both sensory modalities, which peaks at zero. However,
while the prior for the real hand under C2 would have the same peak, the prior for the
rubber hand would be wider, because it could be facing in any direction. Since values near
the peak of a wide distribution are less probable than values near the peak of a narrow
distribution, the rotational degrees of freedom of the hands would be less likely under C2
than under C1 if they are congruent. This would increase the posterior probability of C1,
at the expense of C2. To summarize, we expect the addition of the hand’s rotation to the
model to increase p(C1|D). If this effect were strong enough it could allow for a reduction
of the sensory priors’ widths and therefore increase their plausibility.

After settling on a model with plausible parameters, a possible next step would be to
see whether it can predict interindividual differences in empirical data. For example, one
prediction of the model is that participants with higher visual acuity should have a smaller
propensity to experience the illusion. VR is the research paradigm of choice for such an
experiment, because it allows for accurate assessment and manipulation of both the spatial
and temporal information in the model through the recording of motion capture data and
its (possibly manipulated) “playback” in VR. In the case of our example, participants with
equivalent visual ability could inhabit a virtual avatar and be exposed to either unmodified
playback of the motion capture data or playback in which the coordinates have been shifted,
therefore reducing the accuracy of the visual input.

4.2. Applications

The BCIBO model is most applicable to those VR applications that represent the user
as an avatar in the virtual environment and that let them control said avatar via motion
capture. We use the term “motion capture” to refer to both motion capture via sensors on
clothes (e.g., data gloves) and motion-tracking controllers (such as the controllers of the
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HTC Vive). In most cases, applications employing motion capture try to make the user
believe that the virtual avatar is their body. In some cases, only the task-relevant body
parts (e.g., the hands) are rendered (e.g., Goh et al. [41]). For the purposes of this article, we
consider these virtual body parts to be partial avatars and hold that a feeling of ownership
over them is also key to most applications that make use of them.

Naturally, not all applications with avatars intend to make the user feel ownership
over the avatar. For example, imagine an application that tries to increase awareness of
depersonalization-derealization disorder by giving healthy people a VR enabled demon-
stration of what it might be like to have a dissociative experience of one’s body. However,
such cases are the exception and not the rule. Most VR applications with avatars try to
immerse the user in the experience. If this is the goal, body ownership over the avatar
is key.

That being said, we would like to point out that the term “body ownership” (and
with it the BCIBO model) cannot easily be applied to VR applications in which the avatar
is controlled with a gamepad (e.g., Bailenson et al. [42]) instead of motion capture. A
gamepad is a controller which uses buttons and/or joysticks for game input. It is more
accurate to speak of self-identification instead of embodiment of the avatar in these cases.
The term “self-identification” is used here to indicate that the user most likely identifies
with the virtual avatar, but they probably do not “inhabit” it as they would during a
BOI. The use of a gamepad instead of motion capture creates a visuomotoric mismatch:
The participant sees movements of the avatar that do not match their movements on the
controller. For example, the press of a certain button might cause the avatar to jump. It has
been shown that visuomotoric mismatches reduce body ownership [43]. In addition to this,
gamepad-controlled applications often do not co-locate the user with their virtual avatar,
further weakening body ownership [44].

An example for a field in which successful embodiment is often desirable is VR psy-
chotherapy (for a review, see Matamala-Gomez et al. [45]). For example, Keizer et al. [46]
let patients with anorexia inhabit a virtual avatar with healthy body proportions. Patients
tended to overestimate their body proportions before the VR treatment, but they produced
more realistic estimations afterwards. Hence, inhabiting another body seemed to have
adjusted their internal body model.

Body ownership has also played an important role in rehabilitation interventions:
Pichiorri et al. [47] used a virtual hand to provide stroke patients with feedback about
a mental task they performed. The task was to imagine opening or closing one’s hand.
This practice, called motor imagery, is theorized to help patients with impaired motor
functions in their recovery. The stroke patients wore an electroencephalography (EEG)
cap. The EEG signals were used to calculate a score that approximated the success of the
motor imagery task. If they performed the task successfully, patients saw a virtual hand in
front of them perform the imagined movement (either opening or closing). This embodied
feedback is likely more intuitive to the patient than more abstract forms (e.g., a smiley
on a screen) [48] and carries the advantage of directly demonstrating the eventual aim
of the intervention. Pichiorri et al. [47] found that post intervention the treatment group
outperformed a control group, who underwent a motor imagery intervention without EEG
and embodied feedback, in motor functionality.

VR has also been employed in education and training [49]. For example, Tang et al. [50]
have used VR for the training of a blood sampling procedure. The scripted nature VR
provides an ideal training ground for procedures that are highly standardized, as medical
procedures often are. The use of VR for the training of these procedures could free up
resources among human trainers to focus on less standardized procedures and soft skill
acquisition.

