
Citation: Szeghalmy, S.; Fazekas, A.

A Highly Adaptive Oversampling

Approach to Address the Issue of

Data Imbalance. Computers 2022, 11,

73. https://doi.org/10.3390/

computers11050073

Academic Editor: Paolo Bellavista

Received: 22 February 2022

Accepted: 27 April 2022

Published: 4 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

A Highly Adaptive Oversampling Approach to Address the
Issue of Data Imbalance
Szilvia Szeghalmy * and Attila Fazekas

Faculty of Informatics, University of Debrecen, H-4032 Debrecen, Hungary; attila.fazekas@inf.unideb.hu
* Correspondence: szeghalmy.szilvia@inf.unideb.hu

Abstract: Data imbalance is a serious problem in machine learning that can be alleviated at the data
level by balancing the class distribution with sampling. In the last decade, several sampling methods
have been published to address the shortcomings of the initial ones, such as noise sensitivity and
incorrect neighbor selection. Based on the review of the literature, it has become clear to us that
the algorithms achieve varying performance on different data sets. In this paper, we present a new
oversampler that has been developed based on the key steps and sampling strategies identified
by analyzing dozens of existing methods and that can be fitted to various data sets through an
optimization process. Experiments were performed on a number of data sets, which show that the
proposed method had a similar or better effect on the performance of SVM, DTree, kNN and MLP
classifiers compared with other well-known samplers found in the literature. The results were also
confirmed by statistical tests.

Keywords: imbalanced learning; oversampling; optimized oversampling; adaptive sampling

1. Introduction

Classification is a typical machine-learning task that aims to classify set of samples
into predefined classes. Each sample represents a given entity with d observed features.
More formally, if the samples belong to k different classes (labeled l1, l2, . . ., lk), the goal
is to build a model based on a {x1, x2, . . ., xn} ⊂ Rd sample set and their corresponding
class labels {y1, y2, . . ., yn}, where yi ∈ {l1, l2, . . ., lk}, (i = 1, 2, . . ., n), which can be used
to predict a class label of an x ∈ Rd sample. The set of samples and their corresponding
labels used to build the model are called a training data set. If there are only two classes
(k = 2), then the problem is a binary classification problem. If the size of the classes differs
significantly, the set containing all the samples of the smaller class is called the minority set,
and the set containing all the samples of the larger class is called the majority set.

The classical classification algorithms, such as the Naive Bayes, linear SVM and
Random Trees, were designed for balanced data sets. If the class distribution is uneven,
the models built on the data set usually favor the larger class. Data imbalance must also
be taken into account in model evaluation as an inappropriate metric may provide a
completely misleading result about the performance of a classifier [1].

We can easily understand the problem by imagining a simple classification task where
the samples, represented by triangles and circles, have to be classified into the Triangle class
and the Circle class, respectively. The training data set that can be used to build the model
has 1000 samples, 990 circles and only 10 triangles. If we consider a trivial classifier that
predicts the Circle label for each sample, it would make a good decision for 99% of the
samples in the data set; however, in practice, the classifier is completely useless.

A less extreme example is shown in Figure 1a. We built a model with a linear SVM on
the data set with 200 circles and 15 triangles. The red line indicates the decision boundary
for separating samples belonging to different classes. If a sample to be classified falls to
the left of the red line, the classifier will classify it as a triangle—otherwise, as a circle. One

Computers 2022, 11, 73. https://doi.org/10.3390/computers11050073 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11050073
https://doi.org/10.3390/computers11050073
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-4121-4745
https://orcid.org/0000-0001-6893-3067
https://doi.org/10.3390/computers11050073
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11050073?type=check_update&version=3

Computers 2022, 11, 73 2 of 21

can readily see that the location of the decision boundary favors the classification of circles
to the detriment of triangles. However, on a less imbalanced version of the data set, the
classifier was able to find a good decision boundary (Figure 1b).

(a) (b)

Figure 1. Illustration of the effect of data set imbalance on classification. The red lines indicate the
decision boundaries determined by a linear SVM. Based on the model built on the highly imbalanced
data set (a), the circles would be recognized with great accuracy but many triangles would be
misclassified. Using a more balanced version of the data set (b), the linear SVM provides a better
decision boundary. (Shapes with black contours indicate the samples that were used to determine the
decision boundary).

We can also observe in Figure 1 that the samples far from the decision boundary can
be classified correctly even by the worse classifier. These easily classifiable samples are
commonly referred to as safe samples. However, some of the samples near the boundary
would be classified differently based on the two models. These samples may play an impor-
tant role in the construction of the model; however, they are in danger of misclassification as
they are very similar to some samples of the other class.

Imbalanced learning has been a focus of interest for two decades, and there are several
learning problems in practice where the distribution of classes is skewed (e.g., spam
filtering [2], fault detection [3,4], disease risk prediction [5], cancer diagnosis [6], dynamic
gesture recognition [7,8], activity monitoring [9] and online activity learning [10]).

We can handle the problem of imbalanced data at the algorithm level, whose best-
known representatives are perhaps the cost-sensitive methods. The concept behind them
is simple, the misclassification of minority samples costs more (entails a higher penalty)
than the misclassification of majority ones [11]. If large amounts of imbalanced data
need to be classified, the use of some cost-sensitive deep-learning methods should also be
considered [12].

In contrast to the previous approach, data-level algorithms address the root of the
problem by changing the number and/or distribution of data before applying general
classifiers. For binary classification problems, this can be accomplished by oversampling
the smaller class or undersampling the larger one, and hybrid solutions also exist that
combine under- and oversampling [1,13]. All three approaches can also be found in the
field of deep learning to handle large amounts of imbalanced data [14].

One of the advantages of oversampling is that it preserves the information in the
data. In addition, oversampling usually reduces the proportion of samples that are difficult
to classify and increases the proportion of the safe samples in the data set, while under-
sampling tends to remove safe samples from the data set preserving the samples that are
difficult to classify. This means that the classification with oversampled data sets is likely
to be more efficient than using undersampled ones [15].

In the rest of this paper, we focus primarily on the oversampling algorithms (excluding
deep-learning-based solutions). Of the many oversampling algorithms in the literature, it is
perhaps worth highlighting that, historically, the algorithm of SMOTE released in 2002 [16].

Computers 2022, 11, 73 3 of 21

The SMOTE attempts to add synthetic samples to the minority set that are similar to but
not duplicates of the minority samples.

To achieve this goal, each synthetic sample is generated by interpolating a randomly
selected minority sample (seed) and one of its k nearest minority neighbors (co-seed and pair).
We can already see the advantage of using SMOTE because the original Circle–Triangle data
set (Figure 1a) was oversampled by SMOTE to make a more balanced version (Figure 1b).

Nevertheless, SMOTE also has certain disadvantages: it selects samples as seeds that
are important (e.g., a sample close to the decision boundary), irrelevant (e.g., a sample far to
the decision boundary) and misleading (e.g., noise) for classification with equal probability,
and the situation is similar for the selection of co-seeds. To provide a clear picture of the
problem, we have supplemented the Circle–Triangle data set with three noise samples
denoted by P, Q and R (Figure 2a), and then the data set was oversampled by SMOTE to a
similar extent as before.

If we compare Figure 1a to Figure 2a, we can see that the decision boundary has shifted
due to noise. Furthermore, Figure 2b shows, that, as a result of oversampling, plenty of
new samples appeared around Q and R, thus, increasing the degree of overlap between
classes. Moreover, these samples misled the classifier, because they belong to the Triangle
class but they are similar to circles.

(a) (b)

Figure 2. The effect of SMOTE on a noisy data set: (a) the noisy data set, where the noise samples are
denoted by P, Q and R. (b) the oversampled version of the data set. The red lines indicate the decision
boundaries determined by a linear SVM built on the data sets, and shapes with black contours
indicate the samples involved in determining the location of the decision boundary.

Over the years, more than a hundred SMOTE variants have been published to over-
come the drawbacks of the original version. The interested reader can find more about
the SMOTE algorithm, including the several variants in an excellent summary in the
literature [17]. It covers current challenges, such as handling streamed data or using
semi-supervised learning.

The following section provides a brief overview of oversampling methods. Then, in
Section 3, we introduce our ModularOverSampler, which was designed taking into account
the common features and differences of the methods found in the literature. Section 4
provides a detailed description of the experimental process and the results. In Section 5,
we discuss the limitations of our method and suggest some directions for further research.
Finally, conclusions are drawn in Section 6.

