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Abstract: Performance analysis plays an essential role in achieving a scalable performance of appli-
cations on massively parallel supercomputers equipped with thousands of processors. This paper
is an empirical investigation to study, in depth, the performance of two of the most common High-
Performance Computing architectures in the world. IBM has developed three generations of Blue
Gene supercomputers—Blue Gene/L, P, and Q—that use, at a large scale, low-power processors
to achieve high performance. Better CPU core efficiency has been empowered by a higher level of
integration to gain more parallelism per processing element. On the other hand, the Intel Xeon Phi
coprocessor armed with 61 on-chip x86 cores, provides high theoretical peak performance, as well as
software development flexibility with existing high-level programming tools. We present an extensive
evaluation study of the performance peaks and scalability of these two modern architectures using
SPEC OMP benchmarks.

Keywords: performance measurement; Xeon Phi; Blue Gene; multicore; many integrated cores;
performance analysis; massively parallel processing

1. Introduction

Over the years, different massively parallel computing technologies have been pro-
posed, ranging from SIMD-based array processors, MIMD-based shared-memory multipro-
cessors, to MIMD-based scalable distributed clusters. Supercomputers today are based on
GPUs and coprocessors. Hence, an essential high-performance computing (HPC) research
activity is to analyze the performance and features of these current technologies.

Based on X86 multicore, the Xeon-Phi coprocessor is a many integrated Core (MIC)
architecture system with low power consumption. It is designed specifically for HPC
applications that seek to decrease execution time across different industries, such as health-
care, aerodynamics, climate simulation, oil exploration, space research, and finance and
business among many other parallel applications. Achieving a theoretical performance of
one TeraFlops, the Xeon-Phi coprocessor has 61 real cores integrated on a single die, two
levels of cache memory, and a high bandwidth ring interconnection [1]. The first product,
codenamed Knights Corner (KNC), was built on a 22-nanometer manufacturing process.

The Xeon-Phi coprocessor programming flexibility provides software developers
with a significant asset; it supports traditional, well-established programming models
and libraries. Programming scientific applications using CUDA (for GPUs) or OpenCL
requires much higher effort as compared to OpenMP programming for multicore and
many integrated cores [2]. That is because OpenMP is based on directives, while CUDA
requires programming low-level kernels. Previous studies showed that porting scientific
applications to the Xeon-Phi coprocessor is moderately straightforward, which makes it a
piece of favorable equipment for HPC software [3].

Xeon Phi, similar to other accelerators (i.e., GPUs), achieves an excellent performance
relying on the high level of concurrency, provided by many cores with wide vector-
processing units on. Its on-chip high-bandwidth interconnect can significantly increase
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the performance of memory-intensive applications that fit in 8 GB of local memory space.
Xeon Phi shares several features with shared memory systems and GPUs, such as the SIMT
programming model, vectorization, high throughput, and high bandwidth [1]. However,
the Xeon Phi coprocessor has many architectural differences from GPUs and multicore [4];
GPUs do not support the overall cache coherency available on Xeon Phi. Furthermore,
multi-core CPUs and GPUs are not equipped with ring interconnect.

Parallel platforms can be developed using high-performing and well-known Intel
Xeon processors and coprocessors, offering operating speeds in the TFLOPS range. In the
past few years, many supercomputers, powered by Xeon-Phi, have been on the TOP 500
list. With the magnificent performance peaks offered by GPU-based systems, business
interest focused on GPGPUs, and Intel discontinued the Xeon Phi project. However, we
believe that Xeon-Phi, as either the main processing unit or the coprocessor, will continue
to be an essential element of HPC systems.

The massively parallel system of the IBM Blue Gene is designed to have high energy
efficiency and high levels of scalability, approaching high throughput in the Petaflops range.
To achieve this, it utilizes system-on-a-chip (SOC) technology to integrate high-bandwidth
networks with the CPUs onto a single die. IBM Blue Gene includes three families of
massively parallel systems, Blue Gene/L, Blue Gene/P, and Blue Gene/Q [5–8]. Blue
Gene supercomputers have been among the most high-performance systems with low
power consumption for several years; as they have consistently scored top rankings on
the TOP500, Green500, and Graph500 lists [9–11]. The Blue Gene System won the 2008
National Medal of Technology and Innovation.

