
����������
�������

Citation: Abrejo, S.; Kazi, H.;

Rahman, M.U.; Baloch, A.; Baig, A.

Learning from Peer Mistakes:

Collaborative UML-Based ITS with

Peer Feedback Evaluation. Computers

2022, 11, 30. https://doi.org/

10.3390/computers11030030

Academic Editors: Antonio Sarasa

Cabezuelo and Covadonga Rodrigo

San Juan

Received: 31 December 2021

Accepted: 16 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Learning from Peer Mistakes: Collaborative UML-Based ITS
with Peer Feedback Evaluation
Sehrish Abrejo *, Hameedullah Kazi, Mutee U. Rahman, Ahsanullah Baloch and Amber Baig

Department of Computer Science, Faculty of Engineering, Science & Technology, Isra University,
Hyderabad 71500, Pakistan; hkazi@isra.edu.pk (H.K.); mutee.rahman@isra.edu.pk (M.U.R.);
ahsanullah.baloch@isra.edu.pk (A.B.); amber.baig@isra.edu.pk (A.B.)
* Correspondence: sehrish-abrejo@hotmail.com

Abstract: Collaborative Intelligent Tutoring Systems (ITSs) use peer tutor assessment to give feedback
to students in solving problems. Through this feedback, the students reflect on their thinking and
try to improve it when they get similar questions. The accuracy of the feedback given by the peers
is important because this helps students to improve their learning skills. If the student acting as
a peer tutor is unclear about the topic, then they will probably provide incorrect feedback. There
have been very few attempts in the literature that provide limited support to improve the accuracy
and relevancy of peer feedback. This paper presents a collaborative ITS to teach Unified Modeling
Language (UML), which is designed in such a way that it can detect erroneous feedback before
it is delivered to the student. The evaluations conducted in this study indicate that receiving and
sending incorrect feedback have negative impact on students’ learning skills. Furthermore, the results
also show that the experimental group with peer feedback evaluation has significant learning gains
compared to the control group.

Keywords: Intelligent Tutoring Systems; UML class diagrams; peer feedback evaluation; domain learning

1. Introduction

ITSs are computer-based learning systems that use Artificial Intelligence (AI) tech-
niques to simulate human tutors to help students to improve their learning skills. Today,
ITSs are in widespread use at various levels in different advanced countries and are en-
hancing the student learning experience [1–3]. ITSs have been successfully developed for a
variety of domains including mathematics, physics, programming, databases, design tasks
and learning new languages. Examples include Andes Physics Tutor (problem solving
in introductory college physics) [4], Algebra Cognitive Tutor (problem solving in a high
school algebra course) [5], AutoTutor (problem solving in college physics and other do-
mains) [6,7], Sherlock (troubleshooting a large piece of simulated electrical equipment) [8],
SQL-Tutor [9], COLLECT-UML (Object-Oriented software design) [10–12] and KERMIT
(database design) [13–15].

With the advent of the Internet, students may now not only attend school to listen to
live lectures, but they can also use Internet platforms to develop skills. To put it another
way, online learning can help students study more efficiently [16]. ITSs use cutting-edge
computer technologies such as the Internet, hypermedia and virtual reality to provide
tutoring for individual students, and groups of students, in a collaborative learning environ-
ment [17]. Collaborative ITSs use peer feedback where the learner receives feedback from
other students. Feedback can be defined as “all post-response information that is provided
to a learner to inform on his or her actual state of learning or performance” [18,19]. The
source of feedback can be external (peer or teacher) or internal (the learner). Peer feedback
is a practice where students give feedback to each other, hence improving their learning in a
particular domain. Learning of students, while providing feedback, is improved when they
are involved in talking, listening, writing, reading, and reflecting on contents, ideas, and

Computers 2022, 11, 30. https://doi.org/10.3390/computers11030030 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11030030
https://doi.org/10.3390/computers11030030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-1465-9784
https://doi.org/10.3390/computers11030030
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11030030?type=check_update&version=1

Computers 2022, 11, 30 2 of 18

problems in the domain. Researchers have widely reported the benefits of peer tutoring
and feedback in classroom settings. Refs. [20–24] present hundreds of experiences in the
field. Recent literature reviews in [25–27] document the academic, social, and psychological
benefits of this methodology.

In collaborative learning, students of the same learning status provide feedback to each
other. The feedback can be in the form of formative assessment, which is equivalent to that
of teacher’s feedback [22]. In formative assessment feedback, the main difference between
teacher’s and peer student’s feedback is that the peer is not an expert of the domain; as
a result, the feedback of peers varies. Not all peer feedback results in learning gains,
and the students should receive relevant feedback as guidance to revise their solutions
rather than confuse them [28]. There is always a chance that the peer may not be clear
about the topic and may provide wrong information. On the other hand, the student
receiving inappropriate feedback can infer incorrectly, which leads to having a negative
impact on students’ learning. In contrast, any misinterpretation of peer feedback will
cause learners to lose focus and take longer to comprehend and solve the problem. Many
collaborative systems have been proposed in the literature in which one student’s solution
is evaluated by another student. Examples of such systems include Collab-ChiQat [29],
CirCLE [30] and ITSCL [31]. In these systems, one student provides feedback on another
student’s solution, by rating or commenting. These ratings or comments can be misleading
if they are contrary to the solution; for example, if the student has correctly solved the
given problem but receives a negative rating from other students. Negative feedback can
confuse students and they will not be able to solve the problem. Previous studies that
allow collaboration through feedback from one student to another have revealed little or
no evidence on peer feedback relevancy to correct/wrong solutions. Hence, considering
the importance of peer feedback, it can be hypothesized that students receiving incorrect
or irrelevant feedback from peers will have a negative impact on their domain learning.
Therefore, the research question that we investigated in this study is whether there is a
negative impact on students’ learning if they receive incorrect feedback. To investigate and
identify the effects of peer feedback on students’ learning, this paper presents a Unified
Modeling Language-Intelligent Tutoring System (UML-ITS) with peer feedback evaluation
that focuses on improving the accuracy and relevancy of feedback in accordance with the
solution. The presented ITS model not only evaluates peer feedback before delivering it,
but also guides students in providing information that is correct and can be applied to
the solution. The following section describes some of the ITSs that support collaboration.
Next, the UML-ITS model along with its architecture and interface is discussed, before the
presentation of the results. Finally, conclusions are presented.

2. Literature Review

The ITS has become increasingly common in assisting students [32]. In the literature,
many tutoring systems have been proposed to support collaborative learning within ITSs
to enhance students’ learning. Collect-UML [12] is an ITS based on constraints that teach
object-oriented (OO) analysis and design using UML. Students can use this tool to solve
problems both alone and in collaboration. First, students use the system’s feedback to
develop UML class diagrams on their own. Then they join a group to come up with a group
solution. The system compares the group solution against the individual solutions of all
group members in collaboration mode. System feedback is provided on the group solution,
and on the collaboration that takes place between students.

Collab-ChiQat [29] supports paired programming with a group of two students.
Collab-ChiQat is designed to help students to learn linked list data structures in collabora-
tion. One student can take a turn as a driver (the role assigned to one who writes the lines
of code) at a time, and another student has to wait for his turn to write the code. The ITS
provides domain hints to help the driver student to solve the given problem while another
student can provide helpful feedback using a peer feedback bonus from the collaboration
panel interface.

Computers 2022, 11, 30 3 of 18

CirCLE [30] is the abbreviation for Circuitously Collaborative Learning Environment,
which is designed for mathematical word problems to enhance the metacognitive awareness
of the learning process. The main aim of this research was to make students rethink their
solved problems after reviewing other students’ solutions. Initially, all students are given
a single problem which is then submitted to the system. After the first submission, the
students are assigned the role of Peer Inspector to review and comment on other students’
solutions. The inspector might consider rethinking their solution after receiving appropriate
feedback on it and reviewing other solutions (metacognitive awareness).

ITSCL stands for Intelligent Tutoring Supported Collaborative Learning, which was
proposed by [31]. It is a combination of an Intelligent Tutoring System and collaborative
learning. ITSCL provides learners with three levels of interaction with the system. In the
first level of interaction, the individual learner interacts with the ITS tutor without any
collaboration. In this level of interaction, a single student uses the ITS on a one-on-one
basis where the ITS asks questions of the student and the student has to respond. The
intelligent hints are provided by ITS if the student is not able to answer or needs help. The
second and third levels of interactions support learner-to-learner (two peer students) and
tutor-group collaborative learning, respectively. In the second level of interaction, two
students collaborate via a chat interface and share ideas to answer the questions. Hints are
provided by the ITS based on their answers given. The third level of interaction allows
tutor-group learning, where multiple students provide a group answer to the problem
given by the ITS. In this form of interaction, each student provides an individual answer
to the question given by the ITS, and the ITS displays each student’s response to all other
students in the group. Each student can update his/her response twice after reading other
students’ answers. After updating, students finalize their answers. The ITS uses natural
language processing (NLP) on the finalized answers and matches the similarity with the
answers stored in the database. The answer that most closely matches the stored database
answer is selected as the group answer and ITS hints are then provided by the system on
the selected group answer.

