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Abstract: In the domain of artificial neural networks, it is important to know what their representation,
classification and generalization capabilities are. There is also a need for time and resource-efficient
training algorithms. Here, a new zero-error training method is derived for digital computers and
single hidden layer networks. This method is the least upper bound on the number of hidden
neurons as well. The bound states that if there are N input vectors expressed as rational numbers, a
network having N − 1 neurons in the hidden layer and M neurons at the output represents a bounded
function F: RD→RM for all input vectors. Such a network has massively shared weights calculated
by 1 + M regular systems of linear equations. Compared to similar approaches, this new method
achieves a theoretical least upper bound, is fast, robust, adapted to floating-point data, and uses
few free parameters. This is documented by theoretical analyses and comparative tests. In theory,
this method provides a new constructional proof of the least upper bound on the number of hidden
neurons, extends the classes of supported activation functions, and relaxes conditions for mapping
functions. Practically, it is a non-iterative zero-error training algorithm providing a minimum number
of neurons and layers.

Keywords: algebraic training; mapping; least upper bound; activation functions; single hidden layer;
floating points

1. Introduction

In recent years, artificial neural networks (ANN) have become important tools in
many areas of research as well as in industry [1], healthcare [2], finance, media [3], etc.
They process all types of data, e.g., pictures, videos, speech, audio, time series, texts, etc.
They are particularly important in areas where precise mathematical or physical models
are unknown or are difficult to calculate and use and this is because there are several
structures of very complex ANNs [4] that can be well adapted to wide range of problems.
As ANNs become a part of our lives, it is important to expand our theoretical and practical
knowledge about their use.

Since the first application of ANNs, great efforts have been made to analyze their
basic abilities from a theoretical and practical point of view [5–7], i.e., mainly density
and complexity problems. The density aims to determine whether a particular ANN can
represent, or at least approximate, a given set of functions. The complexity sets limits on
how big or complex such a network must be in order to perform certain representations
or approximations. Another major issue is the training process [8], i.e., how to optimally
(in terms of accuracy) and efficiently (training times, computational load) set all free ANN
parameters with respect to training data. Therefore, a better understanding of theoretical
and practical limits can significantly alleviate these problems. There are many useful
theorems and measures for evaluating the abilities of various ANNs from different aspects,
e.g., approximation, representation, generalization, and related bounds on the number of
neurons, layers, free parameters, etc.
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This article introduces a new zero-error training/construction process of single hidden
layer feed forward networks (SLFN). This method is also the least upper bound on the
number of hidden neurons. The presented method and the derived bound differ from
the previously published methods mostly by introducing a natural assumption of input
samples processed in digital computers, i.e., rational (floating-point) numbers. This allows
to derive a new constructional least upper bound achieving zero-error mapping in a fixed
number of steps. It defines a network structure with a massive weight sharing, introduces
a simple training algorithm that is reduced to solving regular systems of linear equations
(upper or lower triangular matrices), relaxes conditions for mapping functions, and extends
supported sets of activation functions. Moreover, this process has proved to be fast and
robust using only a small number of free parameters compared to similar methods. Finally,
this method addresses all three major problems, i.e., density, complexity and training.

2. Related Work
2.1. Approximation Theorems for Single Hidden Layer Networks

In, e.g., [5], it was shown that continuous functions of N variables can be represented
by a linear combination of 2N + 1 different nonlinear functions; however, it is not clear
what these functions look like. In [6], it was shown that a superposition of sigmoid-like
functions can approximate with an arbitrary accuracy any bounded continuous function
(Universal Approximation Theorem). This is directly applicable to a standard SLFN;
however, it is not known how many neurons are needed. In, e.g., [7], it was further
proven that any continuous non-polynomial activation function can be used. There are
also several constructional proofs. In, e.g., [9], so-called Fourier neural series were used for
approximation. A different approach was presented in [10], where instead of combining
many hidden neurons with fixed activation functions, a single neuron and a more general
sigmoidal function were used.

2.2. Representation Theorems, Bounds and Construction Methods for Single Hidden
Layer Networks

It is possible to construct networks with a zero-error mapping observed on a finite
number of input samples. In [11], a proof was derived of an upper bound on the number
of hidden neurons in a SLFN that uses signum activation functions. It states that N − 1
neurons are sufficient to perform a mapping of N samples, which is also the least upper
bound (LUB). In [12], this result was extended by showing that a SLFN with N hidden
neurons can represent N samples implementing any bounded nonlinear activation function
that has a limit in −∞ or ∞. Assuming an input sample matrix has at least one row
with completely different values, a training approach using N hidden neurons and the
rectified linear unit (Relu) was presented in [13]. In [14], weights for N hidden neurons
were generated randomly, whereas the biases were calculated with respect to inputs and
weights. In, e.g., [15], it was further shown that randomly set weights and biases of N
hidden neurons can perform a mapping of N samples using sigmoidal activation functions.
In the domain of extreme learning machine (ELM), it was shown in [16] that a network
with N hidden neurons can achieve a zero-error approximation with a probability of 1 for
all N input samples. It assumes infinitely differentiable activation functions, whereas the
weights and biases of hidden neurons can be randomly selected.

2.3. Approximation and Representation Theorems and Bounds for Networks with More
Hidden Layers

For networks with more hidden layers, there are several articles proving they can
approximate continuous functions. In [17], an approximation power of additional hidden
layers was demonstrated, showing that an extra hidden layer can dramatically reduce
the number of neurons. An analysis of approximation capabilities for deep ANNs can
be found in [18], where the lower bounds are given by the complexity of functions to be
approximated and the required accuracy. In [19], an expressive number, i.e., a number
of samples that can be expressed by a network, was investigated for a two hidden layer
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network. Both the lower and upper bounds on the expressive number of networks using
Relu activation functions were derived.

