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Abstract: Electric energy demand forecasting is very important for electric utilities to procure and
supply electric energy for consumers sufficiently, safely, reliably, and continuously. Consequently,
the processing time and accuracy of the forecast system are essential to consider when applying
in real power system operations. Nowadays, the Extreme Learning Machine (ELM) is significant
for forecasting as it provides an acceptable value of forecasting and consumes less computation
time when compared with the state-of-the-art forecasting models. However, the result of electric
energy demand forecasting from the ELM was unstable and its accuracy was increased by reducing
overfitting of the ELM model. In this research, metaheuristic optimization combined with the ELM
is proposed to increase accuracy and reduce the cause of overfitting of three forecasting models,
composed of the Jellyfish Search Extreme Learning Machine (JS-ELM), the Harris Hawk Extreme
Learning Machine (HH-ELM), and the Flower Pollination Extreme Learning Machine (FP-ELM). The
actual electric energy demand datasets in Thailand were collected from 2018 to 2020 and used to test
and compare the performance of the proposed and state-of-the-art forecasting models. The overall
results show that the JS-ELM provides the best minimum root mean square error compared with the
state-of-the-art forecasting models. Moreover, the JS-ELM consumes the appropriate processing time
in this experiment.

Keywords: electricity forecasting; Extreme Learning Machine; improvement model; machine learning;
metaheuristic; Jellyfish Search Optimization; Harris Hawk Optimization; Flower Pollination Algorithm

1. Introduction

For several decades, electric energy has been essential for living, and it is a basic
utility that governments must provide for their people. Indeed, power utilities or electricity
providers must procure and supply electric energy to consumers sufficiently, safely, reliably,
and continuously [1]. In order to achieve all those factors previously mentioned, forecasting
electric energy demand is necessary for utilities. Forecasting is the famous well-known
method that learns the historical data and then predicts the expected data [2]. Many
works have used various forecasting models [3], such as the dynamic regression model [4],
ARIMA model [5], exponential smoothing model [6], neural network model [7], and so on,
to generate the trend of future forecasted data and select the best model that is evaluated
from its performance and accuracy.

Many researchers have proposed machine learning models to increase the accuracy
of electric energy demand forecast. Gholamreza Memarzadeh and Farshid Keynia [8]
proposed the new optimal long short-term memory model to predict electric energy de-
mand and price based on Pennsylvania, New Jersey, and Maryland databases. Zongying
Liu et al. [9] proposed the novel adaptive method applied with the kernel ELM model
called the error-output recurrent two-layer ELM and used the quantum particle swarm
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optimization to increase the forecast accuracy of the time-series predicted demand. Mikel
Larrea et al. [10] proposed the particle swarm optimization algorithm to optimize weight
parameters in the ensemble ELM model for forecasting the Spanish time-series electric
consumption. Yanhua Chen et al. [11] proposed the empirical mode decomposition to
decompose the time-series forecasting data and mixed kernel with radial basis function and
UKF to implement on the ELM model. The New South Wales, Victoria, and Queensland
electric load databases were used for testing the proposed model. Qifang Chen et al. [12]
proposed the novel deep learning model by using the stacked auto-encoder framework
applied to the ELM model to improve the capabilities of forecasting. Moreover, the raw
time-series data were analyzed by using the empirical mode decomposition method. Shafiul
Hasan Rafi et al. [13] proposed the hybrid methodology of deep learning by integrating
the convolutional neural network and long short-term memory to improve the forecast
accuracy for forecasting the Bangladesh power system dataset. Muhammad Sajjad et al. [14]
proposed the hybrid convolutional neural network and gated recurrent units to maximize
forecast performance for appliance energy demand and individual household electric
power demand. Yusha Hu et al. [15] proposed the optimization methods consisting of
the genetic algorithm and particle swarm optimization applied to the backpropagation
model to forecast the electric demand dataset. Mohammad-Rasool Kazemzadeh et al. [16]
proposed the novel hybrid optimization method, which combines the particle swarm opti-
mization with a machine learning model, to forecast the long-term electricity peak demand
and electric energy demand. Ghulam Hafeez et al. [17] proposed the novel hybrid model
of modified mutual information, factored condition restricted Boltzmann machine, and
genetic wind driven optimization to forecast the hourly load data of FE, Dayton, and EKPC
USA power grids.

From the aforementioned works, one of the machine learning models that can learn
rapidly and provide acceptable results is the Extreme Learning Machine (ELM) [18]. The
concept of this model is to learn the data without iterative tuning in the hidden layer phase
and then calculate the output weight parameter with a pseudo-inverse matrix called the
Moore–Penrose inverse matrix [19] in the output layer phase. However, the disadvantage
of the ELM model [20–22] is that it uses the standard randomization of the input weight to
compute in the input layer phase that can cause overfitting and has a high probability to
fall into local optima.

To improve the performance of the electric energy demand forecasting model, this
paper proposes a method to develop the ELM model by using metaheuristic optimization
algorithms to adjust the appropriate result of the output weight, which can reduce the cause
of overfitting. The Jellyfish Search Optimization (JSO) [23], the Harris Hawk Optimization
(HHO) [24], and the Flower Pollination Algorithm (FPA) [25] were selected for adjusting the
output weight and reducing the cause of overfitting as mentioned before. The performances
of these three proposed forecasting models were evaluated via an experiment that used the
seven groups of the electric energy demand datasets in Thailand. The main contributions
of this work can be summarized as follows:

• This paper presents the novel hybrid method combining the ELM and metaheuristic
optimization consisting of the JSO, the HHO, and the FPA to forecast the electric
energy demand. Furthermore, the proposed model is investigated with the real-life
dataset of electric energy demand to challenge the forecasting performance in terms of
forecasting accuracy and stability.

• To increase the robustness of forecasting in the training and testing processes of the
traditional ELM model, the randomization process of the initial weight parameter
in the ELM is developed to obtain the optimal weight parameter. The proposed
metaheuristic optimization algorithms are not complex to implement, leading to less
processing time, low population usage, and fast convergence to the optimal solution.
In addition, these three optimization methods can reduce the number of hidden nodes
of the ELM model.
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• Finally, the presented metaheuristic algorithms (the JSO, the HHO, and the FPA)
have the characteristic of being self-adaptive to tune the weight parameter of the
ELM without trapping in the local optima. This characteristic can increase the fore-
casting stability of the traditional model. Furthermore, this method can reduce the
cause of sensitivity to outliers, which leads the forecasting process to be more sta-
ble, and the standard deviation was used to calculate the forecasting stability of the
proposed models.

This paper is organized as follows. Section 2 indicates the basic principles of the algo-
rithms used in this paper. Section 3 indicates the methodology of the datasets’ preparation
and the proposed models. Section 4 indicates the overall experimental results using the
datasets and the proposed models in Section 3. Lastly, the conclusion and future work of
this work are described in Section 5.

2. Basic Principles

This section describes the basic principles and materials used in this research, which
consists of forecasting methodology, ELM, JSO, HHO, FPA, a summary of selected meta-
heuristic optimization, and related works as shown below.

2.1. Forecasting Methodology

The basic methodology for forecasting (Figure 1) can be described in five steps [26] as
follows. Firstly, the forecasting task problem is defined; the aim of this step is to study the
problem and factors that can affect the outcome of forecasting. Secondly, the information
is gathered for forecasting; the aim of this step is to collect and analyze the significant
data needed for forecasting and finding the expected result [27]. Thirdly, the exploratory
analysis of the overall forecasting is conducted; the aim of this step is to actively analyze the
consistency of data to so that they can be implement without noise or elements missing in
the dataset such as the imbalance or inconsistency of data [28], missing values of data [29],
and so on. Fourthly, the fitting models are selected; this step is the key of this research,
which proposes the new model to increase the performance of the forecasting. Fifthly, the
evaluation of the forecasting model is conducted, this step aims to consider and evaluate the
experimental results obtained from all models and then select the best model for forecasting.
The performances of all models [30] can be compared by considering error metrics such
as the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Square Error (RMSE), and so on.