The main objective of this paper is to conduct a comparative study of the perfor-
mance of scientific applications and benchmarks on Blue Gene RISC-based supercomputers
developed by IBM, and Intel MIC CISC architectures. Both architectures have a simple
programming model compared to GPUs. Moreover, ironically both architectures have been
discontinued by their developers. To the best of our knowledge, no previous study has
compared the performance of both architectures using the SPEC OpenMP suite. The study
will help understand the behavior of supercomputers; lessons will be learned to produce
more efficient scientific code. This paper makes the following contributions:

• Conducting A comparative study of the scalability and performance peaks of modern
architectures, including IBM Blue Gene and Intel Xeon Phi architectures as representa-
tives of modern multicore systems using a wide set of parallel benchmarks.

• Porting SPEC OMP suite to the incompatible Blue Gene systems software architecture.
• Developing an evaluation methodology that utilizes performance-analysis tools and

simplifies experiment setup, data harvesting, and mining.

The rest of the paper is organized as follows. The next section briefly discusses the
Blue Gene supercomputing systems under study. Section 3 presents Intel MIC architecture.
Section 4 describes the benchmarks we have been using in the study. Results are presented
and discussed in Section 5. Related work is discussed in Section 6. Finally, conclusions are
discussed in Section 7.

2. Blue Gene System Overview

The Blue Gene supercomputers use SOC technology [12] to integrate high-bandwidth
networks with the processors onto a single die. To achieve high levels of scalability, the
Blue Gene system uses a novel software architecture [13].

Blue Gene systems have comparably low power consumption and moderate perfor-
mance processors. Therefore, accelerating a scientific application on Blue Gene normally
requires more processors as compared to traditional massive parallel systems that use pow-
erful CPUs, both in terms of energy dissipated and throughput delivered. It is necessary
to investigate Blue Gene systems’ scalability extremely to effectively use their massive
computation power. Reaching such high levels of parallel scalability and performance is
generally a challenging and tedious process, but can be steered with performance analysis
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tools. Several studies have found that an enormous number of essential real-world scientific
programs can be efficiently scaled to tens of thousands of Blue Gene/L processors [14].

The Blue gene includes three families of supercomputers, Blue Gene/L, Blue Gene/P,
and Blue Gene/Q. in this paper, we conducted experiments on Blue Gene/P and Blue
Gene/Q systems. The following subsections introduce the main hardware and software
characteristics of these systems.

2.1. Blue Gene/Q (VESTA)

IBM, in cooperation with Lawrence Livermore National Laboratory (LLNL), has
developed the Blue Gene/Q: the third and the last generation of Blue Gene supercomputers.
The VESTA system is composed of one compute rack of a massively parallel Blue Gene/Q
system. A compute rack is configured with either one or two midplanes. Each midplane
has 16 node boards with 32 compute cards plugging into each node board. Each compute
card includes 16 core processors from IBM PowerPC A2 and 16 GB of memory. The system
is capable of running 64 K hardware threads and can be scaled to 512 racks [15].

In summary, the VESTA machine includes one rack of Blue Gene/Q with 1024 nodes
and 82.19 KW power. Each node has a 16-core Power BQC processor and 32 GB of RAM.
Each core has a frequency of 1.6 GHz and handles 4 hardware threads. VESTA system can
support up to 64 K hardware threads with 16,384 cores and 32 terabytes of RAM, achieving
a peak performance of 209 teraflops. It has an overall storage capacity of 7.6 PB, with
88 GB/s bandwidth, and 640 I/O nodes.

2.2. Blue Gene/P (SURVEYOR)

Surveyor is an IBM Blue Gene/P system installed at Argonne National Lab with
4096 processors. It delivers peak performance up to 13.9 TeraFlops, depending on its
mode of operation [16]. In summary, Surveyor Machine is one rack of Blue Gene/P with
1024 quad-core nodes. Each node has an 850 MHz quad-core CPU and 2 GB RAM
(2 terabytes of RAM per rack). It is used for software development and optimization,
and porting tools and applications.

2.3. Blue Gene/L

The Blue Gene/L system, located at the LLNL site, contains 700 MHz 64 K dual-core
PowerPC computational nodes. Blue Gene/L, with 131,072 cores, offers a theoretical peak
performance of 360 TeraFlops.

