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Abstract: Automatic data fusion is an important field of machine learning that has been increasingly
studied. The objective is to improve the classification performance from several individual classifiers
in terms of accuracy and stability of the results. This paper presents a comparative study on recent
data fusion methods. The fusion step can be applied at early and/or late stages of the classification
procedure. Early fusion consists of combining features from different sources or domains to form the
observation vector before the training of the individual classifiers. On the contrary, late fusion consists
of combining the results from the individual classifiers after the testing stage. Late fusion has two
setups, combination of the posterior probabilities (scores), which is called soft fusion, and combination
of the decisions, which is called hard fusion. A theoretical analysis of the conditions for applying
the three kinds of fusion (early, late, and late hard) is introduced. Thus, we propose a comparative
analysis with different schemes of fusion, including weaknesses and strengths of the state-of-the-art
methods studied from the following perspectives: sensors, features, scores, and decisions.

Keywords: data fusion; early fusion; late fusion; late hard fusion; decision fusion

1. Introduction

Currently, information is growing exponentially in complexity, volume, variety, and
veracity. We can extract and derive valuable information from data to learn about the nature
of things [1–3]. The recent development of machine learning (ML) methods, in conjunction
with the increasing capacity of sensor devices, has posed a critical problem to efficiently
solve data classification. This problem comprises two questions: how to efficiently combine
information from several sources or modalities of data, i.e., multimodal measurements, and
how to combine the results from several classifiers. This latter question assumes that there
are relationships between the random variables of the score distributions provided by each
of the classifiers to be combined that allow the results to be improved.

In general, processes that require parameter estimation from multiple sources can
benefit from data fusion in a context of multiple classifiers. Data fusion aims to combine
the information received from the real world to make the results more heterogeneous
and informative than the original ones [4]. In this way, the objectives are to increase the
reliability of the classification and the quality of the extracted information. Data fusion
aims to improve classification accuracy by combining the predictions of multiple models or
classifiers to obtain a more robust final classification. Thus, the individual classifier biases
and generalization for data not seen in classifier training can be solved. Data fusion aims to
effectively handle noisy data, adapt to different changing scenarios and conditions, and
improve the stability of problem solving [5,6].

The exponential expansion of data in recent years due to new technologies has also
brought with it an increase in the interest of researchers in data fusion, driven by the need
to extract relevant information from increasingly complex datasets [7–9]. Let us show a
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descriptive example of the objectives of decision fusion. Figure 1 shows a toy example of
the decision boundaries formed by different methods of classification: linear discriminant
analysis (LDA); quadratic discriminant analysis (QDA); and a Bayesian classifier imple-
menting non-parametric probability estimation. In addition, the boundaries obtained by
the fusion of the three single classifiers are also shown. The problem outlined in Figure 1
is two-class classification, i.e., to distinguish between the samples of classes labeled 0 and
1. The geometry of the data is 3D, considering three features of the multidimensional
vector observation.
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Figure 1. Decision boundaries established by different classifiers and the fusion of the classifiers.

We can see that the data of the two classes are squeezed together, and it is difficult
to separate them. The separation boundaries of the three classifiers are different: that
provided by LDA consists of a hyperplane; QDA’s is a paraboloid; and the boundary
provided by the Bayesian classifier describes a complex surface. The efficiency of those
surfaces to separate the data of the two classes in terms of missed detections (100-probability
of detection (PD)) and probability of false alarm (PFA) is shown. Setting the value of the
miss detection at 4.92%, it is clearly shown that the best PFA is obtained by the Bayesian
classifier (53.13%) consistently with the classifier boundary decision surface that best fits
the data. However, the fusion of the three classifiers yields a better suitable separation
surface, which is recorded in a much lower PFA (38.02%).

In order to perform the comparative study, we propose the following four schemes to
analyze the state of the art of data fusion methods: (i) early fusion from sensors; (ii) early
fusion from features; (iii) late fusion from scores; and (iv) late fusion from decisions. The
comparison of the methods studied considers aspects such as complexity, optimization,
accuracy, and volume of data. Moreover, a theoretical analysis of the conditions for applying
the different kinds of fusion is presented.