2.2. Extreme Learning Machine

The Extreme Learning Machine (ELM) was proposed by Guang-Bin Huang et al. [18].
Due to the non-iterative tuning model, the training time of the ELM model was faster than
other machine learning models in the hidden layer.

Figure 2 is the architecture of the ELM model. The structure of this model has three
layers. The first layer is the input layer, which imports the sample dataset

(
aj, tj

)
of input

data
(

aj =
[
aj1, aj2, aj3, . . . , ajn

]T ∈ Rn
)

and target data
(

tj =
[
tj1, tj2, tj3, . . . , tjm

]T ∈ Rm
)

where n is the number of instances of data with j = 1, 2, . . . , n. After the input layer step is
completed, the second hidden layer is calculated as shown as in (1).

L

∑
i=1

βigi
(
aj
)
=

L

∑
i=1

βig
(
wi·aj + bi

)
= ej (1)

where wi is the initial weight randomization, βi is the connecting weight of hidden nodes
and output nodes, L is the random number of hidden nodes, and g(a) is the activation
function. Equation (1) can be revised to a short equation defined as the matrix, as in (2).

Hβ = T (2)
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where H =

 h(a1)
...

h(aN)

 =

 G(w1, b1, a1) · · · G(wL, bL, a1)
...

. . .
...

G(w1, b1, aN) · · · G(wL, bL, aN)


N x L

β =

 βT
1
...

βT
L


L x m

and T =

 tT
1
...

tT
L


N x m

.

Figure 1. Overview of the Basic Forecasting Process [26].
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Figure 2. The architecture of the Extreme Learning Machine Model [18,31].

After the hidden layer step is completed, the aim of the third output layer step is to
find the β matrix; Equation (2) is inversed to Equation (3) as shown below.

β = H†T (3)

where H† is the Moore–Penrose pseudo-inverse [19] of the H matrix.
Due to the problem of overfitting of the ELM model [20], this paper proposes a method

to find the optimal weight parameter with the metaheuristic optimization that can reduce
the cause of the overfitting.

2.3. Jellyfish Search Optimization

Jellyfish Search Optimization (JSO) was proposed by Jui-Sheng Chou and Dinh-Nhat
Truong [23]. The main idea of this optimization was inspired by the nature of jellyfish
behavior in the ocean when hunting prey for their food [32]. Figure 3 is the JSO algorithm
flowchart that can be described as follows:

1. Define the objective function ( f (X)) in terms of X = (x1, . . . , xd)
T , the best location

parameter (X∗), the number of search space, the number of population (N), the max
iteration (T), the iteration cycle time starting from 1 to max iteration (t). Jellyfish
population (Xi) is initialized with a logistic chaotic map [33].

2. Calculate the control time (c(t)) as presented in (4).

c(t) =
∣∣∣∣(1− 1

T

)
× (2× rand(0, 1)− 1)

∣∣∣∣ (4)

where rand(0, 1) is the number of randomization from 0 to 1, which changes in
every iteration.

If the control time is greater than or equal to 0.5 (c(t) ≥ 0.5), then the jellyfish decides
to follow the ocean tides as shown in (5). Otherwise, the movement of jellyfish to the swarm
is calculated by Equation (7).

−−−→
trend = X∗ − β× rand(0, 1)× µ (5)

where
−−−→
trend is the direction of the ocean tides, β is a distribution coefficient that is greater

than 0 (β > 0), and µ is the mean location of all jellyfishes.
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After that, jellyfish live at the new position that can be calculated as shown as in (6).

Xi(t + 1) = Xi(t) + rand(0, 1)× (X∗ − β× rand(0, 1))× µ (6)

Figure 3. Flowchart of the Jellyfish Search Optimization [23].

If rand(0, 1) is greater than 1− c(t), then jellyfish show the passive motions, which
can be calculated by Equation (7). Otherwise, jellyfish show the active motions by deciding
the direction as shown by Equation (8).

Xi(t + 1) = Xi(t) + γ× rand(0, 1)× (Ub − Lb) (7)

where γ is the motion coefficients, and Ub and Lb are upper bound and lower bound, respectively.

−−→
Step = Xi(t + 1)− Xi(t) = rand(0, 1)×

−−−−−−−→
Direction (8)
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where
−−→
Step is the direction of the movement of jellyfish and

−−−−−−−→
Direction can be decided by

Equation (9).
−−−−−−−→
Direction =

{
Xj(t)− Xi(t)
Xi(t)− Xj(t)

i f f (Xi) ≥ f
(
Xj
)

i f f (Xi) < f
(
Xj
) } (9)

3. Update the new position of the jellyfish and the best location parameter.
4. Repeat step 2 until the iteration reaches the max iteration criterion.

The JSO algorithm is used to optimize the weight parameter in the ELM model that is
described in Section 3.3.

2.4. Harris Hawk Optimization

The Harris Hawk Optimization (HHO) was proposed by Ali Asghar Heidari et al. [24].
The main idea of this optimization model came from the cooperative behavior and hunting
of prey of Harris Hawk [34]. Figure 4 presents a flowchart of the HHO algorithm that can
be described as follows:

1. Define the objective function ( f (X)) in terms of X = (x1, . . . , xd)
T , the location of

rabbit (best location parameter) (X∗), the number of population (N), the max iteration
(T), the iteration cycle time starting from 1 to max iteration (t), and initialize hawk
population (Xi).

2. Specify the initial energy (E0) as in (10).

E0 = 2× rand(0, 1)− 1 (10)

3. Specify the initial jump strength (J) as in (11).

J = 2× (1− rand(0, 1)) (11)

4. Adjust the escaping energy of the prey (E) as in (12).

E = 2E0

(
1− t

T

)
(12)

5. If |E| ≥ 1, then go to the exploration phase as in (13).

If q ≥ 0.5:
X(t + 1) = Xrand(t)− rand1(0, 1) |Xrand(t)− 2rand2(0, 1)X(t)|

If q < 0.5 :
X(t + 1) = (X∗ − Xm(t))− rand3(0, 1)(Lb + rand4(0, 1)(Ub − Lb))

(13)

where Xrand(t) is the random position of the currently selected hawk, Xm(t) is the
average position of the current population, and q is random numbers between 0 and 1.

6. If |E| < 1, then consider with four conditions of the exploitation phase as follows:

6.1. If the instantly randomized number (r) is greater than or equal to 0.5 (r ≥ 0.5)
and |E| ≥ 0.5, then go to the soft besiege as in (14).

X(t + 1) = (X∗ − X(t))− E|JX∗ − X(t)| (14)

6.2. If r ≥ 0.5 and |E| < 0.5, then go to the hard besiege as in (15).

X(t + 1) = X∗ − E|X∗ − X(t)| (15)

6.3. If r < 0.5 and |E| ≥ 0.5, then go to the soft besiege with progressive rapid
dives as in (16).

X(t + 1) =
{

Y i f f (Y) < f (X(t))
Z i f f (Z) < f (X(t))

(16)
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where Y is the next movement of the hawk as in (17).

Y = X∗ − E|JX∗ − X(t)| (17)

and Z is the random movement of the hawk with the levy flight concept as
in (18).

Z = (X∗ − E|JX∗ − X(t)|) S× LF(D) (18)

where D is the dimension of the problem, S is the 1× D size of random vector
and LF is the levy flight function [35] as in (19).

LF = 0.01×

rand(0, 1)×

 Γ(1+β)×sin
(

πβ
2

)
Γ
(

1+β
2

)
×β×2(

β−1
2 )

 1
β

|rand(0, 1)|
1
β

(19)

where β is the default constant set to 1.5.
6.4. If r < 0.5 and |E| < 0.5, then go to the hard besiege with progressive rapid

dives as in (20).

X(t + 1) =
{

Y i f f (Y) < f (X(t))
Z i f f (Z) < f (X(t))

(20)

where Y is the next movement of the hawk as in (21).