These systems support multiple students to collaboratively solve a problem but they
do not evaluate the feedback that students send to each other while solving problems. In
Collect-UML, the system does not restrict students from adding wrong elements in the
collaborative group diagram. The students receiving help from the group diagram may im-
plement wrong elements in their individual solutions. Collab-ChiQat allows the non-driver
student (who is not writing the code) to comment or provide helping hints to the driver
student. The feedback provided by the non-driver student can be irrelevant as they select
already defined feedback from the drop-down list. ITS provides hints only when the driver
student types erroneous code. In CirCLE, the inspector can disagree on students’ solutions
and can provide negative feedback despite all correct steps being taken. There is no support
provided by the system to inform the inspector about the student’s correct solution. Simi-
larly, In ITSCL, each student can comment on the other student’s answer. They can agree
or disagree with the peer answer, or they can suggest changes in the peer answer. These
comments are not evaluated by the ITSCL if one student provides false negative comments
(the answer is correct but students comment negatively) or false positive comments (the
answer is wrong but students comment positively. Moreover, textual feedback can also
be helpful [33–35], but domain-related accuracy and relevance of the feedback delivered
in natural language needs considerable usage of NLP techniques; otherwise, the system’s
ability to provide meaningful feedback would be debated. Furthermore, systems such
as Collab-ChiQat and CirCLE bound students to submit feedback within the interface’s
boundaries, making it impossible for them to expound upon or explain their ideas. This
research attempts to overcome the limitations of previous systems and proposes a peer
feedback evaluation model in ITSs that examines peer feedback before it is sent to another
peer. Peer feedback evaluation will not only help students to focus on providing responses
that are relevant to the solution, but also help peers to rethink their feedback and avoid
repeating the same mistakes while responding on similar errors.

Computers 2022, 11, 30 4 of 18

3. System Description

Due to its complex and ill-defined nature, the UML Class Diagram was selected as a
domain for the ITS design. The proposed UML-ITS is implemented to teach OO analysis
and design concepts, where students collaboratively construct a UML class diagram based
on some given requirements. UML-ITS creates a session between two students and assigns
them roles of Tutor (the one who evaluates the solution of the other student and provides
suggestions/feedback) and Tutee (the one who develops the solution). For the rest of the
paper, the role names of Tutor and Tutee are used. Each action performed by the student is
recorded in the log file. The students develop a solution model by drawing diagrams on
the workspace area and interact with each other using the chat tool. UML-ITS provides
feedback to students while solving a problem through hints. Once both students agree
on the modeled solution, they can submit the final solution to the ITS. The solution is
evaluated against the sample/ideal solution stored in the knowledge base. If the submitted
solution has errors, the hints are generated; otherwise, a new problem scenario is displayed.
Figure 1 shows the interface of UML-ITS. The same screen is displayed to both students
but with different toolbar options.

Computers 2022, 11, x FOR PEER REVIEW 4 of 18

and proposes a peer feedback evaluation model in ITSs that examines peer feedback be-
fore it is sent to another peer. Peer feedback evaluation will not only help students to focus
on providing responses that are relevant to the solution, but also help peers to rethink
their feedback and avoid repeating the same mistakes while responding on similar errors.

3. System Description
Due to its complex and ill-defined nature, the UML Class Diagram was selected as a

domain for the ITS design. The proposed UML-ITS is implemented to teach OO analysis
and design concepts, where students collaboratively construct a UML class diagram based
on some given requirements. UML-ITS creates a session between two students and as-
signs them roles of Tutor (the one who evaluates the solution of the other student and
provides suggestions/feedback) and Tutee (the one who develops the solution). For the
rest of the paper, the role names of Tutor and Tutee are used. Each action performed by
the student is recorded in the log file. The students develop a solution model by drawing
diagrams on the workspace area and interact with each other using the chat tool. UML-
ITS provides feedback to students while solving a problem through hints. Once both stu-
dents agree on the modeled solution, they can submit the final solution to the ITS. The
solution is evaluated against the sample/ideal solution stored in the knowledge base. If
the submitted solution has errors, the hints are generated; otherwise, a new problem sce-
nario is displayed. Figure 1 shows the interface of UML-ITS. The same screen is displayed
to both students but with different toolbar options.

Figure 1. UML-ITS interface.

3.1. XML Solutions
XML stands for eXtensible Markup Language, which is widely being accepted as a

form of information representation. XML stores information in the form of tags. In UML-
ITS, all the ideal solutions of UML textual problems are stored in XML documents. All
XML documents begin with an XML declaration followed by a root element, which is
<ClassDiagram> in our case. Each class is defined with the <Class> tag, which includes
<Name>, <Attribute>, <Method>, and <Relationship> tags as child elements. The <Rela-
tionship> tag has four attributes:
1. WithClass: Defines the name of the class that has a relationship with the current class.
2. Type: Defines the type of relationship, i.e., Association, Generalization, etc.
3. Link: Defines Start or End of the line connector. This helps in the identification of

parent-child and whole-part relationships if generalization, composition, or aggrega-
tion types are used. The Link = “End” attribute value represents the “Whole” class

Figure 1. UML-ITS interface.

3.1. XML Solutions

XML stands for eXtensible Markup Language, which is widely being accepted as
a form of information representation. XML stores information in the form of tags. In
UML-ITS, all the ideal solutions of UML textual problems are stored in XML documents.
All XML documents begin with an XML declaration followed by a root element, which
is <ClassDiagram> in our case. Each class is defined with the <Class> tag, which in-
cludes <Name>, <Attribute>, <Method>, and <Relationship> tags as child elements. The
<Relationship> tag has four attributes:

1. WithClass: Defines the name of the class that has a relationship with the current class.
2. Type: Defines the type of relationship, i.e., Association, Generalization, etc.
3. Link: Defines Start or End of the line connector. This helps in the identification of

parent-child and whole-part relationships if generalization, composition, or aggrega-
tion types are used. The Link = “End” attribute value represents the “Whole” class
relationship, whereas Link = “Start” represents the “Part” class relationship. For class
inheritance, the parent class is represented with the End link type and child class with
the Start link type.

4. Multiplicity: Defines participation constraints on association relationship types.

Computers 2022, 11, 30 5 of 18

The student’s solution is also converted to a temporary XML document that is com-
pared against the XML solution stored in the UML-ITS’s knowledge base. The temporary
XML document is updated whenever the tutee student makes changes in the solution. If the
temporary XML document is different from that of XML solution, the hints are generated
by the UML-ITS based on the differences found. Figure 2 describes the comparison of both
XML documents.

Computers 2022, 11, x FOR PEER REVIEW 5 of 18

relationship, whereas Link = “Start” represents the “Part” class relationship. For class
inheritance, the parent class is represented with the End link type and child class with
the Start link type.

4. Multiplicity: Defines participation constraints on association relationship types.
The student’s solution is also converted to a temporary XML document that is com-

pared against the XML solution stored in the UML-ITS’s knowledge base. The temporary
XML document is updated whenever the tutee student makes changes in the solution. If
the temporary XML document is different from that of XML solution, the hints are gener-
ated by the UML-ITS based on the differences found. Figure 2 describes the comparison
of both XML documents.

Figure 2. Ideal solution comparison with the student’s solution.

3.2. Tutee Student Toolbar
The tutee student will start drawing the UML diagram by selecting the appropriate

tool from the UML constructs (Figure 3).

Figure 3. Tutee student toolbar.

To draw a diagram, the tutee student clicks on a specific drawing tool button, places
the cursor on the desired workspace location, and presses the mouse button; for example
to create a new class, the tutee clicks on the Class button (). An empty class component
is displayed in the workspace area. The tutee then can define the name of the newly cre-
ated class by double-clicking on the top portion of the class. The same method is used to
change/modify the name of the class already present in the diagram. Once the class is
created, its attributes and methods can be defined by double-clicking on the specific class
component. The student can also change or delete class attributes/methods by right click-
ing and selecting required options. The relationships can be added by selecting appropri-
ate relationship types from the toolbar.

3.3. Tutor Student Toolbar
The tutor student has the responsibility to identify tutee’s misconceptions about

UML class diagrams in their designed solution. Once the tutee student clicks the Evaluate
Diagram button, tutor-student toolbar features are activated with the system-generated
message to ask tutor to find errors in the diagram. To help tutor to find errors, some spe-
cific features are added to the tutor’s toolbar, as shown in Figure 4.

Figure 4. Tutor student toolbar.

Figure 2. Ideal solution comparison with the student’s solution.

3.2. Tutee Student Toolbar

The tutee student will start drawing the UML diagram by selecting the appropriate
tool from the UML constructs (Figure 3).

Computers 2022, 11, x FOR PEER REVIEW 5 of 18

relationship, whereas Link = “Start” represents the “Part” class relationship. For class
inheritance, the parent class is represented with the End link type and child class with
the Start link type.

4. Multiplicity: Defines participation constraints on association relationship types.
The student’s solution is also converted to a temporary XML document that is com-

pared against the XML solution stored in the UML-ITS’s knowledge base. The temporary
XML document is updated whenever the tutee student makes changes in the solution. If
the temporary XML document is different from that of XML solution, the hints are gener-
ated by the UML-ITS based on the differences found. Figure 2 describes the comparison
of both XML documents.

Figure 2. Ideal solution comparison with the student’s solution.

3.2. Tutee Student Toolbar
The tutee student will start drawing the UML diagram by selecting the appropriate

tool from the UML constructs (Figure 3).

Figure 3. Tutee student toolbar.