2.4. IBM XL Compilers

IBM XL compilers on PowerPC architecture-based systems have several code opti-
mizations specific to their architecture. For example, they generate fast-executing code that
maximizes double floating-point unit utilization. Moreover, they provide memory-cache
optimization, loop optimization, instruction scheduling, and fast scalar math routines. We
used IBM XL C/C++ v 12.1, and Fortran version 14.1 in the experiments [17].

2.5. Performance Tools

Early software efforts were initiated to port extensively used performance tools,
debuggers, and libraries to the Blue Gene/Q system. The list includes Blue Gene Per-
formance Measurement (BGPM), GNU Profiler (GPROF), Tuning and Analysis Utilities
(TAU), High-Performance Computing Toolkit (HPCT), and Performance Application Pro-
gramming Interface (PAPI), and more.

In this paper, we use IBM HPCT which provides both MPI metrics and single-node
hardware counters. The HPCT API is straightforward. The only drawback is that we have
to manually annotate the source code sections with the instrumentation call. Furthermore,
we change OpenMP programs into MPI programs by simply wrapping the program with
MPI_INIT and MPI_FIINALIZE function calls to make the code compatible with the IBM
MPI compilers that can trigger sampling.
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Blue Gene/Q system provides hundreds of hardware performance counters to facil-
itate quantifying the performance of several components. This includes events related
to core, caches (L1\L2), memory, prefetcher, network, message unit, PCIe, and kernel.
The main performance metrics used in this study are execution time, CPU cycles count,
instructions count, memory traffic (B/s), and cache hits/misses.

2.6. Batch Job Submission Tool

Cobalt is a tool developed by IBM to facilitate job submission to the Blue Gene Ma-
chines. The latest version is updated to have a close interface to the Portable Batch System.
Using this tool, the user can control the layout of threads across the cores, and memory
mapping to each core. Moreover, it allows users to control job dependencies, job maximum
execution time, environment variables, and the number of nodes and processes [18].

3. Intel Xeon Phi System Overview Discussion

This section is dedicated to briefly describing the Intel Xeon Phi coprocessor with its
innovative architectural characteristics and standard programming models.

3.1. Many Integrated Cores (MIC) Architecture

Intel MIC architecture was introduced as an alternative technology to GPUs. It is a
multicore in-order Intel Architecture (IA) engine with hardware multithreading, multiple
cores, and wide vector units. The in-order cores run at a relatively low frequency (around
1.2 GHz). The first product, Xeon Phi, was codenamed the Knights Corner and built on a
22 nm chip. Xeon Phi has over 50 × 86 Pentium architecture-based cores and 16 memory
channels on-chip. An on-chip bidirectional interconnect provides high-performance com-
munication to these cores, as depicted in Figure 1. The memory channels can offer 5.0 GT/s
bandwidth, with the support of memory controllers [4].

The Intel Xeon Phi coprocessor, as an accelerator, and GPUs are connected to a host
(i.e., Intel Xeon processor) via a PCI Express (PCIe) system interface, which makes them
look physically similar. Xeon Phi runs a special-purpose embedded OS, and is managed by
the host; it obtains power and communication from the host motherboard.
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Figure 1. Intel Xeon Phi Architecture. Figure 1. Intel Xeon Phi Architecture.

Each core supports four hardware threads, which gives rise to approximately
240 logical cores per card, enabling maximum instruction issue rate. Every core has: (1) a
512-bit wide Vector Processing Unit (VPU), which supports 512-bit SIMD vectors, and the
Intel Initial Many-Core Instructions (2) 32 512-bit wide vector registers per thread context,
(3) 32 KB L1 data and instruction caches only accessible locally, and (4) a core-private
512 KB coherent unified L2 cache. In all, each 60-core coprocessor has over 30 MB of
coherent L2 cache available on the die.



Computers 2022, 11, 75 5 of 17

The ring network model offers on-chip interconnection among all cores. This network
allows each core to access the L2 caches for all other cores. The hardware maintains L2
cache coherency using non-centralized distributed tag directories (DTDs). The address
space is equally portioned, and then each partition’s coherency is maintained globally by a
DTD assigned to it. Xeon Phi contains up to 16 GB of GDDR5 RAM delivering bandwidth
of about 170 GB/s.