Y = X∗ − E|JX∗ − Xm(t)| (21)

and Z is the random movement of the hawk with levy flight concept as in (22).

Z = (X∗ − E|JX∗ − Xm(t)|)S× LF(D) (22)

7. Update the new position of the hawk and the location of the rabbit (best location parameter).
8. Repeat step 4 until the iteration reaches the max iteration criterion.

The HHO algorithm is used to optimize the weight parameter in the ELM model that
is described in Section 3.3.

2.5. Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) was proposed by Xin-She Yang [25]. The
main idea of this optimization model was inspired by the nature of the pollination process
of flowers. Figure 5 presents the FPA algorithm flowchart that can be described as follows:

1. Define the objective function ( f (X)) in terms of X = (x1, . . . , xd)
T , define the best

location parameter (X∗), set the number of population (N), set the max iteration (T),
set the iteration cycle time starting from 1 to max iteration (t), and initialize flower
population (Xi) and fixed switch probability set to 0.8 (p = 0.8).

2. Define the random number between 0 and 1 and compare it with switch probability.
If rand(0, 1) < p, then go to the global pollination phase as in (23). Otherwise, go to
the local pollination phase as in (24).

Xi(t + 1) = Xi(t) + LF(Xi(t)− X∗) (23)

where LF is the levy flight function [35], which is defined as in (19).

Xi(t + 1) = Xi(t) + rand(0, 1)×
(
Xj(t)− Xk(t)

)
(24)

where Xj(t) and Xk(t) are other populations obtained from a random position in
terms of t.
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3. Update the new position of flowers and the best location parameter.
4. Repeat step 2 until the iteration reaches the max iteration criterion.

Figure 4. Flowchart of the Harris Hawk Optimization [24].

The FPA algorithm is used to optimize the weight parameter in the ELM model that is
described in Section 3.3.

2.6. Summary of the JSO, the HHO, and the FPA

As aforementioned, the Jellyfish Search Optimization, the Harris Hawk Optimization,
and the Flower Pollination Algorithm are the metaheuristic algorithms inspired by animals’
and plants’ behavior in nature [36,37]. According to Table 1, the benefits and drawbacks of
the three metaheuristics are summarized. The benefits of JSO [23] include its fast speed
to converge calculation, stability in the processing of the problem, and being hard to trap
in local optima. However, the drawback of JSO is that there are quite a minor of related
works because this optimization was a novel metaheuristics model in 2020. The benefit
of HHO [38] is there are many steps of calculation that are hard to trap in local optima;
however, the drawback of HHO is that it is slow to converge calculation. Finally, the benefits
of FPA [39] are it is fast to converge calculation because the steps of this optimization are
simple and easy to implement; however, the drawback of FPA is that it is easy to trap in
local optima.
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Figure 5. Flowchart of the Flower Pollination Algorithm [25].

Table 1. Benefits and Drawbacks of the JSO, the HHO, and the FPA.

Metaheuristic Algorithms Benefits Drawbacks

JSO
• Fast calculation.
• Stability of the processing.
• Hard to trap in local optima.

• There are quite a minor of related
works due to the novel
metaheuristic model (2020).

HHO • Hard to trap in local optima. • Slow calculation due to the complex
steps of the algorithm.

FPA • Fast calculation due to the simple
steps of the algorithm • Easy to trap in local optima.

In conclusion, the three metaheuristic optimizations were merged with the ELM model
to optimize the weight parameter, compare the three proposed models with the forecasting
dataset, and evaluate the model with the error metrics objective function.

3. Data Preparation and Proposed Models

This section describes the technique of this research work, which consists of an
overview of the electric energy demand datasets in Thailand, proposed data, and mod-
els used in the experiment to achieve the best result, the experimental setup and hyper-
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parameter settings for all proposed and state-of-the-art models, and performance evaluation
of each model.

3.1. Preparation of Electric Energy Demand Data

Electric energy demand datasets were collected from Provincial Electricity Authority
in Thailand (PEA), which can be accessed from references [40,41]. The scope of the electric
energy demand datasets in this research was set from 2018 to 2020.

Figure 6a is the pattern of the monthly demand data of electric energy from January
2018 to December 2020 in terms of MegaWatt-Hour (MWh). The minimum electric energy
demand is 9909 MWh in February 2018, the maximum electric energy is 12,752 MWh in May
2019, and the average electric energy demands in 2018, 2019, and 2020 are 11,222 MWh,
11,514 MWh, and 11,239 MWh, respectively. Figure 6b is the pattern of the monthly loss
data of electric energy in Thailand from January 2018 to December 2020. The minimum
loss is 387 MWh in October 2020, the maximum loss is 1036 MWh in March 2020, and the
average losses in 2018, 2019, and 2020 are 635 MWh, 653 MWh, and 650 MWh, respectively.

Figure 6. (a) The pattern of electric energy demand data from 2018 to 2020. (b) The pattern of electric
energy loss data from 2018 to 2020.

Figure 7a,b are the patterns of the peak demand data of electric energy and the pattern
of the workday demand data of electric energy, respectively. Both peak demand data and
workday demand data were collected in 15 min intervals from January 2018 to December
2020 in terms of a kiloWatt-Hour (kWh). The peak demand data were collected from the
days that use the highest electricity for each month, and the workday demand data were
collected from Monday to Friday for each month.

Figure 8 is the group pattern of the peak demand data of electric energy collected in
15 min intervals from January 2018 to December 2020 in terms of kWh. This dataset can be
separated into 8 clusters when sorting from the highest total electric energy demand to the
lowest total electric energy demand. The 8 clusters consist of Large Business (LB), Large
Residential or Residential (L-RES) demand, which consumes energy greater than or equal
to 150 kWh per month, Medium Business (MB), Small Business (SB), Small Residential or
Residential (S-RES) demand, which consumes energy less than 150 kWh per month, Specific
Business (SPB), Water Pumping for Agriculture (WPA), and Nonprofit Organization (NPO).
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Figure 7. (a) Pattern of peak day electric energy demand data from 2018 to 2020. (b) Pattern of
workday electric energy demand data from 2018 to 2020.

Figure 8. (a) Pattern of high electric energy demand cluster, which consists of Large Business (LB),
Large Residential (L-RES), Medium Business (MB), and Small Business (SB). (b) Pattern of low electric
energy demand cluster, which consists of Small Residential (S-RES), Specific Business (SPB), Water
Pumping for Agriculture (WPA), and Nonprofit Organization (NPO).

3.2. Dataset

When the preparation of electric energy demand data was completed, the experimental
datasets were built to be tested in proposed models to forecast data with minimum error.
In this research, the datasets were classified into seven groups for testing the proposed
models. Table 2 describes the detail of each dataset, which is separated in terms of train
and test data.
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Table 2. Details of Datasets.

Datasets Dataset Type Forecasting Type Train Data Test Data

1 Monthly electric energy demand data Long-term forecasting JAN 2018–DEC 2019 JAN 2020–DEC 2020
2 Monthly electric energy loss data Long-term forecasting JAN 2018–DEC 2019 JAN 2020–DEC 2020

3 Peak day 15 min interval electric
energy demand data Long-term forecasting JAN 2018–DEC 2019 JAN 2020–DEC 2020

4 Workday 15 min interval electric
energy demand data Long-term forecasting JAN 2018–DEC 2019 JAN 2020–DEC 2020

5 Peak day 15 min interval electric
energy demand data Short-term forecasting JAN 2020–NOV 2020 DEC 2020

6 Workday 15 min interval electric
energy demand data Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7A Cluster of 15 min interval peak day
electric energy demand data—S-RES Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7B Cluster of 15 min interval peak day
electric energy demand data—L-RES Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7C Cluster of 15 min interval peak day
electric energy demand data—SB Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7D Cluster of 15 min interval peak day
electric energy demand data—MB Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7E Cluster of 15 min interval peak day
electric energy demand data—LB Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7F Cluster of 15 min interval peak day
electric energy demand data—SPB Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7G Cluster of 15 min interval peak day
electric energy demand data—NPO Short-term forecasting JAN 2020–NOV 2020 DEC 2020

7H Cluster of 15 min interval peak day
electric energy demand data—WPA Short-term forecasting JAN 2020–NOV 2020 DEC 2020

Figure 9 is the electric energy pattern data from dataset 1 to dataset 6, where the blue
line is the train data for machine learning, and the red line is the test data for machine
learning. Therefore, the detail from dataset 1 to dataset 6 can be described as follows:

Dataset 1 is the monthly electric energy demand data that is separated from January
2018 to December 2019 as train data (24 instances) and from January 2020 to December
2020 as test data (12 instances).