To draw a diagram, the tutee student clicks on a specific drawing tool button, places
the cursor on the desired workspace location, and presses the mouse button; for example
to create a new class, the tutee clicks on the Class button (). An empty class component
is displayed in the workspace area. The tutee then can define the name of the newly cre-
ated class by double-clicking on the top portion of the class. The same method is used to
change/modify the name of the class already present in the diagram. Once the class is
created, its attributes and methods can be defined by double-clicking on the specific class
component. The student can also change or delete class attributes/methods by right click-
ing and selecting required options. The relationships can be added by selecting appropri-
ate relationship types from the toolbar.

3.3. Tutor Student Toolbar
The tutor student has the responsibility to identify tutee’s misconceptions about

UML class diagrams in their designed solution. Once the tutee student clicks the Evaluate
Diagram button, tutor-student toolbar features are activated with the system-generated
message to ask tutor to find errors in the diagram. To help tutor to find errors, some spe-
cific features are added to the tutor’s toolbar, as shown in Figure 4.

Figure 4. Tutor student toolbar.

Figure 3. Tutee student toolbar.

To draw a diagram, the tutee student clicks on a specific drawing tool button, places
the cursor on the desired workspace location, and presses the mouse button; for example
to create a new class, the tutee clicks on the Class button (

Computers 2022, 11, x FOR PEER REVIEW 5 of 18

relationship, whereas Link = “Start” represents the “Part” class relationship. For class
inheritance, the parent class is represented with the End link type and child class with
the Start link type.

4. Multiplicity: Defines participation constraints on association relationship types.
The student’s solution is also converted to a temporary XML document that is com-

pared against the XML solution stored in the UML-ITS’s knowledge base. The temporary
XML document is updated whenever the tutee student makes changes in the solution. If
the temporary XML document is different from that of XML solution, the hints are gener-
ated by the UML-ITS based on the differences found. Figure 2 describes the comparison
of both XML documents.

Figure 2. Ideal solution comparison with the student’s solution.

3.2. Tutee Student Toolbar
The tutee student will start drawing the UML diagram by selecting the appropriate

tool from the UML constructs (Figure 3).

Figure 3. Tutee student toolbar.

To draw a diagram, the tutee student clicks on a specific drawing tool button, places
the cursor on the desired workspace location, and presses the mouse button; for example
to create a new class, the tutee clicks on the Class button (). An empty class component
is displayed in the workspace area. The tutee then can define the name of the newly cre-
ated class by double-clicking on the top portion of the class. The same method is used to
change/modify the name of the class already present in the diagram. Once the class is
created, its attributes and methods can be defined by double-clicking on the specific class
component. The student can also change or delete class attributes/methods by right click-
ing and selecting required options. The relationships can be added by selecting appropri-
ate relationship types from the toolbar.

3.3. Tutor Student Toolbar
The tutor student has the responsibility to identify tutee’s misconceptions about

UML class diagrams in their designed solution. Once the tutee student clicks the Evaluate
Diagram button, tutor-student toolbar features are activated with the system-generated
message to ask tutor to find errors in the diagram. To help tutor to find errors, some spe-
cific features are added to the tutor’s toolbar, as shown in Figure 4.

Figure 4. Tutor student toolbar.

). An empty class component
is displayed in the workspace area. The tutee then can define the name of the newly
created class by double-clicking on the top portion of the class. The same method is used
to change/modify the name of the class already present in the diagram. Once the class
is created, its attributes and methods can be defined by double-clicking on the specific
class component. The student can also change or delete class attributes/methods by
right clicking and selecting required options. The relationships can be added by selecting
appropriate relationship types from the toolbar.

3.3. Tutor Student Toolbar

The tutor student has the responsibility to identify tutee’s misconceptions about UML
class diagrams in their designed solution. Once the tutee student clicks the Evaluate
Diagram button, tutor-student toolbar features are activated with the system-generated
message to ask tutor to find errors in the diagram. To help tutor to find errors, some specific
features are added to the tutor’s toolbar, as shown in Figure 4.

Computers 2022, 11, x FOR PEER REVIEW 5 of 18

relationship, whereas Link = “Start” represents the “Part” class relationship. For class
inheritance, the parent class is represented with the End link type and child class with
the Start link type.

4. Multiplicity: Defines participation constraints on association relationship types.
The student’s solution is also converted to a temporary XML document that is com-

pared against the XML solution stored in the UML-ITS’s knowledge base. The temporary
XML document is updated whenever the tutee student makes changes in the solution. If
the temporary XML document is different from that of XML solution, the hints are gener-
ated by the UML-ITS based on the differences found. Figure 2 describes the comparison
of both XML documents.

Figure 2. Ideal solution comparison with the student’s solution.

3.2. Tutee Student Toolbar
The tutee student will start drawing the UML diagram by selecting the appropriate

tool from the UML constructs (Figure 3).

Figure 3. Tutee student toolbar.

To draw a diagram, the tutee student clicks on a specific drawing tool button, places
the cursor on the desired workspace location, and presses the mouse button; for example
to create a new class, the tutee clicks on the Class button (). An empty class component
is displayed in the workspace area. The tutee then can define the name of the newly cre-
ated class by double-clicking on the top portion of the class. The same method is used to
change/modify the name of the class already present in the diagram. Once the class is
created, its attributes and methods can be defined by double-clicking on the specific class
component. The student can also change or delete class attributes/methods by right click-
ing and selecting required options. The relationships can be added by selecting appropri-
ate relationship types from the toolbar.

3.3. Tutor Student Toolbar
The tutor student has the responsibility to identify tutee’s misconceptions about

UML class diagrams in their designed solution. Once the tutee student clicks the Evaluate
Diagram button, tutor-student toolbar features are activated with the system-generated
message to ask tutor to find errors in the diagram. To help tutor to find errors, some spe-
cific features are added to the tutor’s toolbar, as shown in Figure 4.

Figure 4. Tutor student toolbar. Figure 4. Tutor student toolbar.

The tutor can use different toolbar features to indicate the type of error in the tutee’s
solution. The Suggest Missing button (

Computers 2022, 11, x FOR PEER REVIEW 6 of 18

The tutor can use different toolbar features to indicate the type of error in the tutee’s
solution. The Suggest Missing button () can be used for missing components (classes,
attributes, methods or relationships), the Select Error button () for incorrect components,
and the Delete button () for extra components. If the tutor finds some errors in the dia-
gram, then the tutor can indicate them by activating the Select Error button. The tutor can
only click on specific diagram components to indicate an error. The selected component’s
color is changed to red, which is also visible to the tutee. Furthermore, an automatic mes-
sage is generated and sent to the tutee that contains information about the error and is
displayed in UML hints area on the screen.

3.4. Peer Feedback Evaluator Design
The evaluation of tutor feedback takes place before delivering it to the tutee student.

The main function of the feedback evaluator module is to evaluate tutor feedback against
the ideal solution. The first step in evaluating the tutor’s feedback is to identify the type
of feedback that the tutor is providing to the tutee student. The sub-components of the
Feedback Evaluator are shown in Figure 5.

Figure 5. Sub-components of the feedback evaluator.

It can be seen in Figure 5 that the feedback classifier receives a feedback event, which
is the hint that the tutor is providing to the tutee. The feedback classifier identifies whether
it is related to classes, relationships, attributes, or methods. This identification is based on
the tutor’s actions that he/she has taken on the workspace. If the tutor clicks the class com-
ponent, then it is classified as ‘C’, relationships as ‘R’, attributes as ‘A’, and methods as
‘M’. For example, if the tutor finds an error in the solution related to classes, then the tutor
clicks on that particular class. As soon as the tutor clicks on the class, the following mes-
sage is generated:

C ClassName = “Items”
The message indicates that the tutor has clicked on the class component and its name

is ‘Items’. Once the component on which the tutor is providing feedback has been identi-
fied, then further classification takes place to see if the response is related to a wrong com-
ponent, a missing component, or extra classes in the tutee’s solution. This classification is
based on the button activated from the tutor’s toolbar. If Suggest Missing is activated, then
a token related to the missing component is added to the feedback; if the Error button is

) can be used for missing components (classes,
attributes, methods or relationships), the Select Error button (

Computers 2022, 11, x FOR PEER REVIEW 6 of 18

The tutor can use different toolbar features to indicate the type of error in the tutee’s
solution. The Suggest Missing button () can be used for missing components (classes,
attributes, methods or relationships), the Select Error button () for incorrect components,
and the Delete button () for extra components. If the tutor finds some errors in the dia-
gram, then the tutor can indicate them by activating the Select Error button. The tutor can
only click on specific diagram components to indicate an error. The selected component’s
color is changed to red, which is also visible to the tutee. Furthermore, an automatic mes-
sage is generated and sent to the tutee that contains information about the error and is
displayed in UML hints area on the screen.

3.4. Peer Feedback Evaluator Design
The evaluation of tutor feedback takes place before delivering it to the tutee student.

The main function of the feedback evaluator module is to evaluate tutor feedback against
the ideal solution. The first step in evaluating the tutor’s feedback is to identify the type
of feedback that the tutor is providing to the tutee student. The sub-components of the
Feedback Evaluator are shown in Figure 5.

Figure 5. Sub-components of the feedback evaluator.