2. Related Work

Although there are plenty of oversamplers that have been published in the literature,
the theoretical considerations behind them, often based on a priori assumptions, serve
the same purpose—to ensure that the distribution and locations of the generated samples
are adequate to improve the samples classification. A rough structural pattern is also
recognizable in a fairly large proportion of the published algorithms; however, by further
refining the structure, the diversity of the procedures becomes visible. During the review

Computers 2022, 11, 73 4 of 21

of the literature, we present the possible structural steps and their role, mentioning some
typical implementation methods (strategies) as this supports our concept, which is described
in a later section.

Some of the oversamplers start with noise filtering to permanently remove samples
considered to be noise from the data set [18,19]. Using the filtered data set, we may obtain
a clearer picture of which samples are at the decision boundary, where minority samples
are in danger of misclassification. However, a noise filter is rarely applied to the minority
set, because there is a danger that too many minority samples will be removed, thereby,
increasing the degree of imbalance.

In addition, the minority set sometimes really consists of only a few samples be-
cause there are problems where the event to be observed is rare (e.g., fault detection [3],
bankruptcy prediction [20]). The deletion of samples is only acceptable in very justified
cases. For example, an isolated sample can be deleted from the minority class [18] if
the overlap of classes is moderate. Samples representing noise and outliers can also be
deleted [19].

Another typical step is clustering [21], which can be used to delimit the part of the
feature space where it is not worth generating samples. Placing the synthetic samples
inside the clusters of the minority set helps to avoid the errors illustrated in Figure 3 [22].
The clustering also paves the way for distinguishing samples that are considered important
or insignificant for the learning process.

For example, it may reveal the outliers and the isolated samples (possible noise
samples), and thus we can exclude them from the further sampling process [23–25], and
some procedures determine which samples are in danger of misclassification and which
ones are safe based on the composition of the clusters, assuming that the decision boundary
passes through clusters containing both minority and majority samples [26]. Instead
of general-purpose clustering, many procedures determine the set of samples that are in
danger, the set of the safe samples and the set of the noise samples based on the examination
of the small environment of the samples (e.g., their k-nearest neighbors) [18,27–29].

Furthermore, with this, we have reached the next typical step, which is to weight
the minority samples according to their importance. At this point, different approaches
can be found in the literature because the assessment of the importance of samples varies
from method to method. Some oversamplers consider all the minority samples equally
important [20,30], while others exclude samples labeled for noise [24]. Contradictory
strategies can also be found in algorithms.

For example, there are methods that assign a higher weight to samples near the
decision boundary [31] than to samples that are far away (including the case where only
boundary samples can become seeds [18]); however, for example, the Safe-Level-SMOTE
generates samples near to the safe samples [32]. Furthermore, while many oversamplers
ignore data samples in clusters that are too small, there is a method that assigns the largest
weights to these minority samples assuming that they are not noises but rare samples [33].

Figure 3. A well-known flow of SMOTE. S is a seed separated from one of its neighbors, P3 by
majority samples; therefore, when choosing P3 as a co-seed of S, a new sample (denoted by the star)
will be likely to fall into the majority set.

Computers 2022, 11, 73 5 of 21

The next step is to choose the seed samples. The selection is mostly made randomly
from the samples of the minority set. The distribution of the selection can be uniform or
weighted, as described in the previous paragraph.

The synthetic samples can be generated around the selected seeds [34,35]; however,
most oversamplers select another sample (called a pair or co-seed) to each seed and create
the new samples based on these samples. The most popular method to generate new
samples is to interpolate the seeds and their pairs. Typically, the co-seeds are selected
randomly from the k minority nearest neighbors of the seeds [20,23,36] or from the minority
samples of the seeds cluster [37]. Although the seeds and their pairs are usually selected
from the same cluster, borderline minority seeds can be strengthened if the new samples
are created between them and the safe samples [38]. There are some methods that select
the co-seeds from the majority set; however, this solution is not common [39].

Sample generation is not always the last step, while some methods reject samples
generated in the wrong place during sample generation [26], others apply post-filtering
on the oversampled data set [23,36,40]. The second strategy allows us to make a decision
about removing or preserving the samples by seeing the modified version of the dataset
that already includes the new synthetic samples. In this case, the sample removal is not
limited to the newly generated samples.

3. Methodology

Researchers who require imbalanced data sets now have more than a hundred over-
sampling algorithms to choose from, and the increase in the number of samplers has not
stopped in recent years. With this in mind, we have developed a new algorithm because it
motivated us to create a generic sampler that can be well adapted to various databases.

The proposed method utilizes many ideas from other samplers yet differs fundamen-
tally from previously published solutions due to its modular structure. The main steps are
shown in Figure 4. The method consists of a few more steps than we mentioned in the
previous section because we have broken down certain steps into smaller ones for flexibility.

For most of the steps, we have defined different strategies which determine the specific
methods of performing the steps. (These are described in detail later in this section). Our
oversampler can be parameterized with these strategies. The non-round rectangles in
Figure 4 indicate interchangeable modules that are swapped according to the strategies
passed as parameters. This structure allows us to fundamentally modify the sampling
process via parametrization.

Among the strategies, there are some that cannot be used together. The combination
of parameters that assigns exactly one strategy to each interchangeable module and these
strategies can be used together is called meaningful parameter combination or path. The
algorithm is completed with an optimization step that selects the appropriate one from the
paths for the data set to be sampled. We recommend cross-validation for this purpose.

Figure 4. The main steps of the proposed method, where the non-round rectangles represent the
modules with varied strategies.

Computers 2022, 11, 73 6 of 21

3.1. Noise Filtering

As mentioned in Section 2, only a few methods attempt to remove the noise samples
of the minority set permanently due to the risk of information loss. We also limited the
noise removal to the majority set defining the noise with the Edited Nearest Neighbors
(ENN) rule [30], which considers a sample as noise if the majority of its k-nearest neighbors
(kNN) belong to another class. Similar solutions can be found in [41].

In this step, the noise removal algorithm can be used with k = 3 and k = 5, and as a
third option, we made it possible to skip the noise filtering step. We will refer to the three
strategies as NF_ENN3, NF_ENN5 and NoFilter.

3.2. Clustering

We mentioned in Section 2 that there may be different intentions behind the clustering
step. Accordingly, the following strategies are defined:

• DBSCANmin, DBSCANwhole: DBSCAN [42] applied on the minority set and the entire
data set, respectively. DBSCAN does not require specifying the number of clusters in
advance; it defines clusters with extensions starting from high-density points, where
at least minPts points must be within an ε distance. During the tests, ε was 0.8 and
minPts was 3.

• BorderSafeNoise: With this strategy, a sample is placed to a NOISE cluster if there are
at least k1 samples with different labels among its 7 nearest neighbors, and a sample
is added to the SAFE if there is no sample with different labels between its 7 nearest
neighbors. All other samples form the BORDER cluster (k1 ∈ {5, 7}). Similar solution
can be found in [18].

• MinMaj: This strategy creates two clusters, the MINOR cluster includes all samples of
the minority set, and the MAJOR cluster includes all samples of the majority set.

In the rest of the algorithm description, we denote the resulting clusters by S, the set
of purely minority clusters by Smin, the set of purely majority clusters by Smaj and the set of
mixed clusters by Smixed. Furthermore, the size of cluster or set c are denoted by |c|.

3.3. Cluster Weighting

In this step, the clusters can be given weight according to their importance. A normal-
ized version of the weight of the cluster determines the probability of randomly selecting
a seed from that cluster. For normalization, the weight of a cluster is divided by the sum
of the weights of the clusters. By assigning zero weight, we can completely exclude clus-
ters from the seed selection process. Four weighting strategies are defined: CW_Uniform,
CW_BySize, CW_Border, CW_ByInsideEnemy. With the CW_Uniform strategy, we can assign
the same positive weight to each cluster with at least one minority sample, creating the
possibility that nearly the same number of seeds are selected from these clusters.

As a result, samples of the smaller clusters are expected to be involved in generating
more synthetic samples than samples of the larger clusters, therefore, it reduces imbalance
within the minority class but does not fully balance the clusters as the solution of Jo and
Japkowicz [33]. The CW_BySize calculates the weight of clusters with at least one minority
sample based on their size. More formally, the weight of a cluster c ∈ (Smin ∪ Smixed) is

w(c) =
|c|

∑ci∈(Smin ∪ Smixed) |ci|
. (1)

All other clusters are given zero weight. If only pure clusters were generated in the
previous step, this method ensures that all minority samples have the same chance of being
selected as seed. If there are mixed clusters, their minority samples will have a higher
chance of becoming a seed than the minority samples of other clusters. A similar solution
can be found in [22]. (To avoid redundant paths, this weighting strategy is not used with
the MinMaj clustering).