2.4. Generalization Theorems and Bounds

There are also several measures related to generalization capabilities, such as the
Vapnik–Chervonenkis (VC) dimension [20]. In [21], tighter upper and lower bounds on VC
dimensions for deep ANNs with Relu activation functions were presented; however, for
special activation functions, even a single hidden layer can have an infinite VC dimension.
Another important measure to limit generalization errors is the Rademacher complexity,
and there are several articles estimating this measure, e.g., [22]. As a consequence, various
regularization techniques [23], often related to these bounds, are used in the training process
to increase its generalization capabilities.

3. Construction Method and the Least Upper Bound on Single Hidden Layer Networks

Since the construction process of a zero-error mapping SLFN is the proof of the least up-
per bound as well, first the mapping theorem is given, followed by its constructional proof.

Theorem 1. If F : RD → RM is a real bounded function defined in a subspace S ⊂ RD formed by a
D dimensional rectangular cuboid of the size L1× L2× L3 . . .× LD and ∃ k | Lk >0 ∧ Lj < ∞ ∀j,
and there is a finite number N of rational samples x ∈ S

⋂
QD, then a single hidden layer feed

forward network having N − 1 neurons in a hidden layer and M in an output layer is sufficient to
realize a mapping defined by F(xi) = yi, i = 1, . . . , N. Such a network has D − 1 + M(N − 1)
trainable weights and N − 1 + M trainable biases that can be computed by solving 1 + M regular
systems of linear equations. The output neurons have identity activation functions and the hidden
neurons implement arbitrary activation functions f: R→R satisfying:

f (x) =
〈

0, x ≤ 0
R \{0}, x > 0

or f (x) =
〈

A , x → ∞
B, x → −∞

, A 6= B ∧ A 6= 0

3.1. Constructional Proof-Preliminaries

The basic proof is primarily given for QD→ R mapping, but it can be analogically and
easily extended for more outputs, i.e., QD → RM; as shown later in the text. For an exact
formulation for how rational and floating-point numbers can be represented, e.g., as given
in the IEEE 754 standard, see Appendix A, as this is crucial for the proof. For the proof only,
it is assumed that N input samples xi are sorted in ascending order along all dimensions
D, as stated in Appendix B. Finally, it is assumed the space bounding rectangular cuboid
originates in the beginning of a Cartesian coordinate system (to make the proof more
concise), ∆ > 0, 0 < step < ∆, L1 > 0, and xi(k) denotes k-th dimension of i-th sample. The
proof is divided into several logical steps as follows.

3.2. Separating Affine Hyperplanes

This step is essential for the proof and can be easily and graphically represented in
three dimensions (1D and 2D cases are omitted as they can be easily inferred). Then the
process will be generalized for a D dimensional case using mathematical induction.

3.2.1. 3D Case

Since the design is geometric, see Figure 1 showing the finite precision grid bounded
by a prism of the size 2 × 2 × 1, i.e., L1 × L2 × L3 originating at (0, 0, 0)T that contains all
rational numbers with ∆ = 1 (a difference between grid points). The task is to construct
affine planes that can gradually separate all grid points (potentially all possible input
samples) one by one from the remaining ones. Such a process starts at (0, 0, 0)T then moves
to (1, 0, 0)T, (2, 0, 0)T, (0, 1, 0)T, etc., and ends at the last but one point of the bounding prism,
i.e., (1, 2, 1)T. It is important that once the grid point is separated, it must remain separated
by all other planes in the following steps. A grid point separating plane is defined by v12
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and v123 vectors. v12 with a 3rd dimension equal to 0 that satisfies the property of gradual
separation (see Figure 2) can be expressed as follows:

v12 = (L1, 0 , 0)T − (0, step, 0)T = (L1,−step, 0)T (1)
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Figure 2. Construction of v12 located in a 2D subspace (3rd dimension = 0) forming a separating
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finite precision grid points (*) located in a 2 × 2 rectangle, i.e., L1 × L2, step, ∆ = 1, and margin.

It is clear from Figure 2 that step must be in range (0, ∆) so as not to interfere with
other points having 3rd dimension equal to 0. Next, choosing v123 as shown in Figure 1
secures the separating plane will not intersect any points in the above parallel plane, i.e., 3rd
dimension = ∆. Thus, v123 can be expressed as:

v123 = (L1, L2, 0)T − (0, 0, step)T = (L1, L2,−step)T (2)

It is then possible to calculate a normalized normal vector n ((A4), Appendix C) of
such a plane allowing a gradual separation process using (A5) as follows:

−
(

v12(2) v12(3)
v123(2) v123(2)

)(
n(2)
n(3)

)
= −

(
−step 0

L2 −step

)(
n(2)
n(3)

)
=

(
L1
L1

)
(3)

This forms a lower triangular matrix with non-zero diagonal elements, thus, the
solution always exists and can be easily found. Finally, N − 1 separating affine planes wi
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sharing the same normal vector n, each intersecting different sample xi, i = 1, . . . , N − 1,
and multiplied by −1 are defined in (4).

wi : −xTn− di = −xT

 1
n(2)
n(3)

+ xT
i

 1
n(2)
n(3)

 = 0, i = 1, . . . , N − 1 (4)

For the proof only, it is assumed that N input samples xi are sorted as stated in (A3).
The−1 multiplication is applied only to swap the subspaces each plane creates, i.e., positive
to negative and vice versa, which is what is needed when using common forms of activation
functions, e.g., Relu, tanh, Heaviside, etc.