It can be seen in Figure 5 that the feedback classifier receives a feedback event, which
is the hint that the tutor is providing to the tutee. The feedback classifier identifies whether
it is related to classes, relationships, attributes, or methods. This identification is based on
the tutor’s actions that he/she has taken on the workspace. If the tutor clicks the class com-
ponent, then it is classified as ‘C’, relationships as ‘R’, attributes as ‘A’, and methods as
‘M’. For example, if the tutor finds an error in the solution related to classes, then the tutor
clicks on that particular class. As soon as the tutor clicks on the class, the following mes-
sage is generated:

C ClassName = “Items”
The message indicates that the tutor has clicked on the class component and its name

is ‘Items’. Once the component on which the tutor is providing feedback has been identi-
fied, then further classification takes place to see if the response is related to a wrong com-
ponent, a missing component, or extra classes in the tutee’s solution. This classification is
based on the button activated from the tutor’s toolbar. If Suggest Missing is activated, then
a token related to the missing component is added to the feedback; if the Error button is

) for incorrect components,
and the Delete button (

Computers 2022, 11, x FOR PEER REVIEW 6 of 18

The tutor can use different toolbar features to indicate the type of error in the tutee’s
solution. The Suggest Missing button () can be used for missing components (classes,
attributes, methods or relationships), the Select Error button () for incorrect components,
and the Delete button () for extra components. If the tutor finds some errors in the dia-
gram, then the tutor can indicate them by activating the Select Error button. The tutor can
only click on specific diagram components to indicate an error. The selected component’s
color is changed to red, which is also visible to the tutee. Furthermore, an automatic mes-
sage is generated and sent to the tutee that contains information about the error and is
displayed in UML hints area on the screen.

3.4. Peer Feedback Evaluator Design
The evaluation of tutor feedback takes place before delivering it to the tutee student.

The main function of the feedback evaluator module is to evaluate tutor feedback against
the ideal solution. The first step in evaluating the tutor’s feedback is to identify the type
of feedback that the tutor is providing to the tutee student. The sub-components of the
Feedback Evaluator are shown in Figure 5.

Figure 5. Sub-components of the feedback evaluator.

It can be seen in Figure 5 that the feedback classifier receives a feedback event, which
is the hint that the tutor is providing to the tutee. The feedback classifier identifies whether
it is related to classes, relationships, attributes, or methods. This identification is based on
the tutor’s actions that he/she has taken on the workspace. If the tutor clicks the class com-
ponent, then it is classified as ‘C’, relationships as ‘R’, attributes as ‘A’, and methods as
‘M’. For example, if the tutor finds an error in the solution related to classes, then the tutor
clicks on that particular class. As soon as the tutor clicks on the class, the following mes-
sage is generated:

C ClassName = “Items”
The message indicates that the tutor has clicked on the class component and its name

is ‘Items’. Once the component on which the tutor is providing feedback has been identi-
fied, then further classification takes place to see if the response is related to a wrong com-
ponent, a missing component, or extra classes in the tutee’s solution. This classification is
based on the button activated from the tutor’s toolbar. If Suggest Missing is activated, then
a token related to the missing component is added to the feedback; if the Error button is

) for extra components. If the tutor finds some errors in the
diagram, then the tutor can indicate them by activating the Select Error button. The

Computers 2022, 11, 30 6 of 18

tutor can only click on specific diagram components to indicate an error. The selected
component’s color is changed to red, which is also visible to the tutee. Furthermore, an
automatic message is generated and sent to the tutee that contains information about the
error and is displayed in UML hints area on the screen.

3.4. Peer Feedback Evaluator Design

The evaluation of tutor feedback takes place before delivering it to the tutee student.
The main function of the feedback evaluator module is to evaluate tutor feedback against
the ideal solution. The first step in evaluating the tutor’s feedback is to identify the type
of feedback that the tutor is providing to the tutee student. The sub-components of the
Feedback Evaluator are shown in Figure 5.

Computers 2022, 11, x FOR PEER REVIEW 6 of 18

The tutor can use different toolbar features to indicate the type of error in the tutee’s
solution. The Suggest Missing button () can be used for missing components (classes,
attributes, methods or relationships), the Select Error button () for incorrect components,
and the Delete button () for extra components. If the tutor finds some errors in the dia-
gram, then the tutor can indicate them by activating the Select Error button. The tutor can
only click on specific diagram components to indicate an error. The selected component’s
color is changed to red, which is also visible to the tutee. Furthermore, an automatic mes-
sage is generated and sent to the tutee that contains information about the error and is
displayed in UML hints area on the screen.

3.4. Peer Feedback Evaluator Design
The evaluation of tutor feedback takes place before delivering it to the tutee student.

The main function of the feedback evaluator module is to evaluate tutor feedback against
the ideal solution. The first step in evaluating the tutor’s feedback is to identify the type
of feedback that the tutor is providing to the tutee student. The sub-components of the
Feedback Evaluator are shown in Figure 5.

Figure 5. Sub-components of the feedback evaluator.

It can be seen in Figure 5 that the feedback classifier receives a feedback event, which
is the hint that the tutor is providing to the tutee. The feedback classifier identifies whether
it is related to classes, relationships, attributes, or methods. This identification is based on
the tutor’s actions that he/she has taken on the workspace. If the tutor clicks the class com-
ponent, then it is classified as ‘C’, relationships as ‘R’, attributes as ‘A’, and methods as
‘M’. For example, if the tutor finds an error in the solution related to classes, then the tutor
clicks on that particular class. As soon as the tutor clicks on the class, the following mes-
sage is generated:

C ClassName = “Items”
The message indicates that the tutor has clicked on the class component and its name

is ‘Items’. Once the component on which the tutor is providing feedback has been identi-
fied, then further classification takes place to see if the response is related to a wrong com-
ponent, a missing component, or extra classes in the tutee’s solution. This classification is
based on the button activated from the tutor’s toolbar. If Suggest Missing is activated, then
a token related to the missing component is added to the feedback; if the Error button is

Figure 5. Sub-components of the feedback evaluator.

It can be seen in Figure 5 that the feedback classifier receives a feedback event, which
is the hint that the tutor is providing to the tutee. The feedback classifier identifies whether
it is related to classes, relationships, attributes, or methods. This identification is based
on the tutor’s actions that he/she has taken on the workspace. If the tutor clicks the class
component, then it is classified as ‘C’, relationships as ‘R’, attributes as ‘A’, and methods
as ‘M’. For example, if the tutor finds an error in the solution related to classes, then the
tutor clicks on that particular class. As soon as the tutor clicks on the class, the following
message is generated:

C ClassName = “Items”
The message indicates that the tutor has clicked on the class component and its name is

‘Items’. Once the component on which the tutor is providing feedback has been identified,
then further classification takes place to see if the response is related to a wrong component,
a missing component, or extra classes in the tutee’s solution. This classification is based on
the button activated from the tutor’s toolbar. If Suggest Missing is activated, then a token
related to the missing component is added to the feedback; if the Error button is selected,
then a token for the wrong component is added; and if the Delete button is activated,
then an extra component token is added to the feedback message. The feedback tokenizer
assigns tokens based on their classification, as shown in the following example, which
indicates that the ‘Items’ class is an incorrect class in the tutee’s solution.

WrongC ClassName = “Items”
For attributes and methods, WrongA and WrongM tokens are used, respectively.

Along with the class name in which the wrong attribute or method is defined, the attribute

Computers 2022, 11, 30 7 of 18

and method names are also appended in the feedback message. For example, the following
feedback messages indicate that the tutor has marked the attribute with the name ‘id’ in
the class ‘Items’ as a wrong attribute. Similarly, the method with name ‘Show’ in the class
‘Items’ has been marked as a wrong method.

WrongA ClassName = “Items” Attribute = “id”
WrongM ClassName = “Items” Method = “Show”
For errors in relationships, more information is added in the message to indicate the

endpoints’ directions along with the type of relationships. For example, if the tutor finds
an error in the composition relationship type, then the following feedback message is
generated:

WrongR ClassName = “Items” WithClass = “Orders” Type = “Composition” Link = “Start”
The above message indicates that the relationship of the type Composition between

the Items and Orders classes is wrong. The endpoints of relationships are identified through
the Link attribute. If the endpoints of the relationship are drawn incorrectly, then it is also
considered to be an error in the relationship, which is tokenized similarly, as described
above. Table 1 shows the list of tokens that are assigned to feedback messages.

Table 1. List of Tokens.

Token Description Token Description

WrongC Wrong Class in Tutee’s solution
ClassName

Name of
Wrong/Missing/Extra classMissingC Missing Class in Tutee’s solution

ExtraC Extra Class in Tutee’s solution

WrongA The wrong attribute in Class
Attribute

Name of
Wrong/Missing/Extra

attribute
MissingA Missing attribute in Class

ExtraA Extra attribute in Class

WrongM Wrong Method in Class
Method

Name of
Wrong/Missing/Extra methodMissingM Missing Method in Class

ExtraM Extra Method in Class

WrongR Wrong Relationship b/w classes With
Class

TypeLink

Second class name
MissingR Missing Relationship b/w classes Name of relationship

ExtraR Extra Relationship b/w classes End connectors of relationship

The feedback evaluator compares the tokenized feedback message with an ideal
solution to see if the tutor is responding correctly to the tutee. This comparison is based on
following conditions:

• A missing class diagram component is present in the ideal solution but not in the
tutee’s solution.