Computers 2022, 11, 73 7 of 21

The CW_Border strategy assigns weight of 1 to the BORDER cluster and 0 to all others.
As a result, only minority samples with a majority neighbor are selected as seeds. Clearly,
this weighting only makes sense if BorderSafeNoise clustering was used in the previous step.
The CW_ByInsideEnemy as its name implies, assigns high weight to the mixed clusters in
which the number of majority samples is high relative to minority samples. Pure clusters
receive zero weights.

For a c ∈ Smixed, the weight is

w(c) =
|{x : x ∈ c ∩MAJOR}|

|c| . (2)

This strategy is used only in combination with DBSCANwhole and BorderSafeNoise.

3.4. Cluster Selection

Using the normalized weights (probability values), we randomly select nsyn clusters
by replacement. In a later step, we will select the seeds from these clusters. We attempted
to achieve completely balanced classes, thus nsyn is the difference between the number of
majority samples and the number of minority samples after the noise filtering step.

3.5. Sample Weighting

This step determines the probability of selecting a sample as a seed. Weighting is
performed per cluster and majority samples are automatically given a weight of 0, therefore
they cannot become seeds. After determining the weights of the samples, normalization is
performed by dividing the weights by the total weight of the samples of their own cluster.

For this step, we defined two weighing strategies: SW_Uniform, SW_kNN.
With the SW_Uniform all minority samples within a cluster are given the same weight.

If x is a minority sample of a c cluster, the weight assigned to it is

w(x) =
1

|c ∩MINOR| . (3)

The SW_kNN follows in the footsteps of those samplers which attempt to create
synthetic samples similar to those minority samples that are in danger for correct classi-
fication [18,31]. The danger level of a sample is often calculated based on the number of
majority samples (enemies) among the sample’s k-nearest neighbors.

The variant used in this study determines the weight of a minority sample x according
to the following formula:

w(x) = |N5(x) ∩MAJOR|, (4)

where N5(x) is the five nearest neighbors of x.

3.6. Seed Selection

To create a multiset of seed samples, we select as many samples from each cluster as
the number of times the cluster was previously selected. The sample selection is made
randomly with replacement based on the normalized weights (probabilities) that were
calculated in the previous step.

3.7. Cluster Selection for Sample Pairs

As the flowchart shows, our oversampler supports sample generation based on a
single sample (seed) and based on two samples (a seed and its pair). In the latter case, we
need to select a cluster for each seed from which its pair can be selected. These clusters are
called the cluster pair of seeds. We have defined the following strategies for this step.

CPM_MINOR: The least restrictive strategy, the MINOR cluster are the cluster pair of
each seed.

CPM_SAFE: With this method the minority samples of the SAFE cluster are the cluster
pairs of each seed. It can only be used in combination with BorderSafeNoise clustering. As a

Computers 2022, 11, 73 8 of 21

result, minority samples in danger of misclassification are associated with safe samples,
and thus the generated synthetic samples can strengthen the position of the seeds without
deteriorating the position of the majority samples around them [38].

CPM_SelfCluster: Using this method, the cluster pair of a seed is the set of minority
samples of its own cluster, including the case when both the seed and its pair are taken
from the BORDER cluster. This option was motivated by the SOI_C [22].

3.8. Creating Candidate Sets

The purpose of this step is to determine a set of pair candidates for each seed using
the output of the previous step. In the simplest case (CS_ALL), we keep all the sample and
the candidate set(s) is(are) the output of the previous step.

The second option, CS_kNN, covers a popular approach, when the pairs of the seeds
are from the seeds’ nearest neighbors (See, e.g., SMOTE [16], Lee [43]). During the tests, the
five nearest neighbors of a seed formed its candidate set, and the nearest neighbors were
selected from the pair cluster of the seed.

The third option, CS_ClusterCenter, allows us to examine a less common solution
where cluster centers are used in some way to create new synthetic samples (e.g., AHC [44],
SMMO [45]). In our case, a candidate set assigned to a seed consists of a single artificial
sample that represents the center of the cluster pair of the seed.

3.9. Candidate Weighting

At this point in the process, we assign weights to each sample of the candidate set(s)
to determine how likely a sample to be selected as a pair of a certain seed. In this step, we
examined the following options. Normalization of weights is performed per candidate set.

SPW_Uniform: operates in a manner analogous to the SW_Uniform. Of course, instead
of clusters, this time we are working with the sets of candidates. After CS_ClusterCenter
only this option is allowed.

SPW_kNN: works analogously to the SW_kNN presented in Section 3.5. Candidates in
danger are given higher weight than others.

SPW_SeedPairDistance: These method gives higher weights to the candidates near the
seeds than those away from them. The idea appears for, e.g., in [36] accomplished by using
weighted kNN in the pair selection. It is suitable for reducing the occurrence of the type of
error shown in Figure 4. Considering an x1 seed and an x2 pair belonging to the candidate
set (D) of x1 the weight for the (x1, x2) can be calculated as

w(x1, x2) = max
p∈D

(d(x1, p))− d(x1, x2), (5)

where d(p, q) is a distance function. We used the Minkowski distance with p = 1 and p = 2
parameterization during the test. The former one corresponds to Manhattan distance,
the latter one to the Euclidean distance. The two version of the strategies are denoted by
SPW_SeedPairDistancem and SPW_SeedPairDistancee.

Considerable evidence can be found in the literature that the meaningfulness of the Lk
norm worsens with increasing dimensionality for higher values of k [46].

3.10. Sample Pairs Selection

For each seed, as many pairs are randomly selected by replacement from their candi-
date sets as the number of times the seed is in the seeds’ multiset (except in cases where
a candidate set is empty). Candidates are picked according to the normalized weights
specified in the previous step.

3.11. Sample Generation

If generation is based only on seeds, the samples are generated applying the oversam-
pling part of the ROSE [35]. Essentially, a new sample is generated in the neighborhood of
a seed. The diameter of this neighborhood is determined by a so-called smoothing matrix.

Computers 2022, 11, 73 9 of 21

The location of the new sample in the neighborhood is based on a given probability density
function. If the probability density function is Gaussian, the generated samples can be
considered like Gaussian-jitters of the seed. Interested reader can find more details in [35].

If both seeds and pairs are available, the new samples are determined by linear
interpolation which is one of the most commonly used solution: xsyn = x + λ · (y− x),
where λ is a random number selected from a standard uniform distribution, x is a seed,
and y is a pair sample. At this point, we expand the minority set with the new samples.

3.12. Post-Filtering

The role of the post-filter is to remove samples generated in the wrong place to smooth
the decision boundary and sometimes to remove irrelevant samples (undersampling). For
this step, the choices were two different noise filters (PF_ENN5, PF_IPF) and skipping the
step (NoFilter).

PF_ENN5: It works analogously to NF_ENN5; however, this time we remove the
noise sample from the minority set.

PF_IPF: The Iterative Partitioning Filter (IPF) [47] removes samples from the data set
that cannot be consistently classified into the appropriate class by the classifiers built on
different folds of the data set. The procedure ends if the quotient of the number of detected
noises and the size of the original database remains below p for k consecutive steps. We set
the value of p to 0.01 and the number of folds to 5 and decision tree was used as a classifier.
The SMOTE-IPF [23]. It can delete both minority and majority samples.

4. Results and Discussion

To measure the performance of our method and to compare it with other ones, we
performed two experiments. In the first part of this section, we provide details of the
evaluation process, which was carried out in the same way in both cases.

4.1. Oversamplers

In the field of oversamplers, Kovács published the largest comparative analysis in 2019,
ranking 85 methods based on a well-defined test [48]. According this analysis, the top 10 out
of 85 oversamplers are the Polynomial fitting SMOTE [49], ProWSyn [50], SMOTE-IPF [23],
Lee [43], SMOBD [51], G-SMOTE [52], CCR [53], LVQ-SMOTE [54], Assembled-SMOTE [38],
SMOTE-TomekLinks [36]). We involved these methods in the tests and the SMOTE based
on its prevalence. Interestingly, these samplers work with quite a different approach.

However, there are three procedures among them that just complement the SMOTE
with a post-filtering step, the SMOTE-IPF, SMOTE-TomekLink and Lee’s method. Further-
more, in addition to these samplers, the CCR and the SMOBD also deal with the issue
of noise.

Due to the design of the proposed method, it should also be mentioned that the Poly-
nomial Fitting SMOTE, whose sampling strategy can be completely changed by modifying
its parameters achieved the best overall score.

4.2. Data

For both tests, we used databases from the Knowledge Extraction based on Evolu-
tionary Learning Repository [55] and the UCI Machine Learning Repository [56]. The
multi-class classification problems were transformed into binary classification problems,
therefore these data sets are related.

4.3. Evaluation Metrics

It is the responsibility of the samplers to properly prepare the databases for classi-
fication, thus their efficiency is determined by the performance of the classifiers on the
sampled data set.