Dataset 2 is the monthly electric energy loss data that is separated from January 2018
to December 2019 as train data (24 instances) and from January 2020 to December 2020 as
test data (12 instances).

Dataset 3 is the peak day 15 min interval electric energy demand data that is separated
from January 2018 to December 2019 as train data (2304 instances) and from January 2020
to December 2020 as test data (1151 instances).

Dataset 4 is the workday 15 min interval electric energy demand data that is separated
from January 2018 to December 2019 as train data (2304 instances) and from January 2020
to December 2020 as test data (1151 instances).

Dataset 5 is the peak day 15 min interval electric energy demand data that is separated
from January 2020 to December 2020 as train data (1506 instances) and only December 2020
as test data (96 instances).

Dataset 6 is the workday 15 min interval electric energy demand data that is separated
from January 2020 to December 2020 as train data (1506 instances) and only December 2020
as test data (96 instances).

Figure 10 is the electric energy pattern data of dataset 7, where the blue line is the train
data for machine learning, and the red line is the test data for machine learning. Therefore,
the detail of dataset 7 can be described as follows:

Dataset 7 is the cluster of 15 min interval peak day electric energy demand data that
are separated into 8 subcases (7A to 7H). Subcase 7A is the cluster of S-RES electric energy
demand data, subcase 7B is the cluster of L-RES electricity demand data, subcase 7C is the
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cluster of SB electricity demand data, subcase 7D is the cluster of MB electricity demand
data, subcase 7E is the cluster of LB electricity demand data, subcase 7F is the cluster of
SPB electricity demand data, subcase 7G is the cluster of NPO electricity demand data, and
subcase 7H is the cluster of WPA electricity demand data. All subcases are separated from
January 2020 to December 2020 as train data (1506 instances) and only December 2020 as
test data (96 instances).

Figure 9. Train data (blue line) and test data (red line) of datasets 1 to 6 [40,41].

3.3. Proposed Models

The concept of the proposed models is using metaheuristic algorithms to optimize the
weight parameter to reduce the cause of overfitting. In this research, three metaheuristic
algorithms, which consist of JSO, HHO, and FPA, modified the randomization of weight
parameter for searching the best weight parameter to improve the performance of the
forecasting. The algorithm of the proposed models is described in Algorithm 1.

First of all, based on the ELM model, all setting parameters were defined in the model,
which consisted of a number of hidden nodes, input and target data, and initial weight
parameter. Secondly, based on metaheuristic models, all setting parameters of each model
were defined, which consisted of the number of populations, switch probability for the
FPA model, and the best solution of the population. Thirdly, the weight parameter was
defined based on metaheuristic models and then evaluated the new weight parameter
for calculating in the ELM model. Fourthly, the activation function was calculated in the
ELM model to receive the last weight parameter from the hidden layer. All processes
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were calculated until the iteration reached the max iteration criterion and the best weight
parameter was received for calculating in the testing phase.

Figure 10. Train data (blue line) and test data (red line) of each subcase of dataset 7 [40,41].

3.4. Experimental Setup and Hyper-Parameters Setting

The hardware specification of the computer used in this research work was CPU Intel
Core i7-7700HQ 2.80 GHz (up to 3.40 GHz), RAM 32 GB, and SSD NVMe. The software
was the MATLAB version R2020a. The major hyper-parameters [42,43] of proposed models
consisted of the number of hidden nodes and the number of populations and the major
hyper-parameters [44] of state-of-the-art models consisting of the number of hidden nodes
that were analyzed through the electric energy demand datasets. The objective function to
find the best hyper-parameters was the Root Mean Square Error (RMSE).

The hyper-parameter tuning [45,46] of the proposed and state-of-the-art models is
shown in Figure 11. In this experiment, the average of RMSE from all models was obtained
by taking all the datasets (7 datasets) used to find the RMSE value, then averaging RMSE
value in terms of the number of hidden nodes and population. In the proposed models,
the boundary of hidden nodes was set from 20 to 200 (increasing 20 nodes), the boundary
of populations was set from 20 to 100 (increasing 10 populations), and the number of
iterations for metaheuristics was set to 100 due to the fast computation. In the state-of-the-
art models, the boundary of hidden nodes was set from 20 to 300 (increasing 20 nodes).
For fast computing in the long short-term memory (LSTM) model, the fixed setting of
hyper-parameters in the LSTM model consisted of 2 hidden layers, 1000 epochs, 64 batch
size, and optimizer was set to Adam.
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Algorithm 1. Pseudo-code of the Proposed Models.

1: Define objective function f (x), (x i, ti) ∈ Rn × Rm by i = 1, 2, . . . , N
2: Define the initialize n number of population in metaheuristic models (JSO, HHO, or FPA)
3: Define a switch probability p ε [0,1] (FPA only)
4: Define the best solution g∗ in the initial population
5: Define L hidden nodes in ELM
6: Define G(wi, bi, xi) Hidden nodes activation function in ELM (sigmoidal function)
7: Define β output weight vector
8: Define T as the max iteration for metaheuristic models
9: while (t < T)
10: for i = 1: n
11: Adjust wt+1

i as the population with the metaheuristic models (JSO, HHO, or FPA)
12: Evaluate new solution wt+1

i to ELM
13: for i = 1:L
14: for j = 1:N
15: H(i,j) = G

(
wt+1

i , bi, xi

)
∗ β

16: end
17: end
18: β = H†T
19: If new solutions are better, update new g∗ in the population
20: end for
21:Find the current best solution g∗ & best output weight β

22:end while

According to Figure 11, the hyper-parameter experiment results show that the best
average RMSE of JS-ELM is 0.0838, and the locations of hidden nodes and populations are
40 and 50, respectively. The best average RMSE of HH-ELM is 0.0927, and the locations
of hidden nodes and populations are 40 and 50, respectively. The best average RMSE
of FP-ELM is 0.1384, and the locations of hidden nodes and populations are 40 and 50,
respectively. The best average RMSE of LSTM is 0.0880, and the location of hidden nodes is
200. The best average RMSE of ELM is 0.0907, and the location of hidden nodes is 200.

For comparing with the metaheuristic-based proposed models, the Particle Swarm
Optimization Extreme Learning Machine (PSO-ELM) [47,48] model was considered to
forecast in electric energy demand datasets. The best hyper-parameters of PSO-ELM model
were received from [48], which consist of 150 hidden nodes, 30 populations (swarm size),
acceleration coefficients C1 = 1 and C2 = 2, and inertia weight was set to 0.9.

To summarize, the best hyper-parameters of JS-ELM, HH-ELM, and FP-ELM are
40 hidden nodes and 50 populations. The best hyper-parameters of LSTM and ELM are
200 hidden nodes. All suitable hyper-parameters were defined as presented in Table 3.

3.5. Performance Evaluation

In this research, all datasets were processed by min–max normalization [49] as calcu-
lated in (25).

x′ =
x−min(x)

max(x)−min(x)
(25)

where x is a data point and x′ is normalized data.
To evaluate the performance of proposed models, three error metrics, Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error
(RMSE), were used in this experiment as presented in (26)–(28), respectively.

MAE(t) =
1
n

n

∑
i=1
|ei − ti| (26)

MAPE(t) =
100
n

n

∑
i=1

∣∣∣∣ ei − ti
ti

∣∣∣∣ (27)
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RMSE(t) =

√
∑n

i=1(ei − ti)
2

n
(28)

where i is the present time variable, n is the number of input data, ei is the expected data at
the time i, and ti is the actual data at the time i.