• A wrong class component is present in the tutee’s solution but not in the ideal solution.
• An extra class diagram component is present in the tutee’s solution but not in the

ideal solution. This condition also checks if the total number of classes present in
the tutee’s solution is greater than the total number of class components in the ideal
solution. If the number is greater, then the selected component is considered to be
extra; otherwise, it is considered to be wrong.

Once the feedback evaluator compares the feedback with the ideal solution, extra
information is added in the feedback message. If the tutor has correctly marked an incorrect
class diagram component as the wrong class, then a plus (+) sign is added at the beginning
of the message, which indicates that the feedback from the tutor is correct. Conversely, if
the tutor has marked a correct class diagram component as the wrong class, then a minus
(−) sign is added at the beginning of the feedback message to indicate incorrect feedback
from tutor.

Table 2 shows some of the examples of correct and incorrect feedback message identifi-
cation. The feedback message along with token and sign is delivered to the Hints generator
to produce hints accordingly.

Computers 2022, 11, 30 8 of 18

Table 2. Correct/incorrect feedback messages.

Correct Tutor Feedback

+WrongC ClassName = “Items”
+ExtraA ClassName = “Items” attribute = “id”

+MissingM ClassName = “Items” method = “Show”
+WrongR ClassName = “Items” WithClass = “Orders” type = “Composition” Link = “Start”

Incorrect Tutor Feedback

−MissingC ClassName = “Orders”
−ExtraA ClassName = “Items” attribute = “id”

−MissingA ClassName = “Items” attribute = “Price”
−ExtraR ClassName = “Items” WithClass = “Products” type = “Association” Link = “Start”

3.5. Tutor Feedback Evaluation Model

Tutor feedback in the UML-ITS is evaluated by the feedback evaluation component,
which evaluates all feedback coming from the tutor before it is delivered to the tutee. This
evaluation is beneficial for both the tutor and tutee during their learning process in many
ways. Firstly, the tutors can reflect on their own knowledge about the domain when their
mistakes are notified by the system. During their tutoring process, if tutors receive the
same type of tutee mistake on which they provided wrong feedback, the tutors will recall
and try to avoid responding incorrectly. Secondly, the tutors have an opportunity to correct
themselves before their feedback is delivered to the tutee, hence upholding their faith in
teaching, and preventing them from thinking of themselves as inept tutors. Thirdly, the
tutor’s image in the tutee’s perceptions is retained since the tutee always expects to receive
the required feedback. Lastly, the tutee receives relevant feedback and models the solution
without recording extra misconceptions in their log.

Figure 6 illustrates the overall problem-solving flow, and the roles of each student
and the system as a whole. Bold parts in the flow diagram are related to tutor feedback
evaluation. The feedback evaluation process starts when the tutor sends a response to the
tutee student. The tutee student can take any one action: they can take step to design a
solution (i.e., creating a class or modifying some properties, etc.), they can indicate that they
have completed the solution by clicking the Evaluate button, or they can ask for the tutor’s
help by clicking the Hints button. The tutor can respond at any time after the tutee clicks
the Evaluate button or Hints button. The main function of the feedback evaluator module
is to evaluate the tutor feedback against the ideal solution and generate hints depending
on the tutor’s error. If the tutor has marked a correct mistake/error in the solution, then
positive feedback from the system is generated to appreciate the tutor. In the opposite
case, where the tutor marks a correct component as a mistake/error, negative feedback is
displayed to the tutor indicating that the selected component is the correct one. Once the
tutor marks the correct mistake/error, then the tutor needs to suggest the changes that are
not present in tutee’s solution. The feedback evaluator evaluates tutor’s feedback regarding
classes, attributes, methods, and relationships in the same ways as described above.

Computers 2022, 11, 30 9 of 18
Computers 2022, 11, x FOR PEER REVIEW 9 of 18

Figure 6. Swimlane diagram of the UML-ITS with peer feedback evaluation.

4. Evaluations
4.1. Experimental Design

To investigate our research questions and to determine the effects of the proposed
model on a student’s learning, an experimental study was conducted in which 100 stu-
dents (57 female and 43 male) from different universities of Pakistan participated. All stu-
dents were enrolled in different degree programs of Computer Science and they partici-
pated voluntarily. Fifty students used the UML-ITS without peer feedback evaluation
(control group, in which tutors communicated erroneous feedback and suggestions to the
tutee), and the other 50 students tutored each other using the UML-ITS with peer feedback
evaluation (experimental group, in which tutors sent relevant and domain-related feed-
back to tutee students). The roles of tutor and tutee students were assigned randomly in
both groups.

The study was conducted in two streams of three-hour laboratory sessions over two
weeks, one week for each group. The students completed a pre-test (supplementary Ap-
pendix A) and then interacted with the UML-ITS, where each pair of tutor and tutee stu-
dents worked on different UML class diagram scenarios. The students were seated in the

Figure 6. Swimlane diagram of the UML-ITS with peer feedback evaluation.

4. Evaluations
4.1. Experimental Design

To investigate our research questions and to determine the effects of the proposed
model on a student’s learning, an experimental study was conducted in which 100 students
(57 female and 43 male) from different universities of Pakistan participated. All students
were enrolled in different degree programs of Computer Science and they participated
voluntarily. Fifty students used the UML-ITS without peer feedback evaluation (control
group, in which tutors communicated erroneous feedback and suggestions to the tutee), and
the other 50 students tutored each other using the UML-ITS with peer feedback evaluation
(experimental group, in which tutors sent relevant and domain-related feedback to tutee
students). The roles of tutor and tutee students were assigned randomly in both groups.

Computers 2022, 11, 30 10 of 18

The study was conducted in two streams of three-hour laboratory sessions over two
weeks, one week for each group. The students completed a pre-test (Supplementary S1)
and then interacted with the UML-ITS, where each pair of tutor and tutee students worked
on different UML class diagram scenarios. The students were seated in the same laboratory
on different sides depending on their roles, and they were only allowed to communicate
with one another via a chat tool provided with the system. After laboratory experimental
sessions, students were asked to attempt a post-test (Supplementary S2), which was utilized
to compare their results to their pre-test performance. The whole experimental design is
depicted in Figure 7.

Computers 2022, 11, x FOR PEER REVIEW 10 of 18

same laboratory on different sides depending on their roles, and they were only allowed
to communicate with one another via a chat tool provided with the system. After labora-
tory experimental sessions, students were asked to attempt a post-test (supplementary
Appendix B), which was utilized to compare their results to their pre-test performance.
The whole experimental design is depicted in Figure 7.

Figure 7. Experimental design.

4.2. Outcome Measures
In order to assess the performance of each student, pre- and post-tests were con-

ducted. Each of these two tests contained a total of eight questions of 22 total marks. In
the first question, students were asked to design a UML class diagram for the given prob-
lem scenario. In the second question, students were asked to write a description of the
UML Class diagram. The remaining six questions were multiple-choice questions related
to classes, attributes, and relationship types. All tests were administered on paper. The
scores related to each question in both tests were calculated based on the number of cor-
rect class diagram components designed in the solution, the number of class attributes
and relationships explained in the description, and the correct multiple-choice answers
marked.

The findings of the pre- and post-tests were used to evaluate the students’ perfor-
mance. To monitor the difference between the pre-test and the post-test, the mean and
standard deviation were calculated. Furthermore, the Normalized Learning Gain of each
group was also calculated, which is the rough estimate of how efficient the prototype is at
promoting the conceptual understanding of the subject. The formula presented in [36] was
used and is shown in Equation (1):

NLG = (1)

4.3. Problem-Solving Measures
To examine the student’s problem-solving collaboration process in Control and Ex-

perimental groups, all actions taken by the tutee, tutor, and UML-ITS were recorded in
log files. The following is the list of actions included in the log file:
• Number of problems solved by each group;
• Time taken to solve each problem;
• Whether each problem was successfully completed or not;
• Correct and incorrect problem-solving steps taken by each student;
• The number of times hints were requested or provided by UML-ITS.

Figure 7. Experimental design.

4.2. Outcome Measures

In order to assess the performance of each student, pre- and post-tests were conducted.
Each of these two tests contained a total of eight questions of 22 total marks. In the first
question, students were asked to design a UML class diagram for the given problem
scenario. In the second question, students were asked to write a description of the UML
Class diagram. The remaining six questions were multiple-choice questions related to
classes, attributes, and relationship types. All tests were administered on paper. The
scores related to each question in both tests were calculated based on the number of correct
class diagram components designed in the solution, the number of class attributes and
relationships explained in the description, and the correct multiple-choice answers marked.

The findings of the pre- and post-tests were used to evaluate the students’ performance.
To monitor the difference between the pre-test and the post-test, the mean and standard
deviation were calculated. Furthermore, the Normalized Learning Gain of each group was
also calculated, which is the rough estimate of how efficient the prototype is at promoting
the conceptual understanding of the subject. The formula presented in [36] was used and
is shown in Equation (1):

NLG =
PostTestScore − PreTestScore

100 − PreTestScore
(1)

4.3. Problem-Solving Measures

To examine the student’s problem-solving collaboration process in Control and Exper-
imental groups, all actions taken by the tutee, tutor, and UML-ITS were recorded in log
files. The following is the list of actions included in the log file:

• Number of problems solved by each group;
• Time taken to solve each problem;
• Whether each problem was successfully completed or not;
• Correct and incorrect problem-solving steps taken by each student;
• The number of times hints were requested or provided by UML-ITS.