3.2.2. D-Dimensional Case

Using mathematical induction, assuming there are already correctly found vectors v12,
v123, . . . v123 . . . m−1 partially defining the separating affine hyperplane (in m − 1 dimen-
sions), a new vector v123 . . . m is constructed in the same way as before. Thus, it connects the
most distant point in m − 1 dimensional subspace, i.e., (L1, L2, . . . Lm−1, 0, . . . , 0)T and the
“begging” point located in m dimensional subspace, i.e., (0, . . . , 0, stepm, 0, . . . , 0)T, while
introducing a proper margin given by stepm (here stepm is used to explicitly indicate that it
is in the m-th dimension, otherwise step is regarded to be the same across dimensions), i.e.,

v12...m = (L1, L2, . . . , Lm−1, 0, . . . , 0)T − (0, 0, . . . , 0, stepm, 0, . . . , 0)T =

(L1, L2, . . . , Lm−1,−stepm, 0, . . . , 0)T (5)

Once having v123 . . . m, it is possible to reach points p12 . . . m in m dimensional subspace
from points p12 . . . m−1 in m − 1 dimensional subspace simply by adding properly scaled (c)
vector v123 . . . m to p12 . . . m−1 as:

p12...m =
(
p12...m−1(1), p12...m−1(2), . . . , p12...m−1(m− 1), 0, . . . 0

)T
+ cv12...m =

(k1∆, k2∆, . . . , km−1∆, 0, . . . , 0)T + cv12...m =

(k1∆ + cL1, k2∆ + cL2, . . . , km−1∆ + cLm−1, c(−stepm), 0, . . . 0)T
(6)

Now, to prove the existence of the separation property, it is sufficient to show that
any grid point in the m-th dimension closest to the m − 1 subspace (minimal distance = ∆),
i.e., (k1 ∆, k2 ∆, . . . , km−1 ∆, ∆, 0, . . . , 0)T cannot be reached from the m − 1 subspace by
v123 . . . m as given in (6) within the allowable grid limits. Using the assumptions, the finite
precision grid limits can be applied to any valid point p12 . . . m and dimension i < m as:

0 ≤ p12...m(i) ≤ Li → 0 ≤ ki∆ + cLi ≤ Li ∧ ki ∈
[

0,
Li
∆

]
(7)

where c is calculated such that when v123 . . . m is added to any grid point in m − 1 subspace
as given in (6), it just intersects ∆ (minimal separation distance) in m-th dimension, i.e.,

c(−stepm) = ∆ ⇒ c = − ∆
stepm

(8)

Substituting c into (7) yields:

ki∆ + cLi = ∆
(

ki − Li
stepm

)
≤ ∆

(
Li
∆ −

Li
stepm

)
< 0

as stepm < ∆ ∧ ki ≤ Li
∆ ∧ ∃i

∣∣∣ Li > 0
(9)

The inequality in (9) violates the boundary limits for a valid grid point in i-th dimen-
sion, i.e., any grid point in dimension i must be in a close interval [0, Li], whereas (9) states
it must be strictly negative for at least one dimension where Li > 0. Therefore, v123 . . . m
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enables the gradual separation process also along the newly incorporated dimension m. By
gradually generating vectors as in (5) dimension by dimension, D − 1 base vectors forming
the separating affine hyperplane are found. Using (A5), the normalized normal vector n of
the separating affine hyperplane is calculated as in (10):

v12(2) v12(3) . . . v12(D)
v123(2) v123(3) . . . v123(D)

...
...

. . .
...

v1234...D(2) v1234...D(3) . . . v1234...D(D)




n(2)
n(3)

...
n(D)

 =



−step 0 . . . 0 0
L2 −step 0 . . . 0

L2 L3
. . .

...
...

...
...

... −step 0
L2 L3 . . . LD−1 −step




n(2)
n(3)
n(4)

...
n(D)

 = −


L1
L1
L1
...

L1


(10)

This is a lower triangular D− 1× D− 1 matrix with non-zero diagonal elements, thus
the solution always exists. Such an affine hyperplane having its normal vector calculated as
in (10) is able to gradually separate all points in the finite precision grid and thus N input
samples as well. Now this hyperplane is gradually shifted to intersect the first N − 1 sorted
samples xi. This creates N − 1 separating affine hyperplanes as in (11), multiplied by −1 to
enable the use of common activation functions:

wi : −xTn− di = −xT


1

n(2)
...

n(D)

+ xT
i


1

n(2)
...

n(D)

 = 0 (11)

3.3. Dot-Product Matrix

Having N − 1 affine hyperplanes (11) (weights and biases of hidden neurons), a
dot-product matrix DP can be constructed as in (12). It contains dot products of all input
samples (extended by constant 1, i.e., input to a bias term) and vectors (−nT, −di) defining
the separating affine hyperplanes wi, i.e., DP represents the application of weights and
biases of hidden neurons to all input vectors xi:

DP = −


(
xT

1 , 1
)(

xT
2 , 1

)
...(

xT
N , 1

)

( (

n
d1

)
,
(

n
d2

)
, . . . ,

(
n

dN−1

) )
=

−


xT

1 n + d1 xT
1 n + d2 . . . xT

1 n + dN−1
xT

2 n + d1 xT
2 n + d2 . . . xT

2 n + dN−1
...

...
. . .

...
xT

Nn + d1 xT
2 n + d2 . . . xT

Nn + dN−1

 =


0 ε+ . . . ε+

ε− 0 . . . ε+

...
...

. . . 0
ε− ε− . . . ε−


(12)

Due to the gradual point by point separation of N sorted samples by N − 1 affine
hyperplanes wi, such a matrix (N × N − 1) has a special structure, i.e., its main diagonal
is equal to 0, samples below the diagonal are negative, for simplicity marked as ε−, and
elements above the diagonal are positive (ε+). Next, a sufficiently small positive constant
ξi is added to each column of DP, so that the diagonal elements become positive, but still
securing that the negative elements remain negative. This can be achieved by directly
adding such ξi to di for each affine hyperplane, i.e.,
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di = −

xT
i

 1
n(2)
n(3)

+ ξi

 (13)

A proper ξi can be found for each column by inspecting negative elements located
below the main diagonal as in (14):

0 < ξi < min
j>i

∣∣DPj,i
∣∣i = 1, . . . , N − 1 (14)

Here DPj,i denotes j-th raw and i-th column of the matrix. A single constant satisfying
such requirements can be calculated by parameters of the finite precision grid and the
normal vector n, i.e.:

0 < ξ < min{(−∆, 0, . . . , 0)n, (L1,−∆, 0, . . . , 0)n, . . . , (L1, L2 , . . . , LD−1 ,−∆)n} (15)

Although (15) is a faster solution, (14) is more suitable for better numerical stability.