To receive the best solution from the performance evaluation, which is suggested
from [50,51], all error metrics were combined to the Cumulative Weighted Error (CWE) for
evaluating the final result of the experiment as presented in (29).

CWE =
MAE +

(
MAPE

100

)
+ RMSE

3
(29)

After error metrics were completely calculated, the result of error metrics was used to
evaluate the performance of the proposed models as discussed in Section 4.

Figure 11. Hyper-parameter tuning of the proposed and state-of-the-art models where #pop is the
number of populations and #HN is the number of hidden nodes. (a) The average RMSE of JS-ELM.
(b) The average RMSE of HH-ELM. (c) The average RMSE of FP-ELM. (d) The average RMSE of
LSTM and ELM.

Table 3. Initial Parameters of All Models.

Models Number of
Hidden Nodes

Number of
Populations

Number of Iterations for
Metaheuristic
Optimization

Number of Global Iterations
for Machine Learning Model

JS-ELM 40 50 100 20
HH-ELM 40 50 100 20
FP-ELM 40 50 100 20
LSTM 200 - - 20

PSO-ELM 150 30 100 20
ELM 200 - - 20
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4. Experimental Results

This section describes the experimental results of the proposed models and ELM using
electric energy demand datasets. This section is separated into three subsections consisting
of the experimental results overview, forecasting time consumption for each model, and
the summary of the experimental results.

4.1. Discussion of the Experimental Results

In the experimental results, the datasets mentioned in Section 3.2 were set. The
forecasting error of the proposed models was presented and all error metrics as mentioned
in Section 3.5 were compared. According to Table 4, the detail of the experimental result
is described in terms of the dataset with the minimum error, minimum mean error, and
standard deviation (S.D.) error result when using the number of global iterations defined
in Table 3.

Table 4. Experimental results of all models (bold text is the best error result).

Datasets Forecasting Error Metric Proposed Models State-of-the-Art Models
JS-ELM HH-ELM FP-ELM LSTM PSO-ELM ELM

1

MAE
E∗ 0.1122 0.1491 0.2010 0.1868 0.2277 0.1571
µ 0.1829 0.2268 0.3039 0.2326 0.2683 0.1740
σ 0.0390 0.0387 0.0455 0.0224 0.0277 0.0115

MAPE
E∗ 2.4418 2.6958 4.7795 3.2880 2.6200 3.5355
µ 3.8853 3.9704 7.9162 3.5178 3.4023 4.7433
σ 1.6551 0.7713 2.2491 0.1998 0.4985 0.7377

RMSE
E∗ 0.1717 0.2026 0.2761 0.2307 0.2729 0.2000
µ 0.2255 0.2712 0.3733 0.2776 0.3181 0.2184
σ 0.0408 0.0426 0.0494 0.0237 0.0310 0.0106

CWE
E∗ 0.1028 0.1262 0.1750 0.1501 0.1756 0.1308
µ 0.1491 0.1792 0.2521 0.1818 0.2068 0.1466
σ 0.0321 0.0297 0.0391 0.0160 0.0212 0.0098

2

MAE
E∗ 0.1662 0.1845 0.1866 0.3406 0.3014 0.3075
µ 0.2803 0.2826 0.2657 0.4095 0.3366 0.3192
σ 0.0448 0.0399 0.0510 0.0299 0.0308 0.0077

MAPE
E∗ 16.8109 21.8086 20.0015 24.3841 39.6875 17.0482
µ 101.3614 87.9551 110.2814 32.0613 324.3600 19.8431
σ 237.7910 114.8906 167.0535 4.2338 366.7532 2.7022

RMSE
E∗ 0.1918 0.2513 0.2323 0.4140 0.3291 0.3472
µ 0.3361 0.3346 0.3291 0.4852 0.4008 0.3592
σ 0.0456 0.0376 0.0600 0.0329 0.0358 0.0064

CWE
E∗ 0.1754 0.2179 0.2063 0.3328 0.3424 0.2751
µ 0.5433 0.4989 0.5659 0.4051 1.3269 0.2923
σ 0.8228 0.4088 0.5938 0.0350 1.2447 0.0137

3

MAE
E∗ 0.0493 0.0496 0.0370 0.0356 0.0441 0.1371
µ 0.0854 0.0922 0.0524 0.0720 0.0553 0.1644
σ 0.0298 0.0332 0.0092 0.0359 0.0532 0.0263

MAPE
E∗ 2.0761 2.2084 2.2287 2.0124 2.2983 6.7634
µ 2.2080 2.3103 2.2734 2.2679 2.2789 12.5276
σ 0.1040 0.0610 0.0811 0.1488 0.0542 6.5947

RMSE
E∗ 0.0832 0.0843 0.0784 0.0688 0.0818 0.1668
µ 0.1087 0.1141 0.0862 0.0985 0.0945 0.1996
σ 0.0225 0.0251 0.0063 0.0301 0.0212 0.0289

CWE
E∗ 0.0511 0.0520 0.0459 0.0415 0.0499 0.1238
µ 0.0721 0.0765 0.0538 0.0644 0.0678 0.1631
σ 0.0178 0.0196 0.0054 0.0225 0.0031 0.0404

4 MAE
E∗ 0.0276 0.0262 0.0259 0.0180 0.0298 0.1221
µ 0.0579 0.0519 0.0294 0.0725 0.0578 0.1555
σ 0.0176 0.0220 0.0047 0.0302 0.0019 0.0323



Computers 2022, 11, 66 19 of 34

Table 4. Cont.

Datasets Forecasting Error Metric Proposed Models State-of-the-Art Models
JS-ELM HH-ELM FP-ELM LSTM PSO-ELM ELM

MAPE
E∗ 2.1786 2.2010 2.3628 0.8040 2.4519 7.3798
µ 2.2888 2.3608 2.4075 0.9159 2.4599 15.2733
σ 0.0945 0.0773 0.0391 0.0711 0.9825 4.8535

RMSE
E∗ 0.0639 0.0668 0.0674 0.0503 0.0698 0.1504
µ 0.0830 0.0812 0.0692 0.0900 0.0782 0.1861
σ 0.0120 0.0132 0.0019 0.0271 0.0429 0.0349

CWE
E∗ 0.0377 0.0383 0.0390 0.0254 0.0399 0.1154
µ 0.0546 0.0522 0.0409 0.0572 0.0569 0.1648
σ 0.0102 0.0120 0.0023 0.0193 0.0341 0.0386

5

MAE
E∗ 0.0464 0.0596 0.0994 0.0807 0.1078 0.1509
µ 0.1444 0.1044 0.1103 0.1377 0.1985 0.1955
σ 0.0928 0.0234 0.0057 0.0372 0.0231 0.0321

MAPE
E∗ 2.6149 2.7385 2.7791 1.9792 2.8974 7.8708
µ 7.1240 2.9822 2.8590 3.7442 2.9987 15.5761
σ 11.7593 0.1493 0.0493 0.8836 0.1293 6.4519

RMSE
E∗ 0.0706 0.0896 0.1221 0.1308 0.1298 0.2092
µ 0.1792 0.1235 0.1300 0.1793 0.1984 0.2460
σ 0.0924 0.0184 0.0043 0.0313 0.0231 0.0308

CWE
E∗ 0.0477 0.0589 0.0831 0.0771 0.0868 0.1463
µ 0.1316 0.0859 0.0896 0.1182 0.0981 0.1991
σ 0.1009 0.0144 0.0035 0.0258 0.0412 0.0425

6

MAE
E∗ 0.0838 0.0828 0.1194 0.1356 0.1427 0.2016
µ 0.1451 0.1352 0.1383 0.1538 0.1549 0.2878
σ 0.0317 0.0189 0.0064 0.0125 0.0542 0.0669

MAPE
E∗ 2.7064 2.6429 2.7679 0.8133 2.9145 9.4805
µ 3.0684 2.9169 2.8812 1.0700 2.8992 48.6885
σ 0.3358 0.2019 0.0497 0.1153 0.0341 57.6711