Computers 2022, 11, 73 10 of 21

To measure the performance of the classification, the accuracy (Acc),

Acc =
TN + TP

TN + TP + FN + FP
, (6)

the F1-score
F1 =

2TP
2TP + FN + FP

, (7)

the G-mean score

G =

√
TP

TP + FN
· TN

TN + FP
, (8)

and the area under the ROC curve (AUC) were used. The latter can be estimated using
the trapezoidal-rule. In the formulas, TP and TN denote the number of the correctly
classified positive and negative samples, respectively, and FP and FN denote the number
the misclassified positive and negative samples, respectively. Traditionally, the minority
samples are the positive ones. It is worth noting that the accuracy is only slightly affected
by the correct or incorrect classification of the minority samples if the data set is highly
imbalanced. The other three metrics are less sensitive to the difference of the class sizes.

4.4. Classifiers

As the effectiveness of the oversamplers is not measured per se, the result obtained
may depend on the classifiers involved in the tests. To give a fair chance to all samplers,
we used four classifiers operating on different principles, namely a linear support vector
machine (SVM), a k-nearest neighbors classifier (kNN), a decision tree (CART) and a feed-
forward neural network (MLP), and each classifier was run with multiple parametrizations,
mainly following the methodology proposed by Kovács [48].

For the C regularization parameter of the SVM values 1, 5 and 10 were used, the
kNN were run with k = 3, 5 and 7 without weighting and with inverse distance weighting.
The CART was used with Gini-impurity and entropy. The height of the tree could be 2, 3
and unlimited. The MLP were applied on the data sets with RELU and logistic activation
function and only one hidden layer. The number of the nodes were 10%, 50% or 100% of
the input features.

4.5. Evaluation

To evaluate the performance of the oversampler–classifier pairs we used five-fold
cross-validation with three repeats with the smote-variants Python package [56], which
guarantees that all the oversamplers are evaluated on the same set of samples during
cross-validation, and folds contain a similar proportion of minority and majority samples
as the original data set. An oversampled version of the currently selected fold is used to
train the classifiers, while testing is done on the original version of the remaining folds.

The different instances of the classifiers and samplers usually provide different results
on the same data set depending on their parameters. The highest achieved AUC, F1, G
and Acc values are selected as the result of a sampler–classifier pair assuming that users
of the methods would also aim to select the best parameterization. Since this step can be
considered as parameter optimization, we did not apply a separate optimization step to
our method.

The total performance of an oversampler–classifier pair was calculated by averaging
the results obtained on the databases.

4.6. Experiment 1

The goal of this test was to verify that the paths of the proposed method are sufficiently
diverse to find a suitable one for different data sets. We involved 80 data sets in this
experiment, which most important properties are summarized in Table A1.

Our oversampler was tested with the meaningful parameter combinations (paths). For
the other methods, we used the parameter combinations provided by the smote-variants

Computers 2022, 11, 73 11 of 21

package. (These combinations were specified based on the descriptions of the implemented
procedures, sometimes supplemented with additional reasonable ones). If it was supported
by the algorithm, complete balancing of the data sets was requested.

By performing the test as described in Section 4.5, if the ModularOverSampler achieves
the highest scores, it means that there is a path that provides the same or better performance
than the best of the other samplers in the comparison. The first table shows the number of
the data sets on which the different sampler–classifier pairs achieved first place (Table 1).
The results without sampling are also provided.

Table 1. The results of the Experiment 1. The number of databases out of 80 where sampler–classifier
pairs are ranked first. (The sum of the columns can exceed 80, because on some databases, two or
more methods shared the first place).

SVC DTree
Sampler F1 AUC G Acc F1 AUC G Acc
Assembled-SMOTE 4 5 4 5 4 3 4 6
CCR 3 8 6 6 9 9 8 19
G-SMOTE 4 5 4 9 4 3 4 5
Lee 3 5 3 4 4 3 4 4
LVQ-SMOTE 4 7 6 5 5 5 6 7
ModularOverSampler 75 74 73 72 76 71 74 67
Polynom-fit-SMOTE 9 6 4 7 4 3 5 7
ProWSyn 4 5 5 6 4 4 4 4
SMOBD 3 5 4 4 6 3 4 4
SMOTE 3 5 3 4 4 3 4 4
SMOTE-IPF 3 5 3 4 4 3 4 4
SMOTE-TomekLinks 3 5 3 4 4 3 4 4
no sampling 4 5 4 14 4 3 4 4

KNN MLP
Sampler F1 AUC G Acc F1 AUC G Acc
Assembled-SMOTE 5 4 6 5 3 3 4 3
CCR 12 14 12 24 4 8 8 5
G-SMOTE 8 5 7 11 3 3 4 5
Lee 6 5 6 6 3 3 3 3
LVQ-SMOTE 8 4 6 8 4 4 3 3
ModularOverSampler 65 66 68 59 76 71 73 71
Polynom-fit-SMOTE 13 5 11 12 4 3 3 5
ProWSyn 7 8 7 6 4 5 3 3
SMOBD 6 4 6 6 3 5 3 3
SMOTE 5 4 5 5 3 3 3 3
SMOTE-IPF 6 4 6 6 3 3 3 3
SMOTE-TomekLinks 5 3 5 5 3 3 3 3
no sampling 4 4 4 10 0 0 0 4

The results support the assumption that the oversamplers should be adapted to the
database being sampled. A different effect of sampling strategies can also be observed in
Figure A1 through a database with few minority samples. Comparing Figures A1b,c and
Figure A1d–f, we can see that, the kNN-based pair selection strictly narrows the space
where new samples can be placed compared to cluster-based solutions, because the same
seeds are involved in generating many synthetic samples.

It is easy to see that if the degree of imbalance is smaller, the distribution of the samples
will not be so distorted. We can also observe that if the minority samples are not grouped
on one side of the majority set, oversampling the border set can increase overlap between

Computers 2022, 11, 73 12 of 21

classes (Figure A1f). In such a situation, the pair selection should be limited to a smaller
environment of the seeds.

The ModularOverSampler provides us more options than ever before to find a sampler
that fit the databases. Although there are some paths that simulate the effect of other
oversamplers (for example, the path used to create Figure A1b,c is equivalent to the SMOTE
and SMOTE-ENN [36]), several paths actually represent new strategies for sampling, as
the number of different paths exceeds the number of existing oversamplers.

However, it must be acknowledged that given the performance of today’s PCs, it is not
yet viable to examine thousands of parameter combinations to sample a data set. Especially
if one wants to further reduce the risk of over-fitting by increasing the number of folds or
the number of repetitions. The other remark we need to make here in the name of fairness
is that the role of chance in sampling procedures is not negligible. If there is no significant
difference in the number of parameters of the samplers, we may assume that none of the
samplers gains too much with this effect; however, our method has advantage in this point
of view.

To address these issues, we performed another experiment with the limited number
of parameters.

4.7. Experiment 2

The aim of the second experiment was to compare the performance of a practical
version of our sampler with the other samplers. For the experiment, we formed two
completely independent sets, a training and a test sets from the data sets, taking into
account the relationship between the different databases. The training set, which contained
50 databases (Table A2), was used to reduce the number of paths. There are many related
databases in it, undoubtedly not the most suitable for path selection; however, this was
the cost of including more diverse (e.g., topic, number of samples, number of attributes,
imbalance ratio) data sets in the test set (Table A3).

For each data set, we determined which parameterization of our oversampler has
the best impact on the classifiers. Again, we used AUC, F1, G-score and Acc. Thus, a
total of 800 paths were obtained as a result: 50 databases × 4 classifiers × 4 scores. Then,
we selected the 35 paths that were most frequently appeared in the results (Table A4).
Finally, we examined the performance of the proposed method using the selected paths as
parameters. Testing was performed in the same manner as the previous test. The results
are shown in (Table 2).

The table shows that the kNN classifier combined with the ProWSyn achieved a higher
G value than combined with our method, but in all other cases our method achieved a
better score than the others, and these results are no longer based on a large number of
parameter combinations but on the use of different strategies.

To determine which classifiers and metrics the differences can be considered statis-
tically significant, we performed statistical tests. First, a nonparametric Friedman test
was used. As a null hypothesis, we assumed that the effect (on the performance of the
classification) of all samplers was the same, which could be rejected with a 95% confidence
level. Based on these, it makes sense to do more research to see if there is a significant
difference between the effect of the proposed method and the other ones. To do this, we
performed Holm–Bonferroni tests. Based on the results in Table A5, we can conclude that,
in many cases, there are significant differences between the effects of our method and
the others.