3.4. Hidden Output Matrix

In the next step, a proper nonlinear function is applied element-wise to the adjusted
DP matrix by ξi (14), thus producing a hidden output matrix H. Such a matrix (N × N − 1)
contains outputs of all hidden neurons for all input samples xi. In this case two broad
classes of functions can be used. For simplicity, first consider functions satisfying the
definition in (16):

f (x) =
〈

0, x ≤ 0
R \{0}, x > 0

(16)

Such functions, when applied to the adjusted DP matrices, produce upper triangular
matrices with non-zero diagonal elements. In the following steps, this ensures the existence
of a unique solution, e.g., in the case of the Heaviside function satisfying (16), this results in
the hidden output matrix H, as shown in (17):

H = Heavisde




ξ1 ε+ + ξ2 . . . ε+ + ξN−1
ε− + ξ1 ξ2 . . . ε+ + ξN−1

...
...

. . . ξN−1
ε− + ξ1 ε− + ξ2 . . . ε− + ξN−1


 =


1 1 . . . 1
0 1 . . . 1
...

...
. . . 1

0 0 . . . 0

 (17)

3.5. Output Neuron Weights and Biases

First, the hidden output matrix in (17) is extended from the right by a column of units,
as shown in (18). This represents a constant input 1 to a bias for each training sample. The
output neuron has N − 1 inputs from hidden neurons and the bias term fed by 1 (the last
column of the extended matrix H). Thus, the extended matrix H is a square N × N upper
triangular matrix with non-zero diagonal elements. Then, N − 1 output weights in w21 and
the bias term b21 can be calculated simultaneously using (18):

1 1 . . . 1 1

0 1 . . .
... 1

...
...

. . . 1
...

0 0 . . . 0 1




w21(1)
...

w21(N − 1)
b21

 =


y1(1)
y2(1)

...
yN(1)

 (18)

where yi(1) i = 1, . . . , N, denotes outputs along the first dimension, i.e., output values of
the first output neuron for all N inputs samples that realize F(xi) = yi, i = 1, . . . , N. The
matrix in (18) is by theory regular [24], thus there are exactly N − 1 weights and the bias of
the output neuron realizing the required mapping for all N input samples.
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3.6. Comments and Extensions

For the sake of brevity, only the basic proof was provided by introducing some
assumptions and limitations that, in fact, are not necessary. Thus, in the following, there
are several extensions and implementation comments in the form of remarks to make the
proof more general.

Remark 1. A single hidden layer network having P hidden and M output neurons performing
RD → RM mapping is described as:

y(j) = f2j

(
b2j +

P

∑
i=1

w2j(i) f1i

(
xT w1i + b1i

))
, j = 1, . . . , M

Then the weights of hidden neurons, i.e., w1i i = 1, . . . , N − 1 are equal to −n as calculated in (10),
their biases b1i are equal to −di as derived in (13), output weights w2j and biases b2j are calculated
as in (18), f1i satisfy (16) or (19), f2j are identity functions, and P = N − 1. Such a network has
N − 1 neurons in the hidden layer and M neurons in the output one.

Remark 2. A unique solution always exists if (18) is in the form of an upper triangular matrix
with non-zero diagonal elements. Given the form of the hidden output matrix as appeared in (17)
and prior to the use of an activation function, it is obvious that this can be easily achieved by all
activation functions satisfying (16), i.e., set all negative (under diagonal) elements to 0 and secure
the diagonal (positive) elements remain non-zero. Another class of activation functions ensuring the
extended matrix H is regular is defined in (19):

f (x) =
〈

A, x → ∞
B, x → −∞

, A 6= B ∧ A 6= 0 (19)

By multiplying elements of the DP matrix by a positive constant α and applying f(x) from (19), the
extended matrix H, as appeared in (18), can be written as follows:

f (αξ1) f (α(ε+ + ξ2)) . . . f (α(ε+ + ξN−1)) 1

f (α(ε− + ξ1)) f (αξ2) . . .
... 1

...
...

. . . f (αξN−1)
...

f (α(ε− + ξ1)) f (α(ε− + ξ2)) . . . f (α(ε− + ξN−1)) 1




w21(1)
...

w21(N − 1)
b21

 =


y1(1)
y2(1)

...
yN(1)


This multiplication constant is applied to the normal vector (10) and to biases/shifts di (13). Based
on Lemma A2 (Appendix D), there exist α for which the rank of H becomes N, i.e., such a matrix is
regular and can be used to solve (18). This class of functions comprises sigmoid-type functions that
play important theoretical and practical roles in ANNs.

Remark 3. The multiplication of affine hyperplanes by −1, as applied in (4) and (11), is completed
only to allow a direct use of Relu, Heaviside, and sigmoid-type activation functions that are very
common. If this is not needed it can be skipped. Then, however, a different class of activation
functions must be used. Such a class of function would be redefined to g(x) = f(−x) as given in (16)
and (19), and large enough, but still negative constants would have to be added to columns of the
dot-product matrix (17). This is to secure negative diagonal and positive below-diagonal elements
prior to the application of g(x). This secures H to be regular in the case of (16) or for some positive α
in the case of (19).