RMSE
E∗ 0.1068 0.1139 0.1648 0.1767 0.1809 0.2347
µ 0.1712 0.1631 0.1723 0.1885 0.1874 0.3268
σ 0.0286 0.0173 0.0036 0.0087 0.0241 0.0692

CWE
E∗ 0.0726 0.0744 0.1040 0.1068 0.1175 0.1770
µ 0.1157 0.1092 0.1131 0.1177 0.1237 0.3671
σ 0.0212 0.0127 0.0035 0.0075 0.0412 0.2376

7A

MAE
E∗ 0.0820 0.0772 0.0741 0.1178 0.0863 0.1682
µ 0.1153 0.1218 0.1005 0.1652 0.1562 0.2885
σ 0.0249 0.0177 0.0146 0.0339 0.0369 0.0791

MAPE
E∗ 10.3068 10.5220 10.5318 17.3387 15.1356 159.3181
µ 12.4254 11.8836 11.1192 55.7781 15.3368 921.8174
σ 1.8623 0.9537 0.3495 66.0648 0.8156 1800.9530

RMSE
E∗ 0.1115 0.1052 0.1022 0.1691 0.1934 0.2211
µ 0.1427 0.1471 0.1260 0.2181 0.1996 0.3286
σ 0.0225 0.0172 0.0133 0.0380 0.058 0.0755

CWE
E∗ 0.0989 0.0959 0.0939 0.1534 0.1867 0.6608
µ 0.1274 0.1292 0.1126 0.3137 0.1923 3.2784
σ 0.0220 0.0148 0.0105 0.2442 0.0265 6.0547

7B

MAE
E∗ 0.0704 0.1335 0.1179 0.0571 0.1394 0.1583
µ 0.1643 0.1804 0.3152 0.1337 0.1557 0.2125
σ 0.0577 0.0170 0.0943 0.0381 0.0878 0.0498

MAPE
E∗ 10.6971 10.3719 9.0110 4.1967 9.1245 29.5542
µ 11.4928 11.6090 13.0535 6.4049 9.6878 77.1914
σ 0.7465 0.6466 2.4811 1.4669 5.7795 46.7933

RMSE
E∗ 0.0964 0.1525 0.1368 0.1027 0.1475 0.2282
µ 0.1830 0.2001 0.3414 0.1594 0.1969 0.2732
σ 0.0579 0.0159 0.1032 0.0294 0.0677 0.0451

CWE
E∗ 0.0912 0.1299 0.1149 0.0673 0.1264 0.2273
µ 0.1541 0.1655 0.2624 0.1191 0.1377 0.4192
σ 0.0410 0.0131 0.0741 0.0274 0.0547 0.1876
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Table 4. Cont.

Datasets Forecasting Error Metric Proposed Models State-of-the-Art Models
JS-ELM HH-ELM FP-ELM LSTM PSO-ELM ELM

7C

MAE
E∗ 0.0614 0.1533 0.1706 0.0795 0.1677 0.1620
µ 0.1514 0.1892 0.1811 0.1548 0.1814 0.3231
σ 0.0345 0.0520 0.0058 0.0281 0.0611 0.1019

MAPE
E∗ 4.0018 4.3382 4.2618 3.2813 4.4435 20.5478
µ 4.6888 4.6820 4.4270 7.9141 4.6989 59.7436
σ 0.8142 0.2128 0.0764 12.3156 0.0896 62.1757

RMSE
E∗ 0.1025 0.1810 0.1910 0.1308 0.1973 0.2197
µ 0.1825 0.2136 0.2042 0.1924 0.2137 0.3597
σ 0.0274 0.0467 0.0064 0.0243 0.0631 0.0983

CWE
E∗ 0.0680 0.1259 0.1347 0.0810 0.1361 0.1957
µ 0.1269 0.1499 0.1432 0.1421 0.1468 0.4268
σ 0.0233 0.0336 0.0043 0.0585 0.0435 0.2740

7D

MAE
E∗ 0.0672 0.0389 0.0317 0.0210 0.0379 0.2040
µ 0.1192 0.1007 0.0423 0.0623 0.0576 0.2310
σ 0.0323 0.0499 0.0157 0.0611 0.0193 0.0241

MAPE
E∗ 3.5799 3.4621 3.7425 1.8334 3.7989 23.2984
µ 3.9516 4.4777 3.9223 2.3698 3.9155 42.9784
σ 0.2343 1.3263 0.1612 0.4682 0.1789 19.6851

RMSE
E∗ 0.0897 0.0712 0.0676 0.0285 0.0797 0.2336
µ 0.1368 0.1191 0.0734 0.0726 0.0895 0.2838
σ 0.0333 0.0438 0.0126 0.0611 0.0567 0.0356

CWE
E∗ 0.0642 0.0482 0.0456 0.0226 0.0489 0.2235
µ 0.0985 0.0882 0.0516 0.0528 0.0597 0.3149
σ 0.0227 0.0357 0.0100 0.0423 0.0935 0.0855

7E

MAE
E∗ 0.0612 0.0612 0.0608 0.0591 0.0688 0.2469
µ 0.0647 0.0642 0.0634 0.0769 0.0712 0.2797
σ 0.0035 0.0021 0.0037 0.0119 0.0121 0.0255

MAPE
E∗ 1.3713 1.3617 1.3800 1.4003 1.3966 7.4999
µ 1.4018 1.3958 1.4350 1.7621 1.4579 17.5561
σ 0.0176 0.0217 0.0767 0.2355 0.2899 23.2809

RMSE
E∗ 0.0818 0.0818 0.0817 0.0756 0.0799 0.2915
µ 0.0859 0.0853 0.0836 0.1019 0.0897 0.3304
σ 0.0035 0.0019 0.0031 0.0163 0.0048 0.0291

CWE
E∗ 0.0523 0.0522 0.0521 0.0496 0.0587 0.2045
µ 0.0549 0.0545 0.0538 0.0655 0.0574 0.2619
σ 0.0024 0.0014 0.0025 0.0102 0.0040 0.0958

7F

MAE
E∗ 0.0370 0.0364 0.0351 0.0298 0.0389 0.2810
µ 0.0445 0.0410 0.0384 0.0368 0.0415 0.3115
σ 0.0049 0.0050 0.0016 0.0055 0.0063 0.0290

MAPE
E∗ 1.5979 1.518 1.4372 1.3786 1.4889 23.3061
µ 1.7345 1.6883 1.5431 1.4887 1.7562 34.2174
σ 0.1305 0.1385 0.0765 0.1271 0.1015 18.2012

RMSE
E∗ 0.0657 0.0664 0.0659 0.0659 0.0678 0.3297
µ 0.0718 0.0691 0.0675 0.0686 0.0782 0.3637
σ 0.0032 0.0030 0.0009 0.0030 0.0087 0.0312

CWE
E∗ 0.0396 0.0393 0.0384 0.0365 0.0399 0.2813
µ 0.0445 0.0423 0.0404 0.0401 0.0484 0.3391
σ 0.0032 0.0031 0.0011 0.0033 0.0087 0.0807

7G

MAE
E∗ 0.0285 0.0281 0.0276 0.0298 0.0379 0.1073
µ 0.0300 0.0296 0.0297 0.0621 0.0485 0.1729
σ 0.0008 0.0009 0.0015 0.0427 0.0042 0.0370

MAPE
E∗ 1.8554 1.8418 1.7774 1.9445 1.7884 13.4419
µ 1.8964 1.8908 1.8846 4.0213 1.8993 14.7832
σ 0.0239 0.0268 0.0934 5.0059 0.0367 0.6157

RMSE
E∗ 0.0380 0.0379 0.0380 0.0461 0.0388 0.1363
µ 0.0395 0.0393 0.0401 0.0827 0.0399 0.2280
σ 0.0008 0.0007 0.0023 0.0558 0.0010 0.0538
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Table 4. Cont.