Data Fusion Concepts

Data fusion techniques attempt to combine multiple sources of information to achieve
accuracy and precision in decision-making that would not be possible to achieve with
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the use of a single source of information in isolation. The fusion of multiple sources
of information, in addition to adding a certain redundancy that provides reliability and
robustness, can provide complementary information with which to increase performance
and accuracy in the decision-making process. For simplicity, we will discuss the two-
class classification (detection) problem. Figure 2 shows a diagram of the fusion process
from a statistical standpoint. It shows how various sources of information (with different
probability density functions (PDFs) for the two hypotheses—H1: detection and H0: non-
detection) are merged into a single one. The separation between hypotheses is improved,
i.e., there is less data confusion in the fusion result.
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We can find areas or applications where it is common to work with various sources of
information and, thus, a combination of information is necessary. For example, distributed
sensing systems [10] use a multi-sensor system composed of a set of identical sensors placed
with a certain spatial distribution. Multimodal systems [11], where sources of information
of various kinds from different sensors and/or sources of unsensed information (such
as web resources, databases, metadata, etc.) are used, are common in biometric systems
or multimedia analysis problems. There are also detection techniques, such as expert
combination [12], where an attempt is made to combine a series of simple detectors to
achieve results that would be very difficult to achieve with a single detector and/or reduce
the complexity and computational resources required to implement it.

The random variables that characterize the data from each information source can
follow different probability distributions. It may be because they are data from different
types of sensors that capture different phenomena produced by the same event, or from
sensors of the same type, but whose position relative to the source that produces the event
translates into different distributions of their observations. It is very common to use data
that come from the extraction of multiple features related to various physical aspects or
that are of a different nature from a single flow of information provided by a single sensor.
In other cases, the aim is to combine different algorithms or processing techniques with
very different output information.

The use of multiple sources and redundant information can provide complementary
information that can be exploited by combining all available sources. Thus, the discrimi-
natory information on the occurrence or not of the event to be detected can be increased,
and both overall detection performance, robustness, and reliability can be improved. The
sources of information generally share a common origin, in which the event to be detected
originates, so it is common to find the existence of statistical dependence between them.
Statistical dependency between sources can introduce complementary information that we
can benefit from to improve detection performance.

Data fusion is a booming area of research. There are several quite different real-world
problems where data fusion has been recently applied, including the following: detecting
breast tumors in tomosynthesis images [13]; video summarization [14]; multi-scenario
violence detection [15]; energy-efficient grid-based routing protocols [16]; image sparse
representation [17]; accurate skin lesion classification [18]; multimodal inference of mental
workload for cognitive human machine systems [19]; fingerprint and online signature for
multimodal biometrics [20]; and image fusion using per-pixel saliency visualization [21].
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Different levels of fusion can be defined depending on the stage of the detection
process in which the integration of the information is carried out. A detection problem
can generally be divided into four stages (Figure 3). The first of these is the sensing stage,
where one or more sensors are responsible for obtaining a series of measurements of the
environment where the event occurs. These raw data (y) are processed to extract certain
characteristics (features) of the event (x), from which detectors or binary classification
algorithms will be able to yield data sample scores (z), usually related to the probability
that the event to be detected has occurred. After thresholding scores, a set of binary
decisions (u) is obtained on the occurrence or not of the event.
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Thus, the sensor fusion level relates to when the different sample flows provided by
sensors are combined (y → y f us ); the feature fusion level is where the raw data features
extracted are fused (x → x f us ); the score fusion level concerns obtaining fused scores from
the ones obtained by the classifiers (z → z f us ). Those scores are thresholded to obtain
decisions that are fused at the decision level (u → u f us ). The levels of sensor and feature
fusion can be grouped into what is known as early or pre-detection fusion. The levels
of score and decision fusion are often referred to as late fusion or detector fusion [22–24].
The different levels of fusion are not mutually exclusive, so systems can be designed that
combine fusion at different levels based on information provided by different sources
throughout all stages.