3.2. Programming Model

The Intel Xeon Phi coprocessor has many Intel x86 cores integrated (MC) onto a
single chip. Therefore, Xeon Phi provides the full capacity to take advantage of the same
regular Intel Xeon processor’s programming languages, tools, and programming models.
It supports Pthreads [19], MPI, and OpenMP [20] programming models, which are familiar
and well-established in the HPC community. Intel Cilk Plus [21] and OpenCL [22] tools are
also available. In other words, one can compile and run source code written for Intel MIC
architecture using the Intel ICC compiler unaltered on Intel Xeon processors [23].

Using Xeon Phi coprocessors rather than GPUs has key advantages: (1) software
developers can write code, using C, C++, or Fortran standard programming languages, that
targets Xeon Phi coprocessor; (2) refactoring code using accelerator-specific programming
paradigms is not needed; (3) developer-training barriers are eliminated. On the other
side, porting CPU application code to a GPU using CUDA needs alterations in algorithm
and syntax by software developers, investing efforts in software engineering rather than
problems. Figure 2 illustrates Intel’s MIC software architecture.
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The powerful Xeon-Phi supports two operating modes: offload mode as an accelerator
(or coprocessor); or native mode as a stand-alone machine that executes code independently
from the host or other coprocessors. Comparing it to a standard Xeon-based system, the
Xeon Phi offers at least 7× more logical cores. With offload mode, the host executes the
main code, while the computationally intensive portion of the code is offloaded to the
device. Although performance is similar for both modes, the offload mode permits more
programming flexibility [24].

4. Overview of the SPEC OMP Benchmarks

SPEC (The Standard Performance Evaluation Corporation) created the SPEC OpenMP
(OMP) benchmark suites to measure the performance of modern shared-memory multipro-
cessor systems based on objective and representative OpenMP applications. There are two
generations of the SPEC OMP benchmarks suite: SPEC OMP2001 and SPEC OMP2012 [25].



Computers 2022, 11, 75 6 of 17

SPEC OMP2001 Medium (<2 GB) was developed for -C programs and eight FOR-
TRAN programs, while OMP2001 Large (>8 GB) includes two C programs and seven
FORTRAN programs. SPEC OMP2012 includes five C programs, one C++ program, and
seven FORTRAN programs. Table 1 shows an overview of the benchmarks. The following
subsections explain porting these programs to Blue Gene systems. Major difficulties faced
during the study were related to deciphering the SPEC OMP execution process to facilitate
running a single benchmark as a job with full user control of its behavior. Running the full
SPEC suite on Blue Gene machines is difficult due to system administrator limitations such
as the limited number of jobs and the limited job maximum execution time. The user is
allowed to submit a job via the cobalt submission system with a job runtime of no more
than 2 h. Moreover, the SPEC OMP suite does not support Blue Gene architecture.

Table 1. Summary of the SPEC OMP2001 Benchmarks suite.

Benchmark Applications Language Number of Lines

Ammp Chemistry/biology C 13,500
Applu Fluid dynamics/physics F 4000
Apsi Air pollution F 7500
Art Image Recognition/neural networks C 1300
Fma3d Crash simulation F 60,000
Gafort Genetic algorithm F 1500
Galgel Fluid dynamics F 15,300
Equake Earthquake C 1500
Mgrid Multigrid solver F 500
Swim Shallow water modeling F 400
Wupwise Quantum chromodynamics F 2200

To facilitate compiling and submitting jobs for each benchmark, we have developed an
execution environment that allows users to control the benchmark compilation, execution,
and validation process. The environment archives binaries, results, and logs for every run.
The performance evaluation workflow is depicted in Figure 3.
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to the Blue Gene machines. Each benchmark is represented by a directory that has a
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“Number.Name” name format. The main script, named “runtest”, written in bash, drives
compile, execute, and validate cycle for each benchmark. It is controlled by various sets of
environment variables. Users can set variables in the commvars file in the root directory, or
inside the runtest script, or passed as an argument to the main script as follows:

spec data = ref threads = 16 threshold = 60.

/runtest 320.equake

where data = ref defines the dataset size used in this run, threads = 16 sets the number
of threads triggered in this run, and threshold = 60 defines the maximum execution time
allowed before terminating the program. 320.equake is the name of the benchmark used.

The compile step invokes the make command and passes a set of environment vari-
ables to the Makefile. All Makefiles include “Makefile.default”, distributed with SPEC
OMP suite. Compiler, as well as its flags environment variables default values, can be
overwritten using the “Makefile.spec” configuration file, which usually includes settings
specific to a benchmark (i.e., Compiler and flags).