Computers 2022, 11, 30 11 of 18

5. Results

The assessment of the research hypothesis regarding peer feedback evaluation started
with the comparison of pre-test and post-test results respective to both conditions, including
the control group and experimental group. Then, log files that were generated during the
experimental study were carefully analyzed to link individual student’s actions with their
own and their partner’s learning gains. In short, the similarities and differences of domain
learning pathways that students took in both conditions were made clear upon completion
of this analysis.

5.1. The Effects of the Prototype on Student’s Domain Learning

The most important measure of ITS effectiveness is the improvement in a student’s
domain knowledge. Table 3 contains absolute pre-test and post-test scores of students who
participated in both conditions. It is worth noting that, despite student’s prior domain
familiarity, their pre-test scores were the lowest. To explore the differences between pre-test
and post-test results across both conditions, an independent sample t-test and Mann–
Whitney z-test were performed. It was observed that students in both groups showed
improvement in their learning after prototype intervention and there was significant
difference in pre-test and post-test results (t = 5.067, p = 0.000) (z = 7.644, p = 0.000). The
effects of different conditions on students’ learning were also investigated and their NLGs
were compared with each other; see the last row of Table 3.

Table 3. Pre-test and post-test results.

Test Data Mean s.d. t/z-Value p-Value

Control Group

Pre-test 9.2 3.4
5.067 0.000Post-test 13 4.0

Experimental Group

Pre-test 9.1 4.3
7.644 0.000Post-test 18.2 2.8

NLG Difference in both Conditions

Control Group NLG 0.04 0.05
4.967 0.000Experimental Group NLG 0.09 0.04

Interestingly, there was significant difference between students’ NLGs in both condi-
tions (z = 4.967, p = 0.000). This reveals that the student’s domain learning was affected by
the conditions in which they were treated.

5.2. Total Number of Problem Scenarios Completed

To further investigate, the paths students took during the intervention were further
explored by comparing the total number of questions or problem scenarios completed
during the experimental session. It may be expected that each circumstance could have
a similar problem-solving rate because of the significant difference between pre-test and
post-test results, as explained in the above section. However, students in the control group
attempted fewer problems (avg = 3.28) compared to students in the experimental group
(avg: 7.26) (Table 4) since students in the control group had less relevant domain support.

Table 4. Total questions completed in two conditions.

Test Data Mean s.d.

Control Group 3.28 1.8
Experimental Group 7.26 1.29

Computers 2022, 11, 30 12 of 18

In order to determine if problems completed were related to learning, the correlation of
total problems successfully completed by each student with their normalized learning gain
scores was calculated. Indeed, in the experimental group, problems successfully completed
were marginally correlated with students’ learning on NLG (r = 0.695, p = 0.000). However,
the problems completed in the control group were also correlated with NLG results, but
insignificantly (r = 0.176, p = 0.221), as shown in Table 5. Students in the control group
received less domain support, due to which the rate of successful questions completed
was lower than that of the other group. It can be inferred that if students attempt more
problem scenarios, they have a chance to go through many concepts related to UML class
diagrams. Those students who attempted fewer questions missed out some important
concepts about which students were unclear, hence causing students to achieve a lower
score in the post-test.

Table 5. Correlation—Total no. of questions completed vs. NLG.

Test Data r p

Control Group 0.176 0.221
Experimental Group 0.695 0.000

5.3. Problem-Solving Steps

In the above section, the difference between the total number of questions completed
successfully in each condition was discussed. Although the questions completed in both
conditions were correlated with student’s NLG scores, students in the control group com-
pleted fewer problems compared to students of the other group. This is because the ITS
did not provide them with the same support level. Furthermore, it can be hypothesized
that students in the control group might appear to make more mistakes compared to those
in the experimental group, again because of the lack of appropriate domain-level support
from the ITS. To investigate this hypothesis, the total number of errors made by tutor
and tutee students were compared in both conditions. According to the analysis results
shown in Table 6, there was significant difference between tutees’ errors made in both
conditions (t = 7.798, p = 0.003), indicating that tutees in the control group made more
errors during experimental intervention compared to tutee students in the experimental
group. Interestingly, the tutor students in both conditions made identical errors as there is
no significant difference (t = 1.440, p = 0.157), despite providing more domain-related help
in the experimental group.

Table 6. No. of tutee and tutor errors in both conditions.

Test Data Statistical Test t p

No. of Tutee errors Independent Sample t test 7.798 0.003
No. of Tutor errors Independent Sample t test 1.440 0.157

To investigate the effects of tutors’ errors on the tutees’ learning path, as hypothesized
in previous sections, the correlation between the total number of errors made by the tutees
was compared with the total number of errors made by the tutors in both conditions. As
shown in Table 7, the errors made by the tutors in the control group were positively corre-
lated with the total number of errors made by the tutees. This is because the tutors’ wrong
suggestions/mistakes were given to the tutees and the tutees followed those erroneous
suggestions, which resulted in the higher rate of the tutees’ errors. The errors made by the
tutors in the experimental group were negatively correlated with the total number of errors
made by the tutees.

Computers 2022, 11, 30 13 of 18

Table 7. Correlation—total number of tutor and tutee errors in both conditions.

Control Group Experimental Group

Test Data r p r p
No. of Tutor errors vs. Tutee errors 0.469 0.018 −0.060 0.776

No. of errors as Tutee vs. NLG −0.270 0.191 −0.083 0.693
No. of errors viewed as Tutor vs. NLG −0.289 0.161 0.362 0.010

It was also found that if the tutees made errors and they were viewed by the tutors, it
was related to the tutors’ learning in both conditions. The total number of errors made by
the tutees in both conditions was negatively correlated to NLG. The total number of errors
viewed by the tutors in the control group was also negatively correlated to the student’s
NLG. However, the viewing errors of the tutors in the experimental group were positively
correlated to their NLG. It appeared that tutors who observed their tutees’ inability to
progress (when tutees made mistakes) was in fact connected to learning from tutoring.
The overall correlation results imply that tutor students are indeed taking advantage of
the ITS’s peer feedback evaluation feature to reflect on their erroneous suggestions and
rectifying them before sending then to the tutee.

5.4. Effects of Collaboration and Peer Feedback

At this level, the interaction between tutors, tutees, and the Intelligent Tutoring System
was investigated. The first step in this analysis was to determine the effects of tutees’ help-
seeking behavior on their learning gains. It is believed that the students who ask for help
when it is needed tend to learn more. As explained earlier, the errors viewed by tutors
were correlated with their learning, but errors made by tutees were negatively correlated to
their learning gains. To further explore the elements that affected tutees’ learning, hints
requested, correct feedback received, and incorrect feedback received were correlated with
tutees’ learning gains (Table 8).

Table 8. Correlation—collaboration and peer feedback.

Control Group Experimental Group

Test Data r p r p
Hints Requested 0.490 0.00 0.386 0.003

Correct Feedback Received 0.558 0.000 0.783 0.000
Incorrect Feedback Received −0.460 0.000 0.201 0.161

Hint Request Received 0.505 0.000 0.781 0.000
Incorrect Feedback Sent −0.392 0.002 0.669 0.000

It can be observed that hints requested in both conditions were correlated to tutees’
learning gains (r = 0.490, p = 0.000) (r = 0.386, p = 0.003). Correct feedback received by
tutees in both conditions was also correlated to tutees’ learning gains (r = 0.558, p = 0.000)
(r = 0.783, p = 0.000). This indicates that correct feedback from tutors on tutees’ solutions do
have a positive effect on tutees’ domain learning. Moreover, the incorrect feedback received
from tutors in both conditions did not contribute to tutees’ learning gains, which addresses
our research question.

The next stage was to determine the factors that influenced the tutors’ learning gains,
because if tutees’ hint-taking is linked to their learning, it is likely that receiving hint
requests as a tutor will also contribute to their domain learning. Receiving hint requests as
a tutor in both conditions was positively correlated to the tutor’s learning gain (r = 0.505,
p = 0.000) (r = 0.781, p = 0.000). It can be inferred that tutors learn more when they receive
more hint requests from a tutee, because when tutors receive hints, they try to overcome
the errors present in the tutee’s solutions; hence, receiving hint requests encourages them
to study more about the solutions.

Computers 2022, 11, 30 14 of 18

Taking into account the opposite side of the story, when tutors receive hint requests,
their learning improves. This depends on whether they send domain-related feedback
that is in accordance with the solution, i.e., the feedback contains accurate information
about the tutee’s errors/mistakes in the diagram, or they send incorrect responses based
on incorrect assumptions about the tutee’s solutions. To explore this, incorrect feedback
sent was correlated to tutors’ learning gains. As shown in Table 8, the incorrect feedback
provided by tutors in the control group to tutees was negatively correlated to their learning
gains (r = −0392, p = 0.005). Here, because the tutors did not receive domain-level help
from the UML-ITS, it is probable that they misinterpreted the tutee’s solutions and replied
with erroneous suggestions, resulting in a reduction in the tutee’s learning gains. On the
other hand, the tutor’s incorrect feedback was correlated to their learning gains in the
experimental group (r = 0.669, p = 0.000). The UML-ITS prevented tutors from sending
incorrect feedback and provided them with domain level hints so that tutors could rethink
the suggestions they were trying to send. Receiving domain level hints from the system
allowed tutors to reflect on their own learning first and then send correct responses to the
tutee. Furthermore, as previously mentioned, correct feedback received by tutees from
a tutor was also linked to their learning improvements. In conclusion, both tutor and
tutee students benefited from the UML-ITS by sending and receiving proper feedback
on solutions.