Datasets Forecasting Error Metric Proposed Models State-of-the-Art Models
JS-ELM HH-ELM FP-ELM LSTM PSO-ELM ELM

CWE
E∗ 0.0284 0.0281 0.0278 0.0318 0.0288 0.1260
µ 0.0295 0.0293 0.0296 0.0617 0.0298 0.1829
σ 0.0005 0.0006 0.0016 0.0495 0.0007 0.0323

7H

MAE
E∗ 0.0296 0.0298 0.0293 0.0482 0.0311 0.2217
µ 0.0352 0.0348 0.0327 0.0934 0.0324 0.2857
σ 0.0033 0.0029 0.0021 0.0443 0.0115 0.0465

MAPE
E∗ 3.7510 4.0816 3.9517 6.1304 3.8854 53.3827
µ 4.4249 4.3978 4.2475 12.0408 4.5691 153.4755
σ 0.3165 0.1781 0.1753 8.1731 0.5362 107.6369

RMSE
E∗ 0.0491 0.0498 0.0476 0.0684 0.0562 0.2875
µ 0.0550 0.0534 0.0513 0.1252 0.0556 0.3252
σ 0.0032 0.0023 0.0022 0.0535 0.0135 0.0448

CWE
E∗ 0.0387 0.0401 0.0388 0.0593 0.0398 0.3477
µ 0.0448 0.0441 0.0421 0.1130 0.0455 0.7152
σ 0.0032 0.0023 0.0020 0.0599 0.0068 0.3892

The minimum error was obtained by finding the lowest forecasting error result from
the global iterations as presented in (30). The minimum mean error was obtained by
averaging all results from the global iterations as presented in (31). The minimum S.D.
error was obtained by using the forecasting error result and the minimum mean error result
to indicate the standard deviation of the error solution from global iterations as presented
in (32).

E∗ = min
i
{Ei}N

i=1 (30)

µ =
1
N

N

∑
i=1

Ei (31)

σ =

√√√√ 1
N − 1

N

∑
i=1
|Ei − µ|2 (32)

where E∗ is the minimum error, µ is the minimum mean error, σ is the minimum S.D. error,
i is the present time variable, N is the number of global iterations, and Ei is the result of the
forecasting error metric for each global iteration.

The minimum forecasting error result of dataset 1 is shown in Figure 12. The result
shows that all models provided results near the actual target value. Furthermore, according
to the CWE error metric in Table 4, JS-ELM provided the best minimum error result when
compared to the other models’ results. However, LSTM, PSO-ELM, and ELM provided
higher stability of forecasting when considered on the minimum mean error and minimum
S.D. error. HH-ELM provided the minimum error lower than that of the ELM model, but
the minimum mean error was higher than that of the ELM model. The overall error metrics
of FP-ELM were higher than those of other models.

The minimum forecasting error result of dataset 2 is shown in Figure 13. The result
shows that all models provided results near the actual target value. Furthermore, according
to the CWE error metric in Table 4, JS-ELM provided the best minimum error result when
compared to the other models’ results. However, the minimum mean error and minimum
standard deviation of JS-ELM, HH-ELM, FP-ELM, and PSO-ELM were higher than those
of the LSTM and ELM models, which means the proposed models could provide the
instability of the attempt to dataset 2.

The minimum forecasting error result of dataset 3 s shown in Figure 14. All proposed
models and LSTM provided results near the actual target value. The ELM model was
already overfitted because the training RMSE result was 0.0207, but the forecasting RMSE
result was 0.1668. Furthermore, the minimum mean error and minimum standard deviation
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of ELM were higher than those of the proposed models, which means the ELM could
provide the instability of the attempt to dataset 3.

Figure 12. Forecasting result of dataset 1 (minimum error result).

Figure 13. Forecasting result of dataset 2 (minimum error result).
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The minimum forecasting error result of dataset 4 is shown in Figure 15. All proposed
models and LSTM provided results near the actual target value. The ELM model was
already overfitted because the training RMSE result was 0.0253, but the forecasting RMSE
result was 0.1504. Furthermore, the minimum mean error and minimum standard deviation
of ELM were higher than those of proposed models, which means the ELM could provide
the instability of the attempt to dataset 4.

Figure 14. Forecasting result of dataset 3 (minimum error result). (a) Forecasted energy of each
proposed model. (b) Forecasted energy of each state-of-the-art model.

The minimum forecasting error result of dataset 5 is shown in Figure 16. The result
shows that the expected target value of JS-ELM was close to the actual target value. The
expected target values of HH-ELM and FP-ELM slightly swung from 02:00 to 04:00 when
compared to the actual target value. The expected target values of LSTM slightly swung
from 00:00 to 01:00 when compared to the actual target value. The expected target value of
ELM was clearly different from the actual target value.

The minimum forecasting error result of dataset 6 is shown in Figure 17. The result
shows that all models provided results near the actual target value. However, the ELM
model was already overfitted because the training RMSE result was 0.0151, but the fore-
casting RMSE result was 0.2347. Furthermore, the minimum mean error and minimum
standard deviation of ELM were higher than those of the proposed models, which means
ELM could provide the instability of the attempt to dataset 6.

The minimum forecasting error results of dataset 7 are shown in Figures 18–20.
Dataset 7 contained eight sub-datasets to attempt on this experiment, which consists of
sub-dataset 7A (the S-RES profile), sub-dataset 7B (the L-RES profile), sub-dataset 7C (the
SB profile), sub-dataset 7D (the MB profile), sub-dataset 7E (the LB profile), sub-dataset 7F
(the SPB profile), sub-dataset 7G (the NPO profile), and sub-dataset 7H (the WPA pro-
file). The overall results of dataset 7 show that the proposed models provided the results
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nearest to the actual target value. However, the expected target value of the ELM model
was instability, which means the ELM model was already overfitted because the training
accuracy between the expected target value and actual target value was overrated, thus, the
forecasting result was unacceptable. Furthermore, the minimum mean error and minimum
standard deviation of ELM were higher than those of the proposed models, which means
the ELM could provide the instability of the attempt to dataset 7.

Figure 15. Forecasting result of dataset 4 (minimum error result). (a) Forecasted energy of each
proposed model. (b) Forecasted energy of each state-of-the-art model.

4.2. Discussion on the Time Consumption

In this research, the training times of each forecasting model were calculated and
compared. According to Table 5, the result of the training time showed that ELM consumed
the least time compared with other models. Due to the metaheuristic calculation, JS-ELM
and FP-ELM consumed a lower amount of time to calculate the data and provide the best
result. HH-ELM consumed more time than the other models because the number of time
steps of the HHO calculation are greater than JSO and FPA. However, the LSTM model
consumed more time than all other models in the experiment. The forecasting time was not
focused upon because all models consumed a low forecasting time (in milliseconds).

4.3. Summary of the Experimental Results

In this research, three main factors, the minimum error, minimum mean error, and
minimum standard deviation, were analyzed by error metrics (MAE, MAPE, RMSE, and
CWE) to evaluate the performance of all models that fitted each dataset.

The CWE comparison for all models from datasets 1 to 6 is shown in Figure 21. For
datasets 1 and 2, the JS-ELM model was the most suitable in terms of the minimum error
result, while the ELM was the most suitable in terms of the minimum mean error and S.D.
error. For dataset 3, the FP-ELM model was suitable for all three factors. For dataset 4,



Computers 2022, 11, 66 25 of 34

the LSTM model was the most suitable in terms of the minimum error result, while the
FP-ELM was the most suitable in terms of the minimum mean error and S.D. error. For
datasets 5 and 6, the JS-ELM model was the most suitable in terms of the minimum error
result, while HH-ELM and FP-ELM were the most suitable in terms of the minimum mean
error and S.D. error, respectively.

Figure 16. Forecasting result of dataset 5 (minimum error result). (a) Forecasted energy of each
proposed model. (b) Forecasted energy of each state-of-the-art model.