Run phase generates cobalt command based on speccmd.cmd and creates run-directory
that includes binaries, and input files. The speccmd.cmd is written based on the object.pm
script shipped with the SPEC OMP suite distribution. Validation compares output files
generated by the benchmark with the pre-shipped output from the SPEC OMP suite dis-
tribution. To add a new benchmark, the user must maintain the directory structure and
writes the speccmd.cmd commands for each dataset.

5. Results and Discussion

This section provides an extensive empirical evaluation study and discusses the results.
First of all, we compare both architectures’ understudies—Intel Xeon Phi and IBM Blue
Gene—in terms of their architectural characteristics, such as number of cores, number of
hardware threads supported by each core, vector-processing unit width, frequency, and
memory size. We also highlight the differences between both systems in the size and cost
per rack. Table 2 summarizes the comparison between both systems.

Table 2. The Characteristics of IBM Blue Gene and INTEL Xeon Phi.

Specification Blue Gene\L Xeon Phi

Number of Cores 1024 61
Number of HW threads/core 4 4
Vector width (Double Precision (64 bits) 4 8
Clock Speed 700 Mhz/cr 1.1 Ghz/core
Cost $1 m–$1.5 m $1500–$2700
Theoretical peak Double Precision 2.8 TFLOPS 1.073 TERAFLOPS
GDDR/DRAM size 2 GB/node 8 GB
Size height × width 2 m × 1 m 24.61 cm × 11.12 cm × 3.86 cm

For several months, a couple of thousands of experiments took place, producing more
than 50 GB of run logs, results, and binaries archives. Analyzing such a huge amount of data
is not trivial. We even ran more experiments to gain a deeper understanding of mysterious
results. The following subsections present and discuss the results for each system.

5.1. Experiment Setup

One main strength of Blue Gene systems is their number of nodes and power scalability.
To justify the comparison between both systems, we ran experiments on a single node of
the Blue Gene system and a single node equipped with a Xeon Phi card. To measure single
node performance scalability in terms of the number of hardware threads, we measure
performance while varying the number of OpenMP threads on one node. We also measured
the performance of the two threads’ layout policies: one that schedules processes to free
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cores first, which optimizes the number of active hardware threads per core and hence
increases memory share for each thread; while the other policy fills the current core up to
the maximum number of threads (also known as execution contexts) that a single core can
handle before it moves to the next one.

5.2. SURVEYOR Blue Gene

As described earlier, each node in the surveyor system has four cores; each one can
run four hardware threads. We exhaustively experimented with the number of OpenMP
threads from one to four on three datasets: test, train, and ref. Some benchmarks failed
execution due to system administrative constraints on resources such as CPU cycles, and
memory footprint. For example, major benchmarks execution, using the ref dataset, failed
due to either runtime or compile-time errors related to memory outage. Each node in the
surveyor system has 2 GB of memory. Other benchmarks failed because they exceeded
the maximum execution time of 1 h. Some dataset workloads are very small and outdated
as compared to these powerful parallel machines, which makes parallelization overhead
(also known as fork-join overhead) much more than benchmark execution time. For
illustration, Figure 4 presents the execution time of benchmarks using the training dataset
after excluding benchmarks that failed execution, as well as those with a serial execution
time of fewer than 100 s.
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In summary, while the training dataset does not provide a sufficient workload for
HPC evaluation, it is useful in developing and testing the evaluation framework, such as
checking for execution failures and highlighting interesting cases for further investigation.
Mgrid showed a performance degradation on four threads, caused by traffic on memory.
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5.3. VESTA Blue Gene

Each node in VESTA has 16 cores and can handle 64 hardware threads. Saving time
and effort, we tried varying the number of OpenMP threads from 1, 2, 3, 4, 8, 16, 32, and 64.
Figure 5 shows the execution time of the SPEC OMP2001 suite using the large ref dataset
over 8, 16, 32, and 64 threads for the VESTA machine.
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The performance scalability factor is computed for (8/16), (16/32), and (32/64) threads
as depicted in Table 3. The super linearity rule expects a scalability factor of (2×). Practically,
a good system achieves a scalability factor of (1.5×). Most benchmarks scale very well, with
one interesting exception; the SWIM benchmark case is thoroughly studied later. VESTA
scales very well, up to 32 threads. With 64 hardware threads, performance is improved only
by 15%; mainly because of memory bandwidth limitation. Assigning only one thread to a
core, VESTA achieves a scalability factor of (1.77) on average. Figure 6 shows the execution
time of the SPEC OMP2001 suite with a medium ref dataset using 1, 2, 4, 8, and 16 threads
on the same machine.