Remark 4. The construction of the dot-product matrix required input samples to be sorted across
dimensions. It should be noted that this was only to show that such a matrix is upper triangular with
non-zero diagonal elements, and therefore must be regular; however, a permutation of rows (samples)
as well as columns (hyperplanes) can be realized by elementary matrix operations, and therefore
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even such an “unordered” matrix is also regular [24]. Thus, this step is not necessary, although it
can significantly simplify the computation of (18). In this case, the input sample xi satisfying:

xT
j


1

w2
...

wd

− xT
i


1

w2
...

wd

 ≤ 0, ∀ j = 1, . . . , N | i 6= j,

is omitted in the construction of N − 1 hidden layer neurons.

Remark 5. The basic proof primarily addressed QD →R mapping. Nevertheless, it can be easily
extended to QD →RM mapping. In this case, the construction of separating affine hyperplanes
and the hidden output matrix, as appeared in (18), remain unchanged, i.e., the hidden layer as a
whole. Now, the network has M output neurons, while the hidden ones remain intact. Thus, only
the weights and biases of additional output neurons must be calculated independently of each other,
e.g., in the case of Heaviside function by:

1 1 . . . 1
0 1 . . . 1
...

...
. . . 1

0 0 . . . 1




w2j(1)
...

w2j(N − 1)
b2j

 =


y1(j)
y2(j)

...
yN(j)

, j = 2, . . . , M (20)

where yi(j) i = 1, . . . , N, denotes N output values for j-th output neuron (j-th dimension of y).
Therefore, a SLFN performing QD → RM mapping of N samples has N − 1 hidden and M output
neurons. There are altogether D − 1 + M(N − 1) trainable weights and N − 1 + M trainable biases.
To calculate all free parameters, it is enough to solve M systems of linear equations as in (20) and
one system given in (10), i.e., all expressed as triangular matrices.

4. Results

This construction method was tested with respect to two aspects, i.e., its practical
limitations and in comparison to similar methods. In addition, the performance of back
propagation-based (BP) training was evaluated on the test data as well.

4.1. Performance of the Proposed Method

Although Theorem 1 gives an upper bound on the number of hidden neurons, it
can be directly used to train SLFNs depending on the precision of the training data and
applied arithmetic. To show its abilities, three kinds of random data were generated for
each test, i.e., 3000 samples in 2, 50, and 60 dimensions, satisfying ∆ = 10−6 (a sample
precision). Both classification and mapping errors were measured, whereas the output
values were random samples from the set {0, 1}. Classification errors were calculated
after converting ANN outputs to binary classes, i.e., y < 0.5→ {0}, and y ≥ 0.5→ {1}. The
mapping errors were evaluated by mean square errors (MSE). All calculations were realized
in the Python 3.6.9 environment [25] using double float arithmetic. The results are listed
in Table 1 for the tested activation functions and generated data. As can be seen, for the
selected precision (∆), bounding subspace, double precision arithmetic, and the number
of samples, a reasonable limit on the number of dimensions is 50, e.g., for 60 dimensions,
no network was found providing error-free classification due to numerical overflows.
For a sample precision of ∆ = 10−10 (not shown in the table) the allowable number of
dimensions dropped to 30, e.g., for 40 dimensions no network was found providing a
perfect classification.
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Table 1. Performance of the proposed algorithm for different dimensions and activation functions in
the case of 3000 training samples; precision ∆ = 10−6, number of tests = 100.

Dimension
Input Sample

Bounding
Space Size

Number of
Grid Points

Activation
Function

Number of
Trainable

Parameters

Ratio of
Found Nets

(0 Classification
Error) [%]

MSE

2 1 × 2 ≈2 × 1012 Heaviside 6000 100 0.0
50 1 × 2 × 1 × . . . × 1 ≈2 × 10300 Heaviside 6048 100 0.0
60 1 × 2 × 1 × . . . × 1 ≈2 × 10360 Heaviside 6058 0 -
2 1 × 2 ≈2 × 1012 Relu 6000 100 2.37 × 10−18

50 1 × 2 × 1 × . . . × 1 ≈2 × 10300 Relu 6048 100 1.59 × 10−17

60 1 × 2 × 1 × . . . × 1 ≈2 × 10360 Relu 6058 0 -
2 1 × 2 ≈2 × 1012 tanh, α = 1 6000 100 4.27 × 10−28

50 1 × 2 × 1 × . . . × 1 ≈2 × 10300 tanh, α = 1 6048 100 0.0
60 1 × 2 × 1 × . . . × 1 ≈2 × 10360 tanh, α = 1 6058 0 -

4.2. Comparison to Similar Approaches

The proposed method was compared to other similar approaches, i.e., algorithms that
theoretically provide zero-error mapping in a fixed number of steps, while minimizing
the number of hidden neurons in a SLFN. The comparison was performed in terms of the
number of neurons, the number of trainable and free parameters, training times, MSE, and
the ratio of successfully found networks, i.e., networks where the maximum mapping error
(absolute difference) did not exceed 10−9. All algorithms were implemented as described
in their articles except of [13]. It was found that a bias vector given in [13] (Equation (8))
could not be used because it had a wrong size, i.e., N − 1 and it should be N, when
applied in [13] (Equation (9)) so that H can be invertible for all N input samples. Thus,
in the present implementation, the correct bias vector was derived in the following form:
b = (−Xi1 + k(Xi1 −Xi2),−Xi2 + k(Xi2 −Xi3), . . . ,−XiN−1 + k(XiN−1 −XiN),−XiN + 1)T,
0 < k < 1. X is an input data matrix having training vectors in its columns and i is the
dimension in which all samples are different (requirement of the method). This secures
to produce a lower triangular matrix H in [13] (Equation (9)). In [12], the authors did not
specify exact hyperparameters x1, and x2 that were set to 0 and 5, respectively, securing
regular matrices H in all experiments.