Depending on the type of data to be combined, we can classify the fusion into two
categories, soft fusion and hard fusion. (i) Soft fusion refers to the combination of continu-
ous data, which can be modeled by continuous random variables, usually characterized by
PDFs under each of the hypotheses. Within the detection process, we can generally find soft
information in the data provided by the sensors (y), the features extracted from them (x),
and in the scores provided by some types of detectors (z). (ii) Hard fusion combines discrete
data, which are modeled by discrete random variables under each of the hypotheses. Hard
information fusion is commonly associated only with the detector fusion stage, where
binary random variables are used.

2. Early Fusion/Late Fusion Comparison
2.1. Early Fusion

Let us assume for simplicity the scenario of two classes (k = 1, 2), and two sets of
features x1, x2, x1, x2, from two different modalities that we will assume conditionally in-
dependent, i.e., p(x1, x2/k) = p(x1/k)p(x2/k). Suppose we perform early fusion, choosing
the class that maximizes the a posteriori probability given the two sets of features x1, x2
i.e., the decision rule will be:

P(k = 1/x1, x2)

k=1
>
<

k=2

P(k = 2/x1, x2) ⇔ P(k = 1/x1, x2)

k=1
>
<

k=2

0.5, (1)

where we have taken into account that P(k = 1/x1, x2) + P(k = 2/x1, x2) = 1. Note that
rule (1) implies minimization of the probability of error if we assume that the costs of being
wrong in the decision are symmetric and normalized to 1. That is, considering that we had
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exact knowledge of P(k = 1/x1, x2), no other fusion rule allows us to reduce the probability
of error more than (1).

2.2. Late Soft Fusion

Suppose now that we perform late soft fusion. For this purpose, we generate an
a posteriori probability (score) separately for each modality: s1 = P(k = 1/x1) and
s2 = P(k = 1/x2). Note that when it is the case that P(k = 1/x1) + P(k = 2/x1) = 1
and P(k = 1/x2) + P(k = 2/x2) = 1, it is enough to consider the scores s1 and s2 de-
fined. We then generate a new score s fusing s1 and s2 through a certain fusion function
s = f (s1, s2) 0 ≤ s ≤ 1 and the new decision rule will be:

s
k=1
>
<

k=2

0.5, (2)

Note that s = f (s1, s2) = f (P(k = 1/x1), P(k = 1/x2)) is ultimately a function of
multivariate random variables x1, x2, which will generally be different from P(k = 1/x1, x2)
in (1) and therefore rule (2) can never achieve a probability of error lower than rule (1),
assuming knowledge of P(k = 1/x1, x2). For instance, let us analyze the case of the fusion
method based on α-integration [25–28]. First, we apply Bayes’ rule:

s1 = P(k = 1/x1) =
p(x1/k = 1)P1

p(x1)
; s2 = P(k = 1/x2) =

p(x2/k = 1)P1

p(x2)
, (3)

We will now consider the α-integration of both scores to obtain s:

s =
(

w1s
1−α

2
1 + w2s

1−α
2

2

) 2
1−α

=

(
w1

(
p(x1/k=1)P1

p(x1)

) 1−α
2

+ w2

(
p(x2/k=1)P1

p(x2)

) 1−α
2

) 2
1−α

=

=

(
w1(p(x1/k=1)p(x2)P1)

1−α
2 +w2(p(x2/k=1)p(x1)P1)

1−α
2

(p(x1)p(x2))
1−α

2

) 2
1−α

=

=

w1

(
p(x1/k=1)p(x2)w

2
1−α
1

) 1−α
2

+w2

(
p(x2/k=1)p(x1)w

2
1−α
2

) 1−α
2


2

1−α

p(x1)p(x2)
P1

, (4)

On the other hand, the score generated in rule (1) can be written as:

P(k = 1/x1, x2) =
p(x1,x2/k=1)P1

p(x1,x2)
= p(x1/k=1)p(x2/k=1)

p(x1,x2)
P1 =

= p(x1/k=1)p(x2/k=1)
p(x1)p(x2/x1)

P1
, (5)

where we have taken into account the assumed conditional independence between the char-
acteristics of the two different modalities x1, x2. Comparing (4) and (5), we can conclude an
interpretation of the α-integration as an attempt to approximate the optimal score in (5). On
the one hand, in relation to the denominator, when operating the two modalities through
separate channels before merging, it is not taken into account that x1 and x2 are (uncon-
ditionally) dependent. On the other hand, we can see that the parameters α, w1 and w2,
which are estimated by minimizing a certain cost function (e.g., error probability), should

tend to be adjusted so that p(x2)w
2

1−α
1 ≃ p(x2/k = 1) and p(x1)w

2
1−α
2 ≃ p(x1/k = 1), in

order to obtain the minimum probability of error of rule (1). In any case, it is clear that,
assuming perfect knowledge of late soft fusion can never provide a lower probability of
error than early fusion. However, we must also consider that the use of particular classifiers
is conditioned to the requirements of the size of the training datasets, and thus conditioning
the fusion of the classifiers. The estimation of the sample size for training to obtain an
estimated error is a complex task; see for instance the proxy learning curve for the Bayes
classifier [29].
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2.3. Late Hard Fusion

In this case, first, the binary decisions of each modality are generated, and from them
a decision fusion rule is established to generate the final decision. Let us denominate d1, d2
the binary variables corresponding, respectively, to the binary decisions of each modality,
i.e., we can write:

d1 = u(s1 − 0.5); d2 = u(s2 − 0.5), (6)

where u(x) =
{

1 x > 0
0 x < 0

is the step function. As we can see, the binary variables are

equal to 1 if we choose class 1 and equal to 0 if we choose class 2. The final decision will be
the result of applying a fusion rule to d1, d2. In the case of two modalities, we have only
two possible reasonable rules:

d = g1(d1, d2) =

{
1 si d1 = 1, d2 = 1
0 all other cases

d = g2(d1, d2) =

{
0 si d1 = 0, d2 = 0
1 all other cases

, (7)

It seems natural that late hard fusion, in exchange for its simplicity, leads to worse
performance than late soft fusion, since binarization prior to fusion entails the loss of
information. Somewhat heuristically, we can reason as follows. Suppose that the late soft
fusion function f (s1, s2) is optimized to minimize a certain cost function of the binary
classifier, such as the probability of error. If we take into account that d1, d2 are a function
of the scores s1, s2, we can think that ultimately the functions g1(d1, d2) and g2(d1, d2)
in (7) are functions of s1, s2, which will, in general, be different from the optimal function
used in late soft fusion and which will, therefore, not minimize the chosen cost function. To
be more specific, let us consider again the integration. It is easy to check that:

α → ∞ ⇒ s → min(s1, s2) α → −∞ ⇒ s → max(s1, s2), (8)

But the following fusion rules are equivalents:

min(s1, s2)

k=1
>
<

k=2

0.5 ⇔ g1(d1, d2) max(s1, s2)

k=1
>
<

k=2

0.5 ⇔ g2(d1, d2), (9)

That is, we can interpret late hard fusion as a late soft fusion for a particular choice of
integration parameters of α-integration, which will not, in general, be those that minimize
the cost function and will therefore lead to worse (or, at best, equal) performances than
those achievable with late soft fusion.

In short, we conclude that, if the a posteriori probability or score P(k = 1/x1, x2) is
known precisely, late fusion will not be able to outperform early fusion. On the other
hand, the hard fusion will not be able to outperform late soft fusion either, as we have
justified above.