Table 3. SPEC OMP 2001 scalability factors for 8/16, 61/32, and 32/64 threads using a large dataset.

Benchmark
Scalability Factor

8/16 16/32 32/64

Ammp NA NA NA
Applu 1.71 1.21 0.97
Apsi 1.87 1.42 1.02
Art 1.99 1.77 1.52
Fma3d NA NA 1.31
Gafort 1.96 1.66 1.21
Galgel NA NA NA
Equake 1.84 1.56 0.96
Mgrid NA 1.36 1.18
Swim 1 1 1
Wupwise NA 1.7 135

The VESTA machine SPEC score is 114502. Compared to the published results on the
SPEC.org website, VESTA performs better than AMD Supermicro X7QC3, and HP server
PA-8700. Specifications for these systems are shown in Table 4.
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Table 4. A Comparison between several systems in terms of their SPEC OMP base score.

Attribute Blue Gene
VESTA

AMD
Supermicro Sun Fire X4600 HP Server

PA8700

SPEC Score 114,502 82,487 106,552 77,787
Frequency 1.6 GHz 2.92 GHz 2.8 GHz 876 MHz
# Cores 16 16 8 32
CacheL1(KB) 32 32 64 768
CacheL2 NA 8096 KB 1024 KB NA
RAM 32 GB 32 GB 32 GB 128 GB

Speedups of the SPEC OMP2001 benchmarks using a medium reference dataset are
depicted in Figure 7. It shows only those benchmarks that successfully ran with the 2 h
job limit.
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5.4. Case Study: 313.SWIM Scalability

SWIM shows superlinear speedup from 2 to 4 threads. However, earlier measure-
ments showed that the SWIM benchmark does not scale after four threads. We designed



Computers 2022, 11, 75 11 of 17

a detailed experiment using profiling and the HPT performance toolkit to study the be-
havior of the SWIM program. Figure 8 plots execution time and speedup, while Table 5
shows the detailed hardware counters values for the SWIM benchmark. We found that
changing the number of threads from 4 to 8 led to a significant increase in memory
traffic to 17.4 bytes/cycle, which almost hits the memory bandwidth upper bound (i.e.,
18 byte/cycle). Swim coding style tends to increase data reuse distance when using more
than 4 threads.
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Table 5. Swim detailed performance hardware counter-measurements on Vesta Blue Gene.

Numofthreads 4 8 16 32 64

threads/core 1 1 1 2 4
Exe time (min) 31.32 29.65 31.29 31.29 31.3
PXU Primary Execution unit for
Integer/Load/Store % 57 57.2 57.2 57.2 57.2

XU Auxiliary Execution unit for Floating-Point % 42.7 42.7 42.7 42.7 42.7
Issue rate inst/cyc/core 0.151 0.151 0.151 0.151 0.151
GFLOPS 6.8 6.8 6.8 6.8 6.8
DDRtraffic (B/cyc) 17.2 17.2 17.2 17.2 17.2
L1 cache hits % 73.8 73.8 73.8 73.8 73.8
L1 prefetch buffer % 17.7 17.7 17.7 17.7 17.7
L2 Cache% 0.0 0.0 0.0 0.0 0.0
Memory (MB) 275.8 275.8 275.8 275.8 275.8

5.5. Intel MIC Results

The Intel MIC architecture is equipped with numerous cores and fast vector units.
Table 6 describes the specifications of the Intel Xeon Phi device and the host used in the
experiment. To best utilize these powerful hardware characteristics, two demanding code
optimizations are necessary: Vectorization and Parallelization. With vectorization, loops
are accelerated using hardware vector units. To maximize instruction issue rate, at least
two threads per core are needed; and multiple threads indicate a parallel program.

MIC supports two modes of execution: offload mode, where MIC serves as a coproces-
sor to the host; and Native mode, where MIC runs as an independent multicore machine.
Intel ICC compiler provides offload, and mmic options to support these modes, respectively.
Intel MIC architecture performance scalability is studied; SPEC OMP execution time is
measured on Intel Xeon Phi, varying the number of launched threads using a large dataset.
The results are shown in Figure 9.
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Table 6. MIC host and device architecture specifications.