All methods were implemented in the Python 3.6.9 environment using a double
float precision. In the case of [16], the least mean square method as implemented in
Python 3.6.9 was used to solve potentially irregular matrices H. Training vectors were
randomly generated from a hypercube with the finite precision of ∆ = 10−10 and labels from
the closed interval [0, 1]. Results for easy-to-map data, i.e., 100 vectors in 30 dimensions
and a challenging case, i.e., 3000 vectors in 2 dimensions, are listed in Table 2. As can be
seen, there were only two algorithms reaching the least upper bound (N − 1 neurons),
i.e., the proposed one and that one in [11]. When considering the number of parameters
that must be computed, the lowest number was reported in [16]. Nevertheless, when the
number of all free parameters was regarded, the method in [13] and the proposed one
were more efficient. This is because most of the weights in [16] were set randomly from
the Normal distribution. The most robust methods, i.e., methods producing the desired
networks in 100% of tests, were the proposed one and the method in [12]; however, when
comparing the average training times, the proposed one was approx. two times faster, and
together with [13] these were the fastest methods.
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Table 2. Comparison of zero-error construction methods for different number of samples and
dimensions; input precision ∆ = 10−10, bounding space: hypercube of the size 1, number of tests = 100.

Methods Dimension Number of
Samples

Number of
Hidden
Neurons

Number of
Trainable

Parameters

Ratio of Found
Nets (Approx.
Error ≤10−9)

(%)

Average
Training

Time (ms)
MSE

proposed 30 100 99 228 100 1 3.2 × 10−31

[11] 30 100 99 3169 100 6 1.2 × 10−28

[12] 30 100 100 3070 100 2.5 1.3 × 10−29

[16] 30 100 100 100
3200 * 100 5 1.25 × 10−21

[13] revised 30 100 100 200 93 1 1.67 × 10−21

proposed 2 3000 2999 6000 100 210 1.2 × 10−28

[11] 2 3000 2999 11,997 0 - -
[12] 2 3000 3000 11,998 100 400 3.8 × 10−27

[16] 2 3000 3000 3000
9000 * 0 - -

[13] revised 2 3000 3000 6000 0 - -

* The number of all free parameters; most of which were set randomly from the Normal distribution.

4.3. Comparison to Back Propagation-Based Approach

To assess the performance of the proposed method in the context of the ubiquitous BP
algorithm, BP-based training was applied to the test data in terms of both classification and
mapping tasks. Feed forward networks with one and two hidden layers were implemented
and trained in the Keras (version 2.2.4) system run on PC Intel core i7, 3.5 GH, 16 GB RAM,
64 bit Windows 10 professional, i.e., the same platform for all tests. Several optimizers
(Adam, SGD, RmsProbs), in combination with loss functions (MSE, cross entropy) and
learning rate schemes were tested. Here, the best performing settings (on average) were
used, i.e., Adam optimizer, MSE loss, exponential learning decay (0.001–0.0001), maximum
number of epochs 1.5× 104, and Relu activation functions. Training vectors were randomly
generated from a hypercube with a finite precision of ∆ = 10−6; no networks were success-
fully trained for finer precisions, e.g., ∆ = 10−10, partly due to numerical limitations. In
the case of the classification tests, binary outputs were generated randomly, whereas in
the mapping tests the outputs were random float numbers from the interval [0, 1]. The
results, i.e., the ratios of networks with zero-classification errors, ratios of networks having
mapping errors not greater than 10−3, training times for classification and mapping tests,
and the number of free parameters, for the different network structures and the tested
data are listed in Table 3. It can be seen that for the challenging case (3000 2D samples) no
network having a zero-classification error was found, while networks with one and two
hidden layers and a wide range of neurons were tested. The same holds for the mapping
tests (max. mapping error≤ 10−3), both for the easy-to-map case (100 30D samples) and the
challenging one. The most successful networks for 100 30D samples and the classification
task were SLFNs with a number of neurons ranging from 1000 to 5000. In that case the
average training time was 450 ms, requiring approx. 54 training epochs (not listed in
the table).
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Table 3. Performance of BP-based training on different data and network structures (number of
neurons in hidden layers); input finite precision ∆ = 10−6, max. number of epochs 1.5 × 104, number
of tests 20.

Neurons in
Hidden
Layers

Dimension Samples Free
Parameters

Found Nets
(Zero

Classification
Error) (%)

Average
Training Time

(Zero
Classification

Error) (ms)

Found Nets
(Approx.

Error ≤10−3)
(%)

Average
Training Time
(Approx. Error
≤10−3) (ms)

[100] 30 100 3201 75 587 0 - *
[1000] 30 100 32,001 85 408 0 -
[3000] 30 100 96,001 95 446 0 -
[5000] 30 100 160,001 90 497 0 -

[100, 10] 30 100 4121 75 603 0 -
[500, 10] 30 100 20,501 85 496 0 -

[1000, 10] 30 100 41,021 80 467 0 -
[3000] 2 3000 12,001 0 - 0 -
[6000] 2 3000 24,001 0 - 0 -

[10,000] 2 3000 40,001 0 - 0 -
[3000, 100] 2 3000 ≈3 × 105 0 - 0 -
[6000, 100] 2 3000 ≈54 × 105 0 - 0 -

* Training times not provided for networks that did not converge below the pre-set threshold.

5. Discussion

Based on the proofs, analyses and experiments, several findings and comments can be
made as follows:

The assumed constrain, i.e., finite number of rational samples located in a finite size
space, is very weak and not limiting when using a standard representation of numbers in
digital computers (floating points). Thus, this construction and the least upper bound focus
directly on data as they appear in digital computers.