The exact knowledge of P(k = 1/x1, x2) is only strictly possible if we have an infinite

training set and we assume statistical consistency, i.e., P̂(k = 1/x1, x2)
N→∞→ P(k = 1/x1, x2),

where N is the size of the training set of each class (for simplicity we assume the same for
both classes). From a practical point of view, accurate estimation implies having sufficiently
large training sizes for each class. Unfortunately, it is not easy to determine in general what
the adequate minimum size is. This is outside the scope of this paper. However, there are
recent works that provide certain criteria in this regard [30].

3. Early Fusion from Sensor and Features

In Sections 3 and 4 we will study the state-of-the-art data fusion methods and briefly
describe them comparatively according to different points in the data processing where
fusion can take place. The study includes the analysis of strengths and weaknesses of the
methods and related works. Figure 4 shows the proposed outline to explain the different
fusion approaches.
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3.1. Early Fusion from Sensor

The process of combining disparate sensor data is known as sensor fusion. Figure 5
shows a schematic illustrating early sensor fusion. There are several ways of acquiring data
from the sensors:

✓ Individual sensor, multiple samples.

This first case is the simplest as it involves a single sensor from which we obtain
multiple samples.

✓ Multisensors.

The essence of this data acquisition is to combine information from multiple sensors
into a single sensor. In this way, greater accuracy can be achieved than could be achieved
using a single sensor [31].

✓ Multimodal.

Multimodal acquisition integrates information from multiple sources to compensate
for each of them. An example is the simultaneous acquisition of electroencephalogram
(EEG) and functional magnetic resonance imaging (fMRI) data. On the one hand, we have
a high temporal resolution, as in the case of EEG, and on the other hand, we have fMRI
data with a high spatial resolution [32].
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At the sensor level, there are several methods of data fusion. Among them, we can
find the Kalman Filter, Bayesian Inference, Fuzzy Logic, Artificial Neural Networks (ANNs)
and Dempster–Shafer (DS). In Table 1, we present a brief description of these methods, and
finally, we offer a comparative table where we will find the weaknesses and strengths of
each of these methods and related works.

✓ Kalman Filter.

The Kalman filter is an ideal recursive statistical data processing algorithm that contin-
uously computes an estimate of a continuous-valued state from periodic observations [33].
It uses an explicit statistical model of how the vector of interest x(t) changes over time and
an explicit statistical model of how the vector of observations z(t) made are related [1]. The
gains used in a Kalman filter are chosen to ensure that the resulting estimate minimizes the
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mean square error with certain assumptions about the observation models and processes
used [34].

✓ Bayesian Inference.

Bayesian inference is a statistical data fusion algorithm based on Bayes’ theorem of a
posteriori probability for estimating an n-dimensional state vector Z, given the observation
or measurement X [35].

According to Bayes’ theorem, given a set of measurements Xk = {x1; . . . ; xk} in time k,
the Bayesian interference is formulated as:

p
(

zk

∣∣∣Xk
)
=

p(xk ∨ zk)p
(

zk

∣∣∣Xk−1
)

p
(
Xk
∣∣Xk−1

) , (10)

where p(xk ∨ zk) is the probability function based on a given sensor measurement model,
p
(

zk

∣∣∣Xk−1
)

is the a priori probability distribution, and p
(

Xk
∣∣∣Xk−1

)
is the probability

density function considering all hypotheses.
If we assume that the statistical independence between the set of measurements

Xk = {x1; . . . ; xk}, then we can combine them to infer the state of the observed system [36].
This method requires knowledge of the a priori probability distribution of the states.

✓ Fuzzy Logic.

Fuzzy Logic is a logic that uses neither wholly true nor false expressions. It is applied
to concepts that can acquire any value of veracity within a set of values that oscillate
between two extremes: absolute truth and total falsehood [37].

The main benefits of using fuzzy logic techniques are the simplicity of the approach, its
ability to handle ambiguous information, and its capacity to include heuristic knowledge
about the phenomenon under consideration [2,38]. The use of fuzzy logic for sensor
fusion has demonstrated a high degree of accuracy and precision, but the complicated
computations required are an obstacle [39].

✓ Artificial Neural Networks (ANNs).