Part Component Specifications

Device Two Knights Corner (KNC) B0 cards
OS Linux
Host Physical Memory 20,403 MB
Host CPU Genuine Intel Family 6 Modell 44
Host Frequency 3192 Mhz
MIC No. of active cores 61, 4 hardware threads each
MIC core Frequency 1.2 GHz
MIC Memory (GDDR5) 7936 MB, 5.5 GT/s, 5.5 GHz
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Xeon Phi architecture includes a high bandwidth bi-directional ring, to interconnect all
the cores and memory controllers. Performance bottlenecks can be caused by shared ring
interconnect or coherency logic, when multiple threads are requesting data simultaneously
(i.e., Speedup is limited by bandwidth to memory). To quantify the potential performance
impact of different thread-to-core assignment modes, we use thread affinity to map threads
to cores, and we run the SPEC OMP benchmarks.

The Intel Xeon Phi software tools permit the user to configure predefined thread
affinity, and to add a newly customized one as well. We measured the thread-to-core
assignment effect on performance due to increased use of memory bandwidth. We studied
three different predefined threads assignment modes in MIC (compact, balanced, scatter).
Distributing Threads to cores can be either scattered, where threads are assigned as far as
possible from each other to maintain even distribution around the ring, or compact, where
threads are assigned to the closest cores. The default is none, where threads are dynamically
assigned (i.e., the core IDs are randomly selected without repeating). We measured the
execution times with 2, 4, 8, and 16 threads. The results are depicted in Figures 10 and 11.
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The effect of threads affinity on MIC performance is depicted in Figure 12. We used
the SPEC OMP suite with a large dataset.

Computers 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 
Figure 10. SPEC OMP results in MIC using a medium dataset. 

 
Figure 11. Effect of threads affinity on performance. SPEC OMP execution time is measured on Intel 
Xeon phi with different modes (scatter\compact) using the medium dataset. 

The effect of threads affinity on MIC performance is depicted in Figure 12. We used 
the SPEC OMP suite with a large dataset. 

Export KMPAFFINITY = “verbose, granularity = fine, compact” 

 
Figure 12. Effect of threads affinity on performance. SPEC OMP execution time is measured on Intel 
Xeon phi with different modes (scatter\compact) using a large dataset. 

We used the stream benchmark to explore MIC memory design and performance. 
Table 7 shows the results for triad and add kernels in scatter native execution mode. We 

Figure 12. Effect of threads affinity on performance. SPEC OMP execution time is measured on Intel
Xeon Phi with different modes (scatter\compact) using a large dataset.

Export KMPAFFINITY = “verbose, granularity = fine, compact”
We used the stream benchmark to explore MIC memory design and performance.

Table 7 shows the results for triad and add kernels in scatter native execution mode. We
repeated the experiment in compact mode for four threads. Both rate and time scale very
well with the number of active cores. Rates in scatter mode are four times the rates in
compact mode when using 4 OpenMP threads. Furthermore, execution time in scatter mode
is four times faster than execution time in compact mode when using four OpenMP threads.

Figures 13 and 14 compare Xeon Phi and Vest using large and medium benchmarks,
respectively. We included only benchmarks that successfully finished execution on both
architectures. Intel Xeon Phi, on many moderate cores, provides comparable performance
to the Blue Gene system at a much-reduced price. One reason could be that the MIC clock
frequency is barely higher than the Blue Gene frequency, but the key benefit is gained from
the Xeon Phi’s ability to cope with multi-core as well as SIMD concurrency, maintaining
low synchronization overhead.
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Table 7. Stream results in MIC using scatter native mode.

Threads
Triad Add

Rate MB/s Average Time (s) Rate MB/s Average Time (s)

2 783.9 2.07 770.00 2.1
4 1562.9 1.037 1555.00 1.04
8 3110.73 0.518 3099.00 0.52
16 6107.50 0.265 6092.00 0.267
32 11,984.44 0.1347 11,945.18 0.1351
61 21,513.43 0.0752 21,394.01 0.0754
122 21,431.68 0.0752 21,374.75 0.0755
183 22,684.95 0.0715 22,831.47 0.071
244 22,167.70 0.0731 21,948.91 0.0738
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6. Related Work

There are various existing studies on performance analysis of either Blue Gene or Xeon
Phi parallel systems. However, few studies considered both platforms in their evaluations,
and they concentrated on one specific application [26–28]. In our evaluation, we used a
full suite of applications, with several datasets on both Xeon Phi and Blue Gene platforms.
To the best of our knowledge, no previous study used the SPEC OpenMP suite in their
evaluation of both platforms.