The results suggest that our method may be a safe choice for data preparation for any
classifier involved in the test. We can expect similar result using before MLP or DTree and
better results using before SVM or kNN than we can expect from other methods. If, for some
reason, the runtime of the method is important, the use of another well-performing method,
e.g., Polynom-fit-SMOTE or ProWSyn is recommended. For kNN and SVC classifiers, one
may also want to consider the CCR.

Computers 2022, 11, 73 13 of 21

Table 2. The results of the second experiment. The best values highlighted with boldface and the
worst values are highlighted with italic font.

SVC DTree
Sampler F1 AUC G Acc F1 AUC G Acc
Assembled-SMOTE 0.5449 0.8583 0.8256 0.8783 0.6931 0.8865 0.8591 0.9529
CCR 0.5440 0.8628 0.8307 0.8730 0.6708 0.8734 0.8013 0.9663
G-SMOTE 0.5545 0.8654 0.8239 0.9034 0.6864 0.8883 0.8533 0.9554
Lee 0.5437 0.8570 0.8219 0.8742 0.6848 0.8844 0.8568 0.9526
LVQ-SMOTE 0.5444 0.8584 0.8230 0.8693 0.6731 0.8757 0.8378 0.9567
ModularOverSampler 0.6221 0.8779 0.8340 0.9666 0.7313 0.9041 0.8642 0.9681
Polynom-fit-SMOTE 0.6114 0.8630 0.8251 0.9433 0.7010 0.8873 0.8497 0.9674
ProWSyn 0.5711 0.8623 0.8321 0.8949 0.6838 0.8883 0.8618 0.9475
SMOBD 0.5536 0.8603 0.8285 0.8807 0.6895 0.8840 0.8589 0.9527
SMOTE 0.5399 0.8541 0.8170 0.8605 0.6753 0.8789 0.8486 0.9497
SMOTE-IPF 0.5422 0.8538 0.8203 0.8673 0.6787 0.8789 0.8535 0.9507
SMOTE-TomekLinks 0.5420 0.8519 0.8176 0.8664 0.6743 0.8787 0.8508 0.9504
no sampling 0.5376 0.8254 0.6384 0.9640 0.6267 0.8455 0.7441 0.9652

KNN MLP
Sampler F1 AUC G Acc F1 AUC G Acc
Assembled-SMOTE 0.6804 0.9038 0.8710 0.9372 0.6737 0.9126 0.8849 0.9306
CCR 0.7411 0.9116 0.8617 0.9700 0.6950 0.9179 0.8843 0.9622
G-SMOTE 0.6894 0.9000 0.8668 0.9438 0.6692 0.9136 0.8794 0.9347
Lee 0.6765 0.9018 0.8679 0.9362 0.6655 0.9108 0.8810 0.9290
LVQ-SMOTE 0.7128 0.9065 0.8645 0.9608 0.6818 0.9125 0.8833 0.9395
ModularOverSampler 0.7483 0.9140 0.8768 0.9712 0.7129 0.9251 0.8869 0.9678
Polynom-fit-SMOTE 0.7264 0.9066 0.8741 0.9692 0.7012 0.9131 0.8785 0.9603
ProWSyn 0.6800 0.9101 0.8786 0.9317 0.6842 0.9139 0.8835 0.9372
SMOBD 0.6807 0.9004 0.8694 0.9360 0.6728 0.9125 0.8851 0.9328
SMOTE 0.6747 0.9003 0.8655 0.9353 0.6595 0.9069 0.8728 0.9281
SMOTE-IPF 0.6759 0.9017 0.8675 0.9362 0.6659 0.9105 0.8773 0.9288
SMOTE-TomekLinks 0.6742 0.9007 0.8653 0.9352 0.6650 0.9078 0.8784 0.9297
no sampling 0.7124 0.8924 0.7683 0.9699 0.5387 0.8842 0.6661 0.9614

5. Limitations and Recommendation for Further Research

Although the tests presented in the previous section showed that the proposed method
performed well with the 35 paths selected in Experiment 2, further investigations are
required to select the optimal subset of paths. Furthermore, it would be interesting to
determine the set of the best paths for each classifier. As with most traditional oversamplers,
the proposed method is designed to handle small to medium-sized data sets. Tests were
also performed on such data sets.

As mentioned in the introduction, if a large amount of data is available, we have
the option to use deep-learning algorithms. A good example of this a multi-sensor based
hand gesture recognition system for a surgical robot teleoperation. The authors used an
approach consisting of a multi-layer Recurrent Neural Network [8]. However, to the best
of our knowledge, there has been no extensive comparative study of how oversamplers
perform for larger data sets or higher dimensional problems (e.g., credit card transactions,
medical image processing). Further research in this area would be desirable.

Computers 2022, 11, 73 14 of 21

6. Conclusions

In this study, we presented a modular oversampling method (ModularOverSampler)
that can be adapted to different databases by optimizing its parameters. The adaptability
of the method was confirmed by a broad test involving 11 oversamplers, 80 imbalanced
data sets and four classifiers, namely SVM, DTree, MLP and SVC. The performance of the
sampler–classifier pairs was measured using AUC, F1, G and Acc scores. The proposed
method reached the highest score on most of the data sets, which proved that the defined
parameter combinations (paths) make the procedure very flexible.

Another experiment, in which we used our method with only 35 parameter combina-
tions, provided evidence that the proposed method competes with the best oversampling
methods known in the literature even after drastically reducing the number of the paths.
In certain cases, a statistically significant improvement was achieved. Finally, identifying
the typical steps of oversampling algorithms and organizing them into modules allows
the impact of different implementations of each step on classification to be examined more
systematically than before. We believe that the methodology presented in this paper will
provide a good basis for many future studies.

Author Contributions: Methodology, S.S. and A.F.; Visualization, S.S.; Writing—original draft, S.S.
and A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The
project was supported by the European Union and cofinanced by the European Social Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used in this study are available at the UCI Machine Learning
Repository at https://archive.ics.uci.edu/ml/datasets.php (accessed on 10 February 2022) or KEEL-
dataset repository at https://keel.es (accessed on 10 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

https://archive.ics.uci.edu/ml/datasets.php
https://keel.es

Computers 2022, 11, 73 15 of 21

Appendix A

Table A1. Data sets from the the UCL [57] and KEEL [55] repositories involved in the first experiment. (Multiclass problems were converted to binary ones).

Name No. of Samples No. of Minority Samples No. of Attributes Name No. of Samples No. of Minority Samples No. of Attributes
abalone-17_vs_7-8-9-10 2338 58 8 glass4 214 13 9
abalone-19_vs_10-11-12-13 1622 32 8 glass5 214 9 9
abalone-20_vs_8-9-10 1916 26 8 glass6 214 29 9
abalone-21_vs_8 581 14 8 habarman 306 81 3
abalone-3_vs_11 502 15 8 hepatitis 155 32 19
abalone9-18 731 42 8 hypothyroid 3163 151 25
car_good 1728 69 6 iris0 150 50 4
car-vgood 1728 65 6 KC1 2109 326 21
cleveland-0_vs_4 177 13 23 kr-vs-k-zero_vs_fifteen 2193 27 6
cm1 498 49 23 led7digit-0-2-4-6-7-8-9_vs_1 443 37 7
ecoli-0_vs_1 220 77 7 lymphography-normal-fibrosis 148 6 23
ecoli-0-1_vs_2-3-5 244 24 7 new_thyroid1 215 35 5
ecoli-0-1_vs_5 240 20 6 page-blocks-1-3_vs_4 472 28 10
ecoli-0-1-3-7_vs_2-6 281 7 7 pc1 1109 77 21
ecoli-0-1-4-6_vs_5 280 20 6 pima 768 268 8
ecoli-0-1-4-7_vs_2-3-5-6 336 29 7 poker-8_vs_6 1477 17 25
ecoli-0-1-4-7_vs_5-6 332 25 6 poker-8-9_vs_6 1485 25 25
ecoli-0-2-3-4_vs_5 202 20 7 poker-9_vs_7 244 8 25
ecoli-0-2-6-7_vs_3-5 224 22 7 segment0 2308 329 23
ecoli-0-3-4_vs_5 200 20 7 spect-f 267 55 44
ecoli-0-3-4-7_vs_5-6 257 25 7 vehicle3 846 212 18
ecoli-0-4-6_vs_5 203 20 6 vowel0 988 90 13
ecoli-0-6-7_vs_3-5 222 22 7 winequality-red-8_vs_6 656 18 11
ecoli-0-6-7_vs_5 220 20 6 winequality-red-8_vs_6-7 855 18 11
ecoli1 336 77 7 winequality-white-3_vs_7 900 20 11
ecoli2 336 52 7 winequality-white-3-9_vs_5 1482 25 11
ecoli3 336 35 7 winequality-white-9_vs_4 168 5 11
ecoli4 336 20 7 wisconsin 683 239 9
flare-f 1066 43 11 yeast-0-2-5-6_vs_3-7-8-9 1004 99 10
german 1000 300 29 yeast-0-2-5-7-9_vs_3-6-8 1004 99 10
glass0 214 70 9 yeast-0-3-5-9_vs_7-8 506 50 10
glass-0-1-2-3_vs_4-5-6 214 51 9 yeast-0-5-6-7-9_vs_4 528 51 10
glass-0-1-4-6_vs_2 205 17 9 yeast-1_vs_7 459 30 7
glass-0-1-5_vs_2 172 17 9 yeast-1-2-8-9_vs_7 947 30 10
glass-0-1-6_vs_2 192 17 9 yeast-1-4-5-8_vs_7 693 30 10
glass-0-1-6_vs_5 184 9 9 yeast-2_vs_4 514 51 8
glass-0-4_vs_5 92 9 9 yeast-2_vs_8 482 20 10
glass-0-6_vs_5 108 9 9 yeast4 1484 51 10
glass1 214 76 9 yeast5 1484 44 10
glass2 214 17 9 yeast6 1484 35 10