The number of neurons increases linearly with the number of training samples. For
a fully connected SLFN, the number of free parameters would be N(D + M + 1) − D − 1;
however, due to the massive weight sharing in the hidden layer (the same normal vector)
and the hyperplane normalization, there are only (N − 1)(M + 1) + D − 1 + M free
parameters. Therefore, the sample dependent growth of free parameters is significantly
lower, i.e., (N − 1)(M + 1) compared to N(D + M + 1) as in a standard SLFN.

The shared hidden layer weights are given only by the input data format (10).
Several limit testing experiments have shown that this constructional bound can be used

directly to train networks on various samples, e.g., it was capable to map 3000 50-dimensional
samples expressed to 6 decimal places using Heaviside, Relu and tanh (with α = 1) functions.
Such calculations required currently the standard double float precision. The worst MSE
was observed for the Relu function, but was still less than 1.6 × 10−17; in the case of
Heaviside function the displayed MSE was 0.0, i.e., approx. less than 10−320 as tested in the
Python 3.6.9 environment.

In practice, such an approach has its numerical limitations, therefore it cannot be safely
used for high dimensional data, e.g., D > 50 with the sample precision of ∆ ≤ 10−6 or
D > 30 and ∆ ≤ 10−10 using double float arithmetic. These limits can be naturally extended
by using, e.g., quadruple or octuple arithmetic.

In the construction process, it is naturally assumed that the precision ∆ of input
samples is known. If this is not the case for any reason, such a parameter can still be
calculated (least common multiple) for each dimension separately, as stated in the proof of
Lemma A1. Nevertheless, this can be computationally expensive, but it can still increase
numerical stability.

It was not explicitly mentioned, but each hidden neuron can implement a different
activation function satisfying (16), as it still secures a triangular matrix in (18).
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Compared to other similar approaches (Table 2), the proposed method reaches the
least upper bound (N − 1 neurons) as well as the approach in [11]; however, the proposed
one is approx. six times faster and uses significantly fewer free parameters, e.g., in case
of 100 30D samples it is 228 vs. 3169. Moreover, the proposed method is more robust,
i.e., for 3000 2D samples the approach in [11] was not able to realize any random mapping
in 100 tests meeting the required precision (10−9). The proposed method and the method
in [12] were the only ones able to find all networks in all experiments, which shows their
higher robustness. Nevertheless, the proposed one is faster and uses fewer free parameters,
e.g., in case of 100 30D samples it is 228 vs. 3070 and is approx. 2.5 times faster. In
terms of the number of trainable parameters, the best method is in [16], which randomly
sets most of the free parameters, therefore, it may not always find the exact mapping;
however, considering all free parameters, the most efficient method in [13] is followed
by the proposed one. Finally, given the training time, the proposed method and that one
in [13] are the fastest.

A standard BP-based training was used on the test data to assess the performance
of the proposed and other similar approaches. In mapping tests, i.e., where the maximal
absolute error is not greater than 10−3, no networks having one or two hidden layers
and a wide range of neurons were found (max. number of epochs was 1.5 × 104). This
shows how challenging it is for BP-based approaches to map such data while meeting
this precision. On the other hand, the proposed method and the method in [12] found
all networks even with maximal errors not greater than 10−9. In the classification task,
while deploying proper networks and easy-to-classify data (100 30D samples), the BP-based
design led in most cases (85–95%) to zero-classification errors; however, such networks
required a lot of neurons and a large number of free parameters compared to the proposed
and other similar methods. The same findings also apply to training times that were much
longer for BP-based methods, i.e., more than 100 times, requiring on average more than
50 training epochs.

Although it is obvious, it should be emphasized that such a training process produces
an inconsistent estimator, as it is not aimed at generalizing training data. It is designed
to provide the required mapping in a fixed number of steps and to minimize the number
of neurons. Instead, BP-based approaches deploying different regularizations, e.g., [23],
are vital to achieve a high degree of generalization and robustness when processing noisy
or incomplete data. This is undertaken by introducing some redundancy in the form of
additional neurons and free parameters; however, such an algebraic training can be used
as a quick initialization before the training process that uses additional data and more
complex networks (additional neurons).

6. Conclusions

The article presents a new zero-error construction method applicable to feed forward
neural networks. In particular, it is focused on the construction of zero-error mapping
networks having the minimum possible number of layers and neurons. The design defines
the exact structure of the network, the calculation process of free parameters (weights
and biases), the classes of supported activation functions, and the conditions for mapping
functions that the network can express. The design is unique because it is based on the
representation of numbers in digital computers processing floating-point data. Since this
construction process has been shown to provide an exact mapping of N samples, this
method is also the least upper bound on the number of hidden neurons. Therefore, the
presented method addresses three major problems at the same time, i.e., the complexity,
density, and training of feed forward networks.

The main theoretical and practical contributions can be summarized as follows:
A new design of a zero-error mapping neural network with the minimal number

of neurons and layers. This design and proof are unique because they assume rational
numbers (floating-point data).
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The resulting structure is very efficient in terms of free parameters because all weights
in the hidden layer are shared and do not depend on the input data, i.e., they are given by
the data format instead.

The design and its proof constitute the least upper bound on the number of hidden
neurons needed for an exact mapping/classification.

Two new and broad sets of supported activation functions, for which the proof holds,
were introduced. Moreover, these sets include common functions in the domain of ANN as
Relu, sigmoid, tanh, Heaviside, etc.

A very relaxed condition for mapping functions was derived, i.e., it is enough that
they are bounded.

A very efficient calculation process was introduced, i.e., for an exact mapping of N
samples from the D dimensional space to the M dimensional one it is enough to solve M + 1
regular systems of linear equations. Moreover, all these systems exist in forms of upper or
lower triangular matrices, thus the process is very fast and simple.

In comparison to similar methods, the proposed one (as shown in Table 2) achieves the
least upper bound (together with [11]), is robust, i.e., it found 100% of networks (together
with [12]), is fast (best together with [13]) and uses few free parameters (2nd most efficient).