5.5. Regression Analysis

As a last step, regression analysis was carried out to evaluate the abilities of the vari-
ables described in the previous sections to predict students’ learning gains. The six factors
of the students as tutors and tutees were considered to build a model for domain learning
prediction in both conditions (control and experimental groups). The model contains the
total number of questions completed, hints requested, correct feedback received, incor-
rect feedback received, hints requests received, and incorrect feedback sent. The model
explained about 51% of the variation in learning gain as a whole (R2 = 0.511, F = 9.548,
p = 0.000) in the control group (Table 9). Of the six variables, three significantly predicted
students’ leaning gains, correct feedback received (β = 0.415, t = 3.497, p = 0.001), hint
requests received (β = 0.387, t = 2.119, p = 0.040), and number of questions completed
(β = 0.252, t = 2.496, p = 0.016). The remaining variables were either negatively predicted
by the model or did not provide a significant prediction. While the three variables were
significantly correlated to learning gains in control group, it appears that receiving a correct
domain-related response from a tutor helped tutee students to overcome their learning gaps.
On the other hand, receiving hint requests from a tutee also encouraged tutors to locate and
correct errors in tutees’ solutions, hence predicting the learning gains. It also appears that
students receiving or sending incorrect feedback had a negative impact on their learning
gains which, in this case, was due to the lack of appropriate system domain-level support.

Table 9. Regression analysis to predict student’s learning gains.

Variables Control Grout Experimental Group

β t p β t p

Questions Completed 0.252 2.496 0.016 0.186 2.086 0.043
Hints Requested −0.055 −0.286 0.776 −0.147 −1.666 0.103

Correct Feedback Received 0.415 3.497 0.001 0.478 4.245 0.000
Incorrect Feedback Received −0.022 −0.170 0.866 −0.070 −1.016 0.315

Hint Request Received 0.387 2.119 0.040 0.298 3.043 0.004
Incorrect Feedback Sent −0.296 −2.634 0.012 0.241 2.920 0.006

Another type of regression analysis was conducted to predict the learning gains of
the experimental group. The model contains the same six variables that were used to
predict the learning gains of the control group, including the total number of questions
completed, hints requested, correct feedback received, incorrect feedback received, hints

Computers 2022, 11, 30 15 of 18

requests received, and incorrect feedback sent. A significant percentage of the variance in
the learning gain was explained by the model (R2 = 0.799, F = 33.557, p = 0.000) (Table 9),
although due to the small sample size it is likely that this value is inflated [37].

It can be observed from the regression analysis of the experimental group that two
variables that do not significantly predict the gain in students’ learning: hints requested
(β = −0.147, t = −1.666, p = 0.103) and incorrect feedback received (β = −0.070, t = −1.016,
p = 0.315). Interestingly, hints requested in both models does not predict students’ learning
gains, although, as mentioned in the previous section, hints made was positively correlated
to students’ learning gains. In general, this is because students may have requested help
when it actually was not needed or before drawing components on the workspace. On the
other hand, the tutor students who received hint requests in that way indeed provided
wrong feedback. In this case, the wrong feedback was recorded when tutors suggested
something through chat conversations. Apart from these two factors, every other variable
substantially predicted students’ learning gains, showing that the dual roles of tutor and
tutee benefitted the students.

6. Discussion

This study proposed an ITS design with peer feedback evaluation and investigated its
usage effects on students’ learning. It was hypothesized that tutee students who receive
erroneous feedback from their peer tutors would have poorer learning and overall perfor-
mance than those who receive correct and domain-related feedback. It can be observed
from the findings that students in both groups had improvements in their post-test results,
but there was a significant difference in their learning gains in each group. This was due to
the paths students took during the experimental period and certain design elements that
had unique effects on students’ learning in both conditions. The UML-ITS, for example,
did not support tutors in the control group when they were requested to assist tutees. As
a result, the tutor students gave erroneous hints, which UML-ITS evaluated when tutee
students included them in their solutions. Under such situations, tutor and tutee students
made more mistakes and scored less in their post-test as compared to the other group. On
the other hand, students in the experimental group showed a significant improvement in
their post-tests results because of receiving and sending domain-related feedback. Again,
this was due to the proper domain level support from the UML-ITS. When tutors were
not able to locate the mistakes in tutees’ solutions or provided incorrect feedback, the
UML-ITS generated hints, after evaluating the tutors’ feedback, which helped tutors to
revise the solution and go through it again. Furthermore, tutee students also received
correct solution-related feedback from the tutors.

After the evaluation study and outcomes, it was possible to respond to the research
question addressed by this paper. Some evidence was discovered in this study that sug-
gested that receiving wrong responses had a detrimental influence on students’ learning
gains. For example, if tutee students followed tutors’ wrong suggestions, they experienced
a significant increase in their errors made (tutees’ errors plus tutors’ wrong suggestions
that were implemented by the tutees in solutions). Not only did their number of total
errors made increased, but students in those groups were also not able to attempt more
problem scenarios compared to those who received domain-related responses from tutors.
The tutors who were not notified about their incorrect feedback, on the other hand, also did
not have the opportunity to reflect on their suggestions. Furthermore, attempting fewer
problems, making more mistakes, and sending/receiving incorrect responses were all not
correlated to their learning gains. Hence, receiving incorrect responses from tutors has a
negative impact on tutees’ learning gains. Nevertheless, based on the findings of this study,
it seems that the benefits of peer feedback evaluation will grow as its quality improves.

Computers 2022, 11, 30 16 of 18

7. Conclusions

Intelligent Tutoring Systems are computerized systems that help students in learning
different subjects. These systems are gaining popularity due to the fact that they are
available all the time and are easy to access and use. This paper presented UML-ITS,
an intelligent tutoring for teaching UML with a peer feedback evaluation component.
The empirical study included control and experimental groups (with and without peer
feedback evaluation) to determine the effects of the ITS model on students’ domain learning.
While teaching the design of UML class diagrams, the experimental group also received
support from the UML-ITS to evaluate peer feedback for its correctness and relevancy
against an ideal solution. The system’s peer feedback evaluation component double-
checks all feedback from tutors before delivering it to the tutee student, which not only
improved tutees’ learning skill, but also helped peer tutors to rethink their own solutions,
indicating a better influence on learning from both sides. In short, the students in both
conditions showed an improvement in their domain knowledge, but students with peer
feedback evaluation performed significantly better on their post-test after UML-ITS session,
indicating that they gained greater expertise in UML modeling. Hence, it can be concluded
that peer feedback evaluation in the ITS appears to be a promising advancement and should
be implemented with enhancements in future ITS tools.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/computers11030030/s1, Supplementary S1: Pre-Test; Supplementary S2:
Post-Test.

Author Contributions: Conceptualization, methodology, S.A., H.K. and A.B. (Amber Baig); software,
S.A., M.U.R. and A.B. (Amber Baig); validation, formal analysis, investigation, resources, H.K.,
M.U.R. and A.B. (Ahsanullah Baloch); writing—original draft preparation, S.A., M.U.R. and A.B.
(Amber Baig); writing—review and editing, visualization, H.K., M.U.R. and A.B. (Ahsanullah Baloch);
supervision, H.K., M.U.R. and A.B. (Ahsanullah Baloch). All authors have read and agreed to the
published version of the manuscript.

Funding: Research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baker, R.S.; D’Mello, S.K.; Rodrigo, M.M.T.; Graesser, A.C. Better to be frustrated than bored: The incidence, persistence, and

impact of learners’ cognitive–affective states during interactions with three different computer-based learning environments. Int.
J. Hum.-Comput. Stud. 2010, 68, 223–241. [CrossRef]

2. Chrysafiadi, K.; Virvou, M. Student modeling approaches: A literature review for the last decade. Expert Syst. Appl. 2013, 40,
4715–4729. [CrossRef]

3. VanLehn, K. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol.
2011, 46, 197–221. [CrossRef]

4. Ma, W.; Adesope, O.O.; Nesbit, J.C.; Liu, Q. Intelligent tutoring systems and learning outcomes: A meta-analysis. J. Educ. Psychol.
2014, 106, 901. [CrossRef]

5. Woolf, B.P. Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing e-Learning; Morgan Kaufmann:
Burlington, MA, USA, 2010.

6. Graesser, A.C. Conversations with AutoTutor help students learn. Int. J. Artif. Intell. Educ. 2016, 26, 124–132. [CrossRef]
7. Graesser, A.C.; Dowell, N.; Hampton, A.J.; Lippert, A.M.; Li, H.; Shaffer, D.W. Building intelligent conversational tutors and

mentors for team collaborative problem solving: Guidance from the 2015 Program for International Student Assessment. In
Building Intelligent Tutoring Systems for Teams; Emerald Publishing Limited: Bingley, UK, 2018.