ANNs are mathematical models of non-linear computational elements operating in
parallel and linked together in a topology distinguished by several ponderable connections.
Comparing ANN analysis with conventional linear or non-linear analysis, it has proven to
be a more powerful and flexible method [40].

One of the features of ANNs is their adaptive learning capability. Developing a priori
models or specifying probability distribution functions is unnecessary, because neural
networks can learn differentially through examples and training [41].

A typical ANN structure comprises three main layers: the input layer, one or more
hidden caps, and the output layer. One or more neuron-like nodes distinguish each. The
number of input and output variables determines the number of neurons in the input and
output layers. Depending on the problem’s difficulty, the number of hidden layers and the
number of neurons associated with each hidden layer varies [42].

✓Dempster–Shafer (DS).

Dempster–Shafer theory offers an alternative to the traditional probabilistic approach
for the mathematical representation of uncertainty. It has been widely applied in various
applications, such as target tracking, surveillance, robotic navigation, and signal and image
processing [43].

As is well known, DS represents the uncertainty or imprecision in a hypothesis that
characterizes all possible system states. A probability mass assignment (PMA) is applied
to such a hypothesis, which results in a decision when combined. Therefore, creating a
function for the mass assignment and combining it is essential for accurate prediction. By
applying a combinatorial rule to the sources of evidence, DS achieves the goal of data
fusion [9].
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Table 1. Comparison between early sensor-level fusion methods and related works.

Sensor-Level
Fusion Methods Strengths Weaknesses Works

Kalman Filter

The Kalman filter can provide highly
efficient and accurate results in
contexts where the system conditions
are well understood and the models
are correct.
Estimates are performed recursively.
This property makes it
computationally efficient and suitable
for real-time applications.

It is not a method designed for optimization;
therefore, it cannot converge to local or
global minima. It is intended for state
estimation and prediction in dynamic
systems.
It requires a broad knowledge of
probabilities, especially the subject of
Gaussian conditionality in random variables.

[44–48]

Bayesian Inference

It is a recursive technique and can
compute probabilities and posterior
probabilities for multiple hypotheses.
If the conditions are well understood
and the models are correct, it offers a
convenient setup for various models,
such as hierarchical models and
missing data problems.

The probability distribution of the states
must be known a priori. It often comes with
a high computational cost, especially in
models with many parameters.
As the size of the data increases, handling the
distributions becomes more difficult.

[35,49–52]

Fuzzy Logic

Accurate results in non-linear and
challenging-to-model processes. It is
based on logical sets and reasoning
that are easy to understand and,
therefore, to use.
Provides a simple mechanism for
reasoning with vague, ambiguous, or
imprecise information.

Extensive validation and verification of fuzzy
algorithms are necessary.
Accurately defining fuzzy sets or
membership functions requires time and
effort. In addition, increasing the dimension
of the data makes it more challenging to
model the problem.
Fuzzy control systems depend on human
experience and knowledge.

[2,39,53–55]

Artificial Neural
Networks

It is self-learning and can execute
tasks that a linear program cannot
and is able to process unorganized
data. Its structure is adaptive in
nature.
When an element of the neural
network slows down, it can continue
without problems, thanks to its
parallel characteristics and is efficient
at handling data noise, separating
only the necessary information.

Requires prior training to operate, a large
amount of data to achieve adequate
efficiency and a lot of processing time for
large neural networks.
Requires specific hardware equipment to
operate due to their computational
complexity.
If not handled properly, neural networks
may be overfitted to the training data and
not generalize well to new data.
It can converge to local minima instead of
global minima, although there are solutions
to this problem, such as weight initialization
and regularization in terms of L1 and L2.

[40,56–60]

Dempster–Shafer

Such a theory can provide accurate
results if the evidence is accurate and
reliable.
Although there is no hard and fast
rule regarding data, a limited amount
of data can help manage uncertainty
and consistently combine
information.

Generally, it presents a high computational
complexity, although this may vary
depending on the amount of data,
hypotheses, and uncertainty of the problem
to be treated.