Computers 2022, 11, 73 16 of 21

Table A2. Data sets from the the UCL [57] and KEEL [55] repositories used to select the best paths.
(Multiclass problems were converted to binary ones).

ecoli-0-1-3-7_vs_2-6 glass-0-1-2-3_vs_4-5-6 yeast-0-2-5-6_vs_3-7-8-9
ecoli-0-1-4-6_vs_5 glass-0-1-4-6_vs_2 yeast-0-2-5-7-9_vs_3-6-8
ecoli-0-1-4-7_vs_2-3-5-6 glass-0-1-5_vs_2 yeast-0-3-5-9_vs_7-8
ecoli-0-1-4-7_vs_5-6 glass-0-1-6_vs_2 yeast-0-5-6-7-9_vs_4
ecoli-0-1_vs_2-3-5 glass-0-1-6_vs_5 yeast-1-2-8-9_vs_7
ecoli-0-1_vs_5 glass-0-4_vs_5 yeast-1-4-5-8_vs_7
ecoli-0-2-3-4_vs_5 glass-0-6_vs_5 yeast-1_vs_7
ecoli-0-2-6-7_vs_3-5 glass0 yeast-2_vs_4
ecoli-0-3-4-7_vs_5-6 glass1 yeast-2_vs_8
ecoli-0-3-4_vs_5 glass2 yeast1
ecoli-0-4-6_vs_5 glass4 yeast4
ecoli-0-6-7_vs_3-5 glass5 yeast5
ecoli-0-6-7_vs_5 glass6 yeast6
ecoli-0_vs_1 winequality-red-8_vs_6 wisconsin
ecoli1 winequality-red-8_vs_6-7
ecoli2 winequality-white-3-9_vs_5
ecoli3 winequality-white-3_vs_7
ecoli4 winequality-white-9_vs_4

Table A3. Data sets involved in the second experiment. See in [55,57] (Multiclass problems were
converted to binary ones).

abalone-17_vs_7-8-9-10 hepatitis lymphography-normal-fibrosis
abalone-19_vs_10-11-12-13 hypothyroid new_thyroid1
abalone-20_vs_8-9-10 iris0 page-blocks_1-3_vs_4
abalone-21_vs_8 kc1 pc1
abalone-3_vs_11 kddcup-buffer-overflow_vs_back pima
abalone19 kddcup-guess-passwd_vs_satan poker-8-9_vs_6
abalone9_18 kddcup-land_vs_portsweep poker_8_vs_6
car-good kddcup-land_vs_satan poker_9_vs_7
car-vgood kddcup-rootkit-imap_vs_back segment0
cleveland-0_vs_4 kr_vs_k_one_vs_fifteen spect-f
cm1 kr-vs-k-three_vs_eleven vehicle3
flare-f kr-vs-k-zero-one_vs_draw vowel0
german kr-vs-k-zero_vs_eight
habarman kr-vs-k-zero_vs_fifteen

Computers 2022, 11, 73 17 of 21

Table A4. Paths of the ModularOverSampler selected in Experiment 2. Each row represents a path, where the steps of the algorithm can be seen left to right. The
table is divided into two parts based on the main structure of the paths.

Noise Filtering Clustering Cluster Weighting Sample Weighting Sampling Post-Filtering

NF_ENN3 BorderSafeNoise5 CW_BySize SW_kNN gaussian_jittering PF_IPF
NF_ENN3 BorderSafeNoise7 CW_Border SW_kNN gaussian_jittering PF_ENN5
NF_ENN3 DBSCANmin CW_Uniform SW_kNN gaussian_jittering NoFilter
NF_ENN5 BorderSafeNoise5 CW_ByInsideEnemy SW_kNN gaussian_jittering PF_ENN5
NF_ENN5 BorderSafeNoise7 CW_Border SW_kNN gaussian_jittering PF_ENN5
NF_ENN5 BorderSafeNoise7 CW_ByInsideEnemy SW_Uniform gaussian_jittering NoFilter
NF_ENN5 DBSCANmin CW_Uniform SW_kNN gaussian_jittering PF_ENN5
NF_ENN5 MinMaj CW_Uniform SW_Uniform gaussian_jittering PF_IPF
NF_ENN5 MinMaj CW_Uniform SW_kNN gaussian_jittering PF_ENN5
NoFilter BorderSafeNoise7 CW_Border SW_Uniform gaussian_jittering NoFilter
NoFilter BorderSafeNoise7 CW_BySize SW_Uniform gaussian_jittering PF_ENN5
NoFilter DBSCANmin CW_BySize SW_Uniform gaussian_jittering PF_IPF
NoFilter DBSCANwhole CW_ByInsideEnemy SW_Uniform gaussian_jittering PF_IPF
NoFilter MinMaj CW_Uniform SW_Uniform gaussian_jittering NoFilter

Noise Filtering Clustering Cluster Weighting Sample Weighting Cluster Selection Candidate Selection Candidates Weighting Sampling Post-Filtering

NF_ENN3 BorderSafeNoise5 CW_BySize SW_kNN CPM_SelfCluster PCS_ClusterCentre SPW_Uniform interpolation PF_IPF
NF_ENN3 BorderSafeNoise5 CW_BySize SW_kNN CPM_MINOR CS_ALL SPW_Uniform interpolation NoFilter
NF_ENN3 BorderSafeNoise7 CW_ByInsideEnemy SW_kNN CPM_MINOR PCS_ClusterCentre SPW_Uniform interpolation PF_IPF
NF_ENN3 BorderSafeNoise7 CW_BySize SW_kNN CPM_SelfCluster PCS_ClusterCentre SPW_Uniform interpolation NoFilter
NF_ENN5 BorderSafeNoise5 CW_BySize SW_Uniform CPM_SelfCluster PCS_ClusterCentre SPW_Uniform interpolation PF_ENN5
NoFilter DBSCANwhole CW_BySize SW_Uniform CPM_SelfCluster PCS_KNN SPW_Uniform interpolation NoFilter
NoFilter BorderSafeNoise7 CW_Border SW_kNN CPM_SelfCluster PCS_ClusterCentre SPW_Uniform interpolation PF_IPF
NoFilter BorderSafeNoise7 CW_BySize SW_Uniform CPM_SelfCluster PCS_ClusterCentre SPW_Uniform interpolation PF_IPF
NF_ENN5 BorderSafeNoise7 CW_ByInsideEnemy SW_kNN CPM_MINOR CS_ALL SPW_kNN interpolation PF_IPF
NoFilter BorderSafeNoise7 CW_BySize SW_kNN CPM_SelfCluster CS_ALL SPW_kNN interpolation PF_ENN5
NF_ENN3 BorderSafeNoise5 CW_BySize SW_kNN CPM_MINOR CS_ALL SPW_BySeedPairDistancem interpolation PF_IPF
NF_ENN3 BorderSafeNoise7 CW_BySize SW_Uniform CPM_MINOR PCS_KNN SPW_BySeedPairDistancem interpolation PF_ENN5
NF_ENN5 DBSCANmin CW_Uniform SW_Uniform CPM_MINOR CS_ALL SPW_BySeedPairDistancem interpolation PF_ENN5
NF_ENN5 DBSCANwhole CW_ByInsideEnemy SW_kNN CPM_SelfCluster CS_ALL SPW_BySeedPairDistancem interpolation PF_ENN5
NoFilter DBSCANwhole CW_Uniform SW_kNN CPM_MINOR CS_ALL SPW_BySeedPairDistancem interpolation NoFilter
NF_ENN3 BorderSafeNoise7 CW_BySize SW_Uniform CPM_SelfCluster CS_ALL SPW_BySeedPairDistancee interpolation PF_IPF
NF_ENN3 MinMaj CW_Uniform SW_kNN CPM_MINOR PCS_KNN SPW_BySeedPairDistancee interpolation NoFilter
NoFilter BorderSafeNoise5 CW_ByInsideEnemy SW_kNN CPM_SelfCluster CS_ALL SPW_BySeedPairDistancee interpolation NoFilter
NoFilter BorderSafeNoise5 CW_BySize SW_kNN CPM_MINOR CS_ALL SPW_BySeedPairDistancee interpolation PF_IPF
NoFilter BorderSafeNoise7 CW_BySize SW_Uniform CPM_SelfCluster CS_ALL SPW_BySeedPairDistancee interpolation PF_ENN5
NF_ENN5 DBSCANwhole CW_ByInsideEnemy SW_Uniform CPM_MINOR PCS_KNN SPW_ByKNNEnemy interpolation PF_ENN5