Figure 17. Cont.
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Figure 17. Forecasting result of dataset 6 (minimum error result). (a) Forecasted energy of each
proposed model. (b) Forecasted energy of each state-of-the-art model.

Figure 18. Forecasting result of dataset 7A–7C (minimum error result). (a) Forecasted energy of
each proposed model in dataset 7A. (b) Forecasted energy of each proposed model in dataset 7B.
(c) Forecasted energy of each proposed model in dataset 7C.
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Figure 19. Forecasting result of dataset 7D–7F (minimum error result). (a) Forecasted energy of
each proposed model in dataset 7D. (b) Forecasted energy of each proposed model in dataset 7E.
(c) Forecasted energy of each proposed model in dataset 7F.

Figure 20. Cont.
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Figure 20. Forecasting result of dataset 7G–7H (minimum error result). (a) Forecasted energy of each
proposed model in dataset 7G. (b) Forecasted energy of each proposed model in dataset 7H.

Table 5. Result of the Training Time Experiment (Bold text is the suitable time processing result).

Datasets
The Training Time of Models (Seconds)

JS-ELM HH-ELM FP-ELM LSTM PSO-ELM ELM

1 11.7813 20.0781 9.5625 43.7802 17.3698 0.0001

2 9.1094 17.2500 8.4844 35.4268 14.2356 0.0001

3 102.8281 228.6250 96.1563 397.0562 135.3756 0.7188

4 89.3438 183.2188 89.6563 393.6320 129.8451 0.5781

5 74.5469 146.0156 70.4844 386.5398 107.6406 0.4844

6 69.6563 137.0156 67.0469 375.6900 108.0342 0.2500

7A 61.0313 124.6563 60.5781 345.5692 109.0312 0.2344

7B 62.1719 126.6250 61.1875 358.3612 108.0781 0.2969

7C 64.2031 132.9688 64.2344 362.5597 107.9843 0.3281

7D 70.8438 138.5625 66.0625 372.6623 106.2031 0.3594

7E 64.2188 138.9375 65.7656 351.1258 108.9218 0.2500

7F 65.5625 132.3281 64.3594 363.6690 106.5625 0.4219

7G 62.6719 127.1406 67.9063 349.9562 108.9531 0.3906

7H 74.6094 145.0469 75.4219 383.3356 104.0156 0.2188

The CWE comparison of all models for dataset 7 is shown in Figure 22. All proposed
models were the most suitable for all three factors, while the ELM model provided the
highest CWE rate, which means the ELM model was already overfitted, as referred to in
Section 4.1.

According to Section 4.2, the time consumptions of the proposed models were higher
than the time consumption of the ELM model because the proposed models were tuned by
metaheuristics optimization. Major factors that directly affected the high time consumption
of the proposed models consist of the time step calculation for each metaheuristic algorithm,
number of populations, iterations of the metaheuristics algorithms, and number of hidden
nodes of the ELM model. In conclusion, the proposed models slightly consumed more time
in calculation than the time consumption of the ELM model, while the experiment results
for all datasets were highly accurate and more stable than the result of the ELM model.
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In comparison, the overall error results of the proposed models and LSTM were close.
However, according to Table 5, the training time of the proposed models was faster than
the LSTM model.

Figure 21. CWE comparison for all models from datasets 1 to 6 (lower is better). (a) CWE comparison
of each proposed model in dataset 1. (b) CWE comparison of each proposed model in dataset 2.
(c) CWE comparison of each proposed model in dataset 3. (d) CWE comparison of each proposed
model in dataset 4. (e) CWE comparison of each proposed model in dataset 5. (f) CWE comparison
of each proposed model in dataset 6.
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Figure 22. CWE comparison for all models from datasets 7 (lower is better). (a) CWE comparison
of each proposed model in dataset 7A. (b) CWE comparison of each proposed model in dataset 7B.
(c) CWE comparison of each proposed model in dataset 7C. (d) CWE comparison of each proposed
model in dataset 7D. (e) CWE comparison of each proposed model in dataset 7E. (f) CWE comparison
of each proposed model in dataset 7F. (g) CWE comparison of each proposed model in dataset 7G.
(h) CWE comparison of each proposed model in dataset 7H.

5. Conclusions and Future Work

This research proposed the novel ELM model optimized by metaheuristic algorithms,
namely JS-ELM, HH-ELM, and FP-ELM, to forecast the electric energy dataset. The char-
acteristic of the metaheuristic optimizations, namely JSO, HHO, and FPA, is that they are
self-adaptive to tune the weight parameter of the ELM model without being trapped in
the local optimum. Therefore, the models mentioned earlier were applied to the ELM
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model by tuning the weight parameter of the ELM model instead of using the traditional
randomization of the weight parameter. In addition, these three optimization methods can
reduce the number of hidden nodes of the ELM model. To demonstrate the performance of
the proposed method, all models were applied to forecast seven real-life electric energy
datasets. The dataset of electric energy demand consists of monthly electric energy demand
data from 2018 to 2020, monthly electric energy loss data from 2018 to 2020, peak day 15 min
interval electric energy demand data from 2018 to 2020, workday 15 min interval electric
energy demand data from 2018 to 2020, peak day 15 min interval electric energy demand
data in 2020, workday 15 min interval electric energy demand data in 2020, and cluster of
15 min interval peak day electric energy demand data. Consequently, the result showed
that the proposed models could improve the forecasting accuracy, provide forecasting
stability, and reduce the cause of overfitting from the traditional model.

According to Table 6, the JS-ELM model was the most suitable for the minimum error
result. The overall forecasting results of the HH-ELM model were similar to the JS-ELM
model results, but the time consumption was higher than the time consumption of other
models. The FP-ELM model was the most suitable in terms of the minimum mean error and
minimum S.D. The time consumption of the proposed models depended on the number of
populations, iterations criterion of metaheuristics algorithms, and the number of hidden
nodes of the ELM model. The HH-ELM model used twice the time consumption compared
with the time consumptions of the JS-ELM and the FP-ELM models. Furthermore, the time
consumptions of the proposed models were lower than the LSTM model, while the overall
error results of the proposed models and LSTM were close.

Table 6. Summary of the Outperformance models (ranking by CWE).

Datasets
Outperformance Models (Ranking by CWE)

Best Mean S.D.

1 JS-ELM JS-ELM ELM

2 JS-ELM ELM ELM

3 JS-ELM FP-ELM FP-ELM

4 LSTM FP-ELM FP-ELM

5 JS-ELM HH-ELM FP-ELM

6 JS-ELM HH-ELM FP-ELM

7A FP-ELM FP-ELM FP-ELM

7B LSTM LSTM LSTM

7C FP-ELM JS-ELM JS-ELM

7D LSTM FP-ELM FP-ELM

7E LSTM FP-ELM HH-ELM

7F LSTM FP-ELM FP-ELM

7G FP-ELM HH-ELM JS-ELM

7H JS-ELM FP-ELM FP-ELM

For suggestions for future works, the proposed models can improve the stability
of forecasting, for instance, according to Table 6, JS-ELM was the most suitable when
considering the minimum error result, and FP-ELM was the most suitable when considering
the S.D. result. Therefore, future work may propose a novel model that applies the hybrids
of JSO and FPA to the ELM model. Due to the benefits of JSO and FPA, the expected
results of the aforementioned novel model can be achieved with a more stable accuracy
of forecasting and provide the best forecasting result. Moreover, the time consumption
of forecasting is the major topic to discuss. According to Table 5, the time consumption
of JS-ELM and FP-ELM were close and less than other models except for ELM. The time
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consumption of the proposed models and the future novel model can be reduced by using
the step of tuning the hyper-parameters with a suitable algorithm and the methodology of
an ensemble learning algorithm [52–54] that splits the appropriate sub-datasets from the
primary dataset, forecasts the sub-datasets, and aggregates the forecasted model results.
Finally, due to the variety of metaheuristics algorithms [47] that are continuously being
developed, an alternative metaheuristics algorithm can be discussed to implement with the
ELM model or other machine learning models to improve the accuracy of the forecasted
electric energy demand.
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