Funding: This research and the APC was funded by the Operational Program Integrated Infras-
tructure for the project: International Centre of Excellence for Research of Intelligent and Secure
Information and Communication Technologies and Systems—II. Stage, ITMS code: 313021W404,
co-financed by the European Regional Development Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The construction process assumes that input samples are rational numbers, i.e., are
expressed in a finite precision. More specifically, this requirement states that each number
x must be expressed as:

x = kx∆; k ∈ Z , ∆ ∈ Q+, (A1)

where kx is an integer number (index) specific for x, and ∆ (rational) is a constant, i.e., the
minimum possible difference between adjacent digits.

Lemma A1. Every finite set S of N rational numbers xi can be expressed as in (A1).

Proof. Let there be a finite set S of N rational numbers, i.e., {x1, x2, . . . , xN}, then:

{x1, x2, . . . , xN} =
{

A1
B1

, A2
B2

, . . . , AN
BN

}
=
{

A1c1
M , A2c2

M , . . . , AN cN
M

}
=

{k1∆, k2∆, . . . , kN∆}; ∆ = 1
M , xi ∈ Q, Ai, Bi, ci, ki, M ∈ Z ∧ Bi 6= 0

,

where M is the least common multiple of all Bi in S. �

When using computers with floating-point numbers, the condition in (A1) is always
met. A floating-point number (without a sign and except special “numbers”, e.g., NaN,
Inf) [26], as defined in IEEE 754 standard, is expressed as:

x = 2Ex−bias
(

1 + ∑P
i=1 bxi2−i

)
,
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where Ex is an exponent specific for x and bxi are precision (fraction) bits of x; for a single
precision float bias = 127, P = 23 and 0 ≤ Ex < 255. This can be rewritten as follows:

2Ex−bias
(

1 + ∑P
i=1 bxi2−i

)
= 2−(P+bias)2Ex

(
2P + ∑P

i=1 bxi2P−i
)
= 2−M2Ex Bx = 2−Mkx =

∆kx, kx ∈ N+, ∆ ∈ Q+,

where kx is a positive integer specific for a particular number x.
In the case of D dimensional samples, each dimension may have different but fixed ∆i.

Therefore, each rational sample is located only in intersection points of a fine precision grid
constructed over D dimensional subspace S. Such a grid is defined by a set of ∆i and thus
each rational sample x can be addressed by a unique set of indexes kxi as:

xT = (kx1∆1, kx2∆2, . . . , kxD∆D); kxi ∈ Z, ∆i ∈ Q (A2)

For simplicity, but without any loss of generality, a unique ∆ across all dimensions is
assumed, i.e., ∆i = ∆.

Furthermore, it is assumed that all finite precision samples belong to a D dimensional
rectangular cuboid whose vertexes are combinations of points in the form: ({0, L1}, {0, L2},
. . . , {0, LD}). Thus, Li is the length of such a cuboid along i-th dimension. The construction
process in (10) assumes there is at least one dimension for which Li > 0, such a dimension
will be redefined as the first one.

Appendix B

In the construction process showing the solution must exists, it is assumed that the
input samples are sorted by dimensions in ascending order, starting from the last dimension.
Although not necessary, it simplifies the proof.

Definition A1. D dimensional vectors x1, x2, . . . , xi, xj, . . . , xN are called to be sorted if the
following inequalities hold true:

i< j → ∃ k ∈ [1, D] | xi(k) < xj(k) ∧ xi(k + l) ≤ xj(k + l) ∀ l ≥ 0 (A3)

where xi(k) denotes k-th dimension of i-th vector. This definition assumes all input vectors are unique.

Appendix C

In the construction process, normalized D dimensional affine hyperplanes w, i.e., n(1) = 1,
are used as follows:

w : x(1) + n(2)x(2) . . . + n(D)x(D) + d = 0 (A4)

where n is the normal vector of an affine hyperplane and d is a constant (shift). Such
normalization reduces the number of free parameters. Since the construction process
introduces step > 0, there is always an affine hyperplane that can be calculated as in (10).
Finally, an affine hyperplane can be defined by D − 1 vectors v1, v2, . . . , vD−1 and a point
x it intersects [24]. If the vectors are linearly independent, the normalized affine hyperplane
can be calculated as: n(2)

...
n(D)

 = −

 v1(2) v1(3) . . . v1(D)
...

...
. . .

...
vD−1(2) vD−1(3) . . . vD−1(D)


−1 v1(1)

...
vD−1(1)



d = −xT


1

n(2)
...

n(D)


(A5)
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Appendix D

Lemma A2. Let there be a N × N matrix M of the form:
f (αx11) f (αx12) . . . f (αx1N−1) 1

f (αx21) f (αx22) . . .
... 1

...
...

. . . f (αxN−1N−1)
...

f (αxN1) f (αxN2) . . . f (αxNN−1) 1

, (A6)

where xij > 0 for i ≤ j and xij < 0 for i > j, and a function f(x) defined as in (19). Then there is a
positive constant α for which the matrix M is regular.

Proof. A square matrix is regular if its determinant is non-zero and the determinant of
a triangular matrix is given as a product of its diagonal elements [24]. Multiplying the
first raw of M by f (αxi1)/ f (αx11), subtracting it gradually from rows i = 2, . . . , N, and
considering properties of f (αx) for α→ ∞, M converges to:

A A . . . A 1

0 A− B . . .
... 1− B

A
...

...
. . . A− B

...
0 0 . . . 0 1− B

A


Since A 6= 0 and A 6= B, diagonal elements are non-zero and therefore such a matrix is regular.
Moreover, the multiplication of the first raw by B/A and the subsequent subtractions are
regular operations. Thus, there exists α0 for which M is regular for all α ≥ α0. �
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