The performance of OpenMP on Xeon Phi was early evaluated by Cramer et al. [29].
They compared the standard OpenMP constructs overhead on Xeon Phi versus big SMP
machines. The OpenMP runtime overhead on Blue Gene/Q was measured by Eichenberger
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and O’Brien [30]. Iwainsky et al. used empirical performance models to study the scala-
bility of OpenMP constructs on several machines, including IBM Blue Gene/Q and Intel
Xeon Phi [31]. In [32], the authors studied the performance and scalability of OpenMP
programs on Xeon Phi in stand-alone mode, and they compared it with a two-socket
Xeon-based system.

Several studies concentrated on one specific application [33–35], while others fo-
cused on smaller compute kernels as well as NAS parallel benchmarks [32,36,37]. recent
performance studies of HPC architectures, more specifically Blue Genes and Xeon Phi,
concentrated on specific compute-intensive applications, such as drug discovery [26], lattice
QCD [27], molecular dynamics [28], DNA sequence aligner [38], pseudospectral ultrasound
simulations [39], and Alpha magnetic spectrometer [40].

Chimeh and Cockshott compared the performance of Intel Xeon Phi, GPUs, and
IBM Blue Gene supercomputer based on their ability to accelerate digital logic simulation
applications [37]. They have shown that Xeon Phi, with considerably lower cost, gives
similar logic-simulation performance to the IBM Blue Gene system, and is comparable with
GPUs performance, with the advantage of processing considerably greater logic circuits.

In [35], the authors used a parallel semi-global matching algorithm to compare the
performance of several platforms (Xeon Phi, general-purpose processor, Freescale P4080,
Tensilica). Wylie et al. used the Scalasca toolset to conduct a performance analysis of
a Blue Gene/P system with thousands of cores [41]. The MPI performance analysis
tools’ overheads, as well as the scalability efficiency on Blue Gene/L, were discussed
by Chung et al. [42].

Due to the traditional programming model, porting scientific codes to Intel Xeon Phi
coprocessors can be relatively easier than porting them to other accelerators [3]. However,
several studies revealed that architecture-specific optimizations are necessary to reach
reasonable performance, such as vectorization, SIMD intrinsic, hardware-supported gather,
large TLB tables software prefetching, or memory alignment and padding. For example,
Park et al. [33] found that a radar computation program implementation without optimiza-
tion can moderately perform better on Xeon Phi as compared to a Xeon processor. However,
this compute-intensive application, with optimizations, can achieve 2x speedup. Williams
et al. [34] achieved allied performance for iterative solvers that use multigrid procedures.
They showed that the program implementation benefits from the Xeon Phi after specific
optimizations. Without optimization, the performance of the code is degrading on the
coprocessor in comparison to a dual-core Xeon processor.

Kang et. al. evaluated several scientific applications on the intel Xeon Phi arch [43].
Sparsh Mittal surveyed studies of the Phi architecture and use it as an accelerator for a
broad range of applications [44]. None of these studies used the spec omp benchmark
suite. Furthermore, none of these studies compared Xeon Phi with the Blue Gene. Mittal
concluded that GPU provides higher performance than Phi which, in turn, provides higher
performance than CPU.

7. Conclusions

We have studied the performance behavior of the SPEC OMP2001 suite, on Blue
Gene/Q&L machines and Intel Xeon Phi coprocessor as representatives of modern non-
trivial multicore and manycore architectures. We measured the scalability of both afore-
mentioned architectures. We also measured Xeon Phi memory as well as thread affinity
impact on performance. We evaluated the performance of memory using the spec omp
suite. We found that Blue Gene/Q meets the scalability requirements of SPEC OMP up to
16 hardware threads in most benchmarks. The evaluation results discussed in this paper
showed that the Xeon Phi, at a significantly lower price, provides similar performance to
the Blue Gene system. We implemented an automatic evaluation tool that can be used as a
harness to test supercomputers and manycore systems.
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