Computers 2022, 11, 73 18 of 21

Figure A1. Illustration of the impact of some different sampling strategies. The results were obtained
with the ModularOverSampler on the data set (a) and with the following parameters: (b) NoFilter,
MinMaj, CW_Uniform, SW_Uniform, CPM_MINOR, CS_KNN, SPW_Uniform, interpolation, NoFil-
ter, (c) NoFilter, MinMaj, CW_Uniform, SW_Uniform, CPM_MINOR, CS_KNN, SPW_Uniform, inter-
polation, PF_ENN, (d) NoFilter, DBSCANmin, CW_BySize, SW_Uniform, CPM_SelfCluster, CS_All,
SPW_Uniform, interpolation, NoFilter, (e) NoFilter, DBSCANmin, CW_Uniform, SW_Uniform,
CPM_SelfCluster, CS_ClusterCenter, SPW_Uniform, interpolation, NoFilter and (f) NoFilter, Bor-
derSafeNoise, CW_Border, SW_Uniform, CPM_SelfCluster, CS_All, SPW_Uniform, interpolation,
NoFilter. The samples of the original minority and majority sets, the newly generated samples and
the removed ones are marked by triangles, circles, stars and hyphens, respectively.

Computers 2022, 11, 73 19 of 21

Table A5. The results of the Holm–Bonferroni tests.

ModularOverSampler compared by F1—p AUC—p G—p Acc—p

Assembled-SMOTE 0.327627 0.128139 1.000000 0.001259
CCR 0.001865 0.001279 0.003997 0.075417
G-SMOTE 0.069154 0.035956 0.003997 0.075417
LVQ-SMOTE 0.000133 0.001329 0.000404 0.000396
Lee 0.112351 0.022422 0.282032 0.000033
ProWSyn 0.112351 0.446792 1.000000 0.000007
SMOBD 0.327627 0.067411 1.000000 0.000419
SMOTE 0.000000 0.000004 0.000019 0.000000
SMOTE-IPF 0.000123 0.000301 0.001519 0.000000
SMOTE-TomekLinks 0.000022 0.000011 0.001358 0.000000
Polynom-fit-SMOTE 0.112351 0.022422 0.023436 0.151167
no sampling 0.000000 0.000000 0.000000 0.000362

DTree

ModularOverSampler compared by F1—p AUC—p G—p Acc—p

Assembled-SMOTE 0.007945 0.025542 0.810202 0.000001
CCR 0.101835 0.025542 0.007811 0.527657
G-SMOTE 0.029078 0.000023 0.007811 0.031673
LVQ-SMOTE 0.001763 0.000445 0.000036 0.031851
Lee 0.000017 0.000060 0.083325 0.000000
ProWSyn 0.044035 0.397051 0.810202 0.000000
SMOBD 0.001763 0.000060 0.104556 0.000000
SMOTE 0.000001 0.000000 0.007811 0.000000
SMOTE-IPF 0.000006 0.000006 0.024562 0.000000
SMOTE-TomekLinks 0.000000 0.000000 0.005710 0.000000
Polynom-fit-SMOTE 0.101835 0.203519 0.082614 0.120106
no sampling 0.000000 0.000000 0.000000 0.003174

KNN

ModularOverSampler compared by F1—p AUC—p G—p Acc—p

Assembled-SMOTE 0.956707 1.000000 0.882724 0.000059
CCR 0.933192 1.000000 0.882724 0.020890
G-SMOTE 0.162401 0.337485 0.882724 0.031773
LVQ-SMOTE 0.000356 0.000517 0.001660 0.000004
Lee 0.055428 0.640611 0.882724 0.000000
ProWSyn 1.000000 1.000000 0.882724 0.004809
SMOBD 1.000000 1.000000 0.882724 0.011318
SMOTE 0.000007 0.000208 0.049016 0.000000
SMOTE-IPF 0.008097 0.071311 0.193764 0.000000
SMOTE-TomekLinks 0.001915 0.000670 0.380950 0.000000
Polynom-fit-SMOTE 0.956707 0.019646 0.057469 0.036107
no sampling 0.000000 0.000000 0.000000 0.000002

MLP

ModularOverSampler compared by F1—p AUC—p G—p Acc—p

Assembled_SMOTE 0.000258 0.002433 0.588482 0.000000
CCR 0.000000 0.002433 0.588482 0.000000
G-SMOTE 0.000264 0.002433 0.010138 0.008098
LVQ-SMOTE 0.000000 0.000001 0.000437 0.000000
Lee 0.000001 0.000000 0.003790 0.000000
ProWSyn 0.019546 0.056248 0.701614 0.000172
SMOBD 0.006383 0.002433 0.701614 0.000010
SMOTE 0.000000 0.000000 0.000000 0.000000
SMOTE-IPF 0.000000 0.000000 0.000902 0.000000
SMOTE-TomekLinks 0.000000 0.000000 0.000001 0.000000
Polynom-fit-SMOTE 0.019546 0.001995 0.003790 0.008567
no sampling 0.000000 0.000000 0.000000 0.008567

SVC

References
1. Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from Imbalanced Data Sets; Springer:

Berlin/Heidelberg, Germany, 2018.
2. Zhao, C.; Xin, Y.; Li, X.; Yang, Y.; Chen, Y. A heterogeneous ensemble learning framework for spam detection in social networks

with imbalanced data. Appl. Sci. 2020, 10, 936.
3. Liu, J. A minority oversampling approach for fault detection with heterogeneous imbalanced data. Expert Syst. Appl. 2021,

184, 115492.
4. Gui, X.; Zhang, J.; Tang, J.; Xu, H.; Zou, J.; Fan, S. A Quadruplet Deep Metric Learning model for imbalanced time-series fault

diagnosis. Knowl. Based Syst. 2022, 238, 107932.

Computers 2022, 11, 73 20 of 21

5. Khalilia, M.; Chakraborty, S.; Popescu, M. Predicting disease risks from highly imbalanced data using random forest. BMC Med.
Inform. Decis. Mak. 2011, 11, 1–13.

6. Fotouhi, S.; Asadi, S.; Kattan, M.W. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J. Biomed.
Inform. 2019, 90, 103089.

7. Su, H.; Hu, Y.; Karimi, H.R.; Knoll, A.; Ferrigno, G.; De Momi, E. Improved recurrent neural network-based manipulator control
with remote center of motion constraints: Experimental results. Neural Netw. 2020, 131, 291–299.

8. Qi, W.; Ovur, S.E.; Li, Z.; Marzullo, A.; Song, R. Multi-Sensor Guided Hand Gesture Recognition for a Teleoperated Robot Using a
Recurrent Neural Network. IEEE Robot. Autom. Lett. 2021, 6, 6039–6045.

9. Qi, W.; Aliverti, A. A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily
activity. IEEE J. Biomed. Health Inform. 2019, 24, 2199–2207.

10. Zhao, P.; Hoi, S.C. Cost-sensitive online active learning with application to malicious URL detection. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013;
pp. 919–927.

11. Weiss, G.M. Foundations of imbalanced learning. InImbalanced Learning: Foundations, Algorithms, and Applications; Wiley-IEEE
Press: New York, NY, USA, 2013; pp. 13–41. https://doi.org/10.1002/ 9781118646106.ch2.

12. Khan, S.H.; Hayat, M.; Bennamoun, M.; Sohel, F.A.; Togneri, R. Cost-sensitive learning of deep feature representations from
imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3573–3587.

13. Guo, H.; Li, Y.; Shang, J.; Gu, M.; Huang, Y.; Gong, B. Learning from class-imbalanced data: Review of methods and applications.
Expert Syst. Appl. 2017, 73, 220–239.

14. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 1–54.
15. García, V.; Sánchez, J.S.; Marqués, A.I.; Florencia, R.; Rivera, G. Understanding the apparent superiority of over-sampling through

an analysis of local information for class-imbalanced data. Expert Syst. Appl. 2020, 158, 113026.
16. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357.
17. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking

the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905.
18. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In

Proceedings of the International Conference on Intelligent Computing, Hefei, China, 23–26 August 2005; pp. 878–887.
19. Ma, L.; Fan, S. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random

forests. BMC Bioinform. 2017, 18, 169.
20. Le, T.; Le Son, H.; Vo, M.T.; Lee, M.Y.; Baik, S.W. A cluster-based boosting algorithm for bankruptcy prediction in a highly

imbalanced dataset. Symmetry 2018, 10, 250.
21. Xu, Z.; Shen, D.; Nie, T.; Kou, Y.; Yin, N.; Han, X. A cluster-based oversampling algorithm combining SMOTE and k-means for

imbalanced medical data. Inf. Sci. 2021, 572, 574–589.
22. Sanchez, A.I.; Morales, E.F.; Gonzalez, J.A. Synthetic oversampling of instances using clustering. Int. J. Artif. Intell. Tools 2013,

22, 1350008.
23. Sáez, J.A.; Luengo, J.; Stefanowski, J.; Herrera, F. SMOTE–IPF: Addressing the noisy and borderline examples problem in

imbalanced classification by a re-sampling method with filtering. Inf. Sci. 2015, 291, 184–203.
24. Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. DBSMOTE: Density-based synthetic minority over-sampling technique.

Appl. Intell. 2012, 36, 664–684.
25. Xu, X.; Chen, W.; Sun, Y. Over-sampling algorithm for imbalanced data classification. J. Syst. Eng. Electron. 2019, 30, 1182–1191.
26. Hu, F.; Li, H. A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE. Math.

Probl. Eng. 2013, 2013, 694809.
27. Hu, S.; Liang, Y.; Ma, L.; He, Y. MSMOTE: Improving classification performance when training data is imbalanced. In Proceedings

of the 2009 Second International Workshop on Computer Science and Engineering, Qingdao, China, 28–30 October 2009; Volume 2,
pp. 13–17.

28. Jiang, Z.; Pan, T.; Zhang, C.; Yang, J. A new oversampling method based on the classification contribution degree. Symmetry 2021,
13, 194.

29. Zhu, T.; Lin, Y.; Liu, Y. Improving interpolation-based oversampling for imbalanced data learning. Knowl.-Based Syst. 2020,
187, 2018104826.

30. Wilson, D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 3, 408–421.
31. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings

of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

32. Bunkhumpornpat, C.; Sinapiromsaran, K.; Lursinsap, C. Safe-level-smote: Safe-level-synthetic minority over-sampling technique
for handling the class imbalanced problem. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Bangkok, Thailand, 27–30 April 2009; pp. 475–482.

33. Jo, T.; Japkowicz, N. Class imbalances versus small disjuncts. ACM Sigkdd Explor. Newsl. 2004, 6, 40–49.

Computers 2022, 11, 73 21 of 21

34. Cateni, S.; Colla, V.; Vannucci, M. Novel resampling method for the classification of imbalanced datasets for industrial and
other real-world problems. In Proceedings of the 11th International Conference on Intelligent Systems Design and Applications,
Cordoba, Spain, 22–24 November 2011; pp. 402–407.

35. Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014, 28,
92–122.

36. Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data.
ACM SIGKDD Explor. Newsl. 2004, 6, 20–29.

37. Cieslak, D.A.; Chawla, N.V.; Striegel, A. Combating imbalance in network intrusion datasets. In Proceedings of the GrC, Atlanta,
GA, USA, 10–12 May 2006; pp. 732–737.

38. Zhou, B.; Yang, C.; Guo, H.; Hu, J. A quasi-linear SVM combined with assembled SMOTE for imbalanced data classification. In
Proceedings of the 2013 International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013; pp. 1–7.

39. Koto, F. SMOTE-Out, SMOTE-Cosine, and Selected-SMOTE: An enhancement strategy to handle imbalance in data level. In
Proceedings of the International Conference on Advanced Computer Science and Information System, Tanjung Priok, Indonesia,
18–19 October 2014; pp. 280–284.

40. Chen, L.; Cai, Z.; Chen, L.; Gu, Q. A novel differential evolution-clustering hybrid resampling algorithm on imbalanced datasets.
In Proceedings of the 2010 Third International Conference on Knowledge Discovery and Data Mining, Phuket, Thailand, 9–10
January 2010; pp. 81–85.

41. Laurikkala, J. Improving identification of difficult small classes by balancing class distribution. In Proceedings of the Conference
on Artificial Intelligence in Medicine in Europe, Cascais, Portugal, 1–4 July 2001.

42. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.

43. Lee, J.; Kim, N.R.; Lee, J.H. An over-sampling technique with rejection for imbalanced class learning. In Proceedings of the Ninth
International Conference on Ubiquitous Information Management and Communication, ACM, Bali, Indonesia, 8–10 January
2015; pp. 1–6.

44. Cohen, G.; Hilario, M.; Sax, H.; Hugonnet, S.; Geissbuhler, A. Learning from imbalanced data in surveillance of nosocomial
infection. Artif. Intell. Med. 2006, 37, 7–18.

45. De la Calleja, J.; Fuentes, O.; González, J. Selecting Minority Examples from Misclassified Data for Over-Sampling. In Proceedings
of the FLAIRS Conference, Coconut Grove, FL, USA, 15–17 May 2008; pp. 276–281.

46. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the Surprising Behavior of Distance Metrics in High Dimensional Space. In Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 420–434.

47. Khoshgoftaar, T.M.; Rebours, P. Improving software quality prediction by noise filtering techniques. J. Comput. Sci. Technol. 2007,
22, 387–396.

48. Kovács, G. An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced
datasets. Appl. Soft Comput. 2019, 83, 105662.

49. Gazzah, S.; Amara, N.E.B. New oversampling approaches based on polynomial fitting for imbalanced data sets. In Proceedings of
the 2008 the Eighth Iapr International Workshop on Document Analysis Systems, Nara, Japan, 16–19 September 2008; pp. 677–684.

50. Barua, S.; Islam, M.M.; Murase, K. ProWSyn: Proximity weighted synthetic oversampling technique for imbalanced data set
learning. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, QLD, Australia,
14–17 April 2013; Springer: Berlin/Heidelberg, Germany; pp. 317–328.

51. Cao, Q.; Wang, S. Applying over-sampling technique based on data density and cost-sensitive svm to imbalanced learning.
In Proceedings of the 2011 International Conference on Information Management, Innovation Management and Industrial
Engineering, Shenzhen, China, 26–27 November 2011; Volume 2, pp. 543–548.

52. Sandhan, T.; Choi, J.Y. Handling imbalanced datasets by partially guided hybrid sampling for pattern recognition. In Proceedings
of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 1449–1453.

53. Koziarski, M.; Woźniak, M. CCR: A combined cleaning and resampling algorithm for imbalanced data classification. Int. J. Appl.
Math. Comput. Sci. 2017, 27, 727–736.

54. Nakamura, M.; Kajiwara, Y.; Otsuka, A.; Kimura, H. Lvq-smote–learning vector quantization based synthetic minority
over–sampling technique for biomedical data. J. BioData Min. 2013, 6, 1–10.

55. Alcala-Fdez, J.; Fernandez, A.; Luengo, J.; Derrac, J.; Garcia, S.; Sanchez, L.; Herrera, F. KEEL Data-Mining Software Tool: Data set
repository, integration of algorithms and Experimental analysis framework. J. Mult. Valued Log. Soft Comput. 2011, 17, 255–287.

56. Kovács, G. Smote-variants: A python implementation of 85 minority oversampling techniques. Neurocomputing 2019, 366,
352–354.

57. UCI Machine Learning Repository: Data Sets. Available online: https://archive.ics.uci.edu/ml/datasets.php (accessed on 10
February 2022).

https://archive.ics.uci.edu/ml/datasets.php

	Introduction
	Related Work
	Methodology
	Noise Filtering
	Clustering
	Cluster Weighting
	Cluster Selection
	Sample Weighting
	Seed Selection
	Cluster Selection for Sample Pairs
	Creating Candidate Sets
	Candidate Weighting
	Sample Pairs Selection
	Sample Generation
	Post-Filtering

	Results and Discussion
	Oversamplers
	Data
	Evaluation Metrics
	Classifiers
	Evaluation
	Experiment 1
	Experiment 2

	Limitations and Recommendation for Further Research
	Conclusions
	Appendix A
	References