8. Katz, S.; Aronis, J.; Creitz, C. Modeling pedagogical interactions with machine learning. Kognitionswissenschaft 2000, 9, 45–49.
[CrossRef]

https://www.mdpi.com/article/10.3390/computers11030030/s1
https://www.mdpi.com/article/10.3390/computers11030030/s1
http://doi.org/10.1016/j.ijhcs.2009.12.003
http://doi.org/10.1016/j.eswa.2013.02.007
http://doi.org/10.1080/00461520.2011.611369
http://doi.org/10.1037/a0037123
http://doi.org/10.1007/s40593-015-0086-4
http://doi.org/10.1007/s001970000026

Computers 2022, 11, 30 17 of 18

9. Tahir, F.; Mitrovic, A.; Sotardi, V. Investigating the effects of gamifying SQL-Tutor. In Proceedings of the 28th International
Conference on Computers in Education, Virtual, 23–27 November 2020; Asia-Pacific Society for Computers in Education:
Taiwan, 2020.

10. Baghaei, N.; Mitrovic, A. A Constraint-Based Collaborative Environment for Learning UML Class Diagrams. In Proceedings of
the International Conference on Intelligent Tutoring Systems, Jhongli, Taiwan, 26–30 June 2006; pp. 176–186.

11. Baghaei, N.; Mitrovic, A. Evaluating a collaborative constraint-based tutor for UML class diagrams. In Proceedings of the 13th
International Conference on Artificial Intelligence in Education, Los Angeles, CA, USA, 9–13 July 2007; pp. 533–535.

12. Holland, J.; Baghaei, N.; Mathews, M.; Mitrovic, A. The effects of domain and collaboration feedback on learning in a collaborative
intelligent tutoring system. In International Conference on Artificial Intelligence in Education; Springer: Berlin, Heidelberg, 2011;
pp. 469–471.

13. Eid, M.I. A learning system for entity relationship modeling. In Proceedings of the PACIS 2012 Proceedings, Paper 152,
Ho Chi Minh City, Vietnam, 11–15 July 2012.

14. Suraweera, P.; Mitrovic, A. KERMIT: A Constraint-based Tutor for Database Modeling. In Proceedings of the 6th International
Conference on Intelligent Tutoring Systems 2002, San Sebastian, Spain, 2–7 June 2002; pp. 377–387.

15. Suraweera, P.; Mitrovic, A. An Intelligent Tutoring System for Entity Relationship Modelling. Int. J. Artif. Intell. Educ. 2004, 14,
375–417.

16. Tan, P.J. Applying the UTAUT to understand factors affecting the use of English e-learning websites in Taiwan. Sage Open 2013, 3,
2158244013503837. [CrossRef]

17. Liu, L.; Chen, L.; Shi, C.; Chen, H. The Study of Collaborative Learning Grouping Strategy in Intelligent Tutoring System. In
Proceedings of the 14th International Conference on Computer Supported Cooperative Work in Design CSCWD 2010, Shanghai,
China, 14–16 April 2010; pp. 642–646.

18. Narciss, S. Feedback strategies for interactive learning tasks. In Handbook of Research on Educational Communications and Technology;
Spector, J.M., Merrill, M.D., van Merrieboer, J., Driscoll, M.P., Eds.; Taylor & Francis Group: New York, NY, USA, 2010; pp. 125–143.

19. Gielen, S.; Peeters, E.; Dochy, F.; Onghena, P.; Struyven, K. Improving the effectiveness of peer feedback for learning. Int. J. Learn.
Instr. 2010, 20, 304–315. [CrossRef]

20. Jahin, J.H. The effect of peer reviewing on writing apprehension and essay writing ability of prospective EFL teachers. Aust. J.
Teach. Educ. 2012, 37, 65–89. [CrossRef]

21. Wankiiri-Hale, C.; Maloney, C.; Seger, N.; Horvath, Z. Assessment of a student peer-tutoring program focusing on the benefits to
the tutors. J. Dent. Educ. 2020, 84, 695–703. [CrossRef]

22. Dioso-Henson, L. The effect of reciprocal peer tutoring and non-reciprocal peer tutoring on the performance of students in college
physics. Res. Educ. 2012, 87, 34–49. [CrossRef]

23. Evans, M.J.; Moore, J.S. Peer tutoring with the aid of the Internet. Br. J. Educ. Technol. 2013, 44, 144–155. [CrossRef]
24. Worley, J.; Naresh, N. Heterogeneous peer-tutoring: An intervention that fosters collaborations and empowers learners: Key

features of an intervention peer-tutoring program highlight the cognitive and social benefits of this collaborative approach. Middle
Sch. J. 2014, 46, 26–32. [CrossRef]

25. Alegre, F.; Moliner, L.; Maroto, A.; Lorenzo-Valentin, G. Peer tutoring in algebra: A study in middle school. J. Educ. Res. 2019, 112,
693–699. [CrossRef]

26. Alegre-Ansuategui, F.J.; Moliner, L.; Lorenzo, G.; Maroto, A. Peer tutoring and academic achievement in mathematics: A
meta-analysis. Eurasia J. Math. Sci. Technol. Educ. 2018, 14, 337–354. [CrossRef]

27. Leung, K.C. Compare the moderator for pre-test-posttest design in peer tutoring with treatment-control/comparison design. Eur.
J. Psychol. Educ. 2019, 34, 685–703. [CrossRef]

28. Hardavella, G.; Aamli-Gaagnat, A.; Saad, N.; Rousalova, I.; Sreter, K.B. How to give and receive feedback effectively. Breathe 2017,
13, 327–333. [CrossRef]

29. Harsley, R.; Green, N.E.; di Eugenio, B.; Aditya, S.; Fossati, D.; Al Zoubi, O. Collab-ChiQat: A Collaborative Remaking of a
Computer Science Intelligent Tutoring System. In Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion—CSCW ’16 Companion, San Francisco, CA, USA, 26 February–2 March 2016.

30. Duangnamol, T.; Suntisrivarporn, B.; Supnithi, T.; Ikeda, M. Circuitously Collaborative Learning Environment to Enhance
Metacognition. In Proceedings of the International Conference on Computers in Education, Nara, Japan, 30 November–4
December 2014; Asia-Pacific Society for Computers in Education: Nara, Japan, 2014; pp. 1–4.

31. Haq, I.U.; Anwar, A.; Basharat, I.; Sultan, K. Intelligent Tutoring Supported Collaborative Learning (ITSCL): A Hybrid Framework.
Int. J. Adv. Comput. Sci. Appl. 2020, 11, 523–535. [CrossRef]

32. Sychev, O.; Penskoy, N.; Anikin, A.; Denisov, M.; Prokudin, A. Improving Comprehension: Intelligent Tutoring System Explaining
the Domain Rules When Students Break Them. Educ. Sci. 2021, 11, 179. [CrossRef]

33. Polito, G.; Temperini, M. A gamified web based system for computer programming learning. Comput. Educ. Artif. Intell. 2021, 2,
100029. [CrossRef]

34. Kumar, A.N. Allowing Revisions While Providing Error-Flagging Support: Is More Better? In Proceedings of the 21st International
Conference on Artificial Intelligence in Education, Ifrane, Morocco, 6–10 July 2020; Springer International Publishing: Cham,
Switzerland, 2020; pp. 147–151.

http://doi.org/10.1177/2158244013503837
http://doi.org/10.1016/j.learninstruc.2009.08.007
http://doi.org/10.14221/ajte.2012v37n11.3
http://doi.org/10.1002/jdd.12135
http://doi.org/10.7227/RIE.87.1.3
http://doi.org/10.1111/j.1467-8535.2011.01280.x
http://doi.org/10.1080/00940771.2014.11461907
http://doi.org/10.1080/00220671.2019.1693947
http://doi.org/10.12973/ejmste/79805
http://doi.org/10.1007/s10212-018-00412-6
http://doi.org/10.1183/20734735.009917
http://doi.org/10.14569/IJACSA.2020.0110866
http://doi.org/10.3390/educsci11110719
http://doi.org/10.1016/j.caeai.2021.100029

Computers 2022, 11, 30 18 of 18

35. Kumar, A.N. Limiting the Number of Revisions while Providing Error-Flagging Support during Tests. In Proceedings of the
11th International Conference on Intelligent Tutoring Systems, Chania, Greece, 14–18 June 2012; Cerri, S.A., Clancey, W.J.,
Papadourakis, G., Panourgia, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 524–530.

36. Abbasi, S.; Kazi, H.; Kazi, A.W.; Khowaja, K.; Baloch, A. Gauge Object Oriented Programming in Student’s Learning Performance,
Normalized Learning Gains and Perceived Motivation with Serious Games. Information 2021, 12, 101. [CrossRef]

37. Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomized trial to minimize
the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016,
25, 1057–1073. [CrossRef] [PubMed]

http://doi.org/10.3390/info12030101
http://doi.org/10.1177/0962280215588241
http://www.ncbi.nlm.nih.gov/pubmed/26092476

	Introduction
	Literature Review
	System Description
	XML Solutions
	Tutee Student Toolbar
	Tutor Student Toolbar
	Peer Feedback Evaluator Design
	Tutor Feedback Evaluation Model

	Evaluations
	Experimental Design
	Outcome Measures
	Problem-Solving Measures

	Results
	The Effects of the Prototype on Student’s Domain Learning
	Total Number of Problem Scenarios Completed
	Problem-Solving Steps
	Effects of Collaboration and Peer Feedback
	Regression Analysis

	Discussion
	Conclusions
	References