Participants have indicated that the use of VR increased their motivation for the
training [50]. We argue that ensuring embodiment of the avatar would further increase
motivation by making the training more engaging. Of course, other factors such as sense
of presence and immersion [51] also play an important role in this regard.
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Interest in VR as a training tool has been especially high for surgical training [52]
(however, see Müns et al. [53] for an article pointing out the limits of immersive VR in this
context). Among the options for surgical training simulators is the commercial software
PrecisionOS (www.precisionostech.com, accessed on 12 August 2021), which offers high-
fidelity motion-capture-driven VR training for orthopedic surgery. For an exemplary
training procedure using PrecisionOS see Goh et al. [41].

All the exemplary interventions mentioned above rely in part on body ownership for
their success. Further development of the BCIBO model promises to deepen our under-
standing of body ownership and therefore enable the design of more effective therapeutic
interventions that rely on it. Furthermore, the BCIBO model could be used as a component
in a VR user model [15]. A user model (e.g., Horvitz et al. [54]), as the name implies, tries
to model relevant states of the user. An accurate body ownership user model could detect
when a user’s body ownership over the avatar is slipping and enact countermeasures in the
virtual environment. For example, to reinforce body ownership a stimulus that encourages
hand-based interaction could be presented. This would nudge the user towards looking at
their virtual body which in turn should strengthen their embodiment of the avatar.

A more direct, potential application of the model is in VR-related hardware design.
Here, tolerable levels of accuracy both for gathering and displaying spatial and temporal
information could be predicted from the model. For example, a producer of head-mounted
displays (HMDs) might have to decide between several design options all with different
levels of accuracy and production costs. HMDs receive a time series of motion capture
data as input and display them as a virtual environment. A well-working version of
the BCIBO model would be able to predict the average user’s body ownership based on
the discrepancy between the actual motion capture positions and time points and the
virtual positions and time points. The BCIBO model is able quantify the trade-off between
the spatial and temporal inaccuracies of the system in terms of the probability of a BOI,
therefore facilitating the goal of maximizing the user’s sense of body ownership.

5. Conclusions

In conclusion, while we consider the BCIBO model to be a commendable step towards
a computational explanation of body ownership we think it needs revision due to its
unrealistically wide prior distributions. We showed that this cannot be remedied by our
proposed quantitative changes to the model and hence conclude that a qualitative revision
of the model is desirable. It is our belief that a good model of body ownership will improve
both our understanding of this psychological construct and the design of VR applications
that rely on an embodied user experience.
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Abbreviations
The following abbreviations are used in this manuscript:

BCIBO Bayesian Causal Inference of Body Ownership
BOI body ownership illusion
EEG electroencephalography
GUI graphical user interface
HMD head-mounted display
MDPI Multidisciplinary Digital Publishing Institute
RHI rubber hand illusion
SEM standard error of the mean
VR virtual reality
C1 common cause model
C2 separate causes model
X inferred position of the rubber/real hand
T inferred time point of the brush stroke
χv spatial visual input
χp (spatial) proprioceptive input
τv temporal visual input
τt (temporal) tactile input

Appendix A. Model Specifications

Appendix A.1. Original Model

C ∼ Bernoulli(0.5)

σi ∈ [100, 105, 1010, . . . , 1035]

dj ∈ [160, 180, 200, . . . , 360]

if C = 0



Xrub ∼ Normal(320− dj, σi)

Xreal ∼ Normal(320, σi)

Trub, Treal ∼ Normal(0, σi)

χv ∼ Normal(Xrub, 1)
χp ∼ Normal(Xreal, 15)
τv ∼ Normal(Trub, 20)
τt ∼ Normal(Treal, 20)

if C = 1



Xhand ∼ Normal(320− dj, σi)

Thand ∼ Normal(0, σi)

χv ∼ Normal(Xhand, 1)
χp ∼ Normal(Xhand, 15)
τv ∼ Normal(Thand, 20)
τt ∼ Normal(Thand, 20)

(A1)

https://doi.org/10.17192/fdr/66.2
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Appendix A.2. Truncated Model

The truncated model follows the original model (see Appendix A.1) with the following changes:

dj ∈ [20, 40, 60, . . . , 220]

if C = 0


Xrub ∼ TruncatedNormal

(
320− dj, σi, [−2000, 2000]

)
Xreal ∼ TruncatedNormal(320, σi, [−850, 850])
Trub, Treal ∼ TruncatedNormal

(
0, σi, [0, 3.6× 106]

)
if C = 1

{
Xhand ∼ TruncatedNormal

(
320− dj, σi, [−850, 850]

)
Thand ∼ TruncatedNormal

(
0, σi, [0, 3.6× 106]

)
(A2)

Appendix A.3. Changes in the Model Prior

Simulation runs that changed the model prior (see Section 3.3) follow the original
model (see Appendix A.1) with the following changes:

C ∼ Bernoulli(θ)

θ ∈ [0.99, 1− 10−16]
(A3)
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