[9,61,62]

3.2. Early Fusion from Features

These methods or techniques aim to reduce the feature vector’s dimension while
preserving as much information as possible. Figure 6 shows a schematic of the feature-level
fusion methods.
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Among the feature-level fusion methods, we can find Principal Component Analysis
(PCA), Singular Value Decomposition (SVD), Multidimensional Scaling (MDS), and Deep
Learning. Below, in Table 2, we will briefly describe them, detailing their strengths and
weaknesses and the related works that have been most cited.

✓ Principal Component Analysis (PCA).

PCA is a mathematical procedure transforming several correlated variables into un-
correlated variables called principal components [63]. This technique reduces the data set
(in this case, the features extracted from multiple sensors) while maintaining the statis-
tical information and at the same time minimizing the loss of information [6]. Principal
components are calculated as linear combinations of the original data or variables [64].

We refer to each main component as Yj and a set of variables
(
X1, X2, . . . , Xp

)
. The

first principal component is the normalized linear combination of these variables with the
highest variance.

Y1 = ϕ11X1 + ϕ21X2 + · · ·+ ϕp1Xp, (11)

The normalized linear combination implies that:

∑p
j=1 ϕ2

j1 = 1, (12)

The terms ϕ11, . . . , ϕ1p define the component and are called loading. They can be
interpreted as each variable’s weight in each component.

✓ Singular Value Decomposition (SVD).

SVD is a powerful mathematical technique to decompose a matrix into constituent
parts. It is a generalization of the autovalues decomposition of a matrix and can be applied
to any rectangular matrix, not just square matrices. It helps to reduce data sets containing
a large number of values and is useful for generalizing meaningful solutions with fewer
values [65–67].

A matrix X of m × n with m and n dimensions of the row and column vectors can be
related to the diagonal matrix ∑ de m × n, which satisfies the following equation:

∑ = UTXV, (13)

where U is an orthogonal matrix of m × n and V is an orthogonal matrix of n × n. When
rewritten, it is satisfied that:

X = U ∑ VT , (14)

✓ Multidimensional Scaling (MDS).

MDS is a dimensionality reduction technique that converts multidimensional data
into a lower dimensional space while maintaining intrinsic information [68]. This set of
statistical techniques takes as input similarity estimates between a set of data [69]. This
method is a much more flexible alternative to other multivariate analysis methods, since it
only requires a matrix containing the similarity or dissimilarity between the input data.
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In general, MDS takes a proximity matrix as input ∈ Mnxn, where n is the number of
stimuli and each element δij of ∆ represents the proximity between stimulus i and stimulus j.

∆ =

δ11 · · · δ1n
...

. . .
...

δn1 · · · δnn

, (15)

From this proximity matrix, MDS provides us with an output matrix ∈ Mnxm, where
n is the number of stimuli as before and m is the number of dimensions. Each value of xij
represents the coordinate of stimulus i in dimension j.

X =

x11 · · · x1m
...

. . .
...

xn1 · · · xnm

, (16)

From the matrix X we can calculate the distance between any two stimuli by applying
the general Minkowski formula:

dij =
[
∑m

t=1

(
xit − xjt

)p
]p

, (17)

where p can be a value between 1 and infinity. From these distances, we can obtain a matrix
of distances D ∈ Mnxn.

D =

d11 · · · d1n
...

. . .
...

dn1 · · · dnn

, (18)

The solution provided by the MDS should be such that there is a maximum correspon-
dence between the initial proximity matrix ∆ and the matrix of distances obtained D.

✓ Deep Learning.

We can say that deep learning is a type of machine learning that aims to make an
artificial intelligence (AI) capable of learning by itself and performing tasks similar to
those performed by humans, such as image recognition, speech recognition, and making
predictions, over time and with large amounts of data and processing with algorithms.

Deep learning algorithms are applied to ANNs structured into input, hidden, and
output layers. Nowadays, feature fusion using deep learning is very fashionable, especially
in the medical field [70,71] and in social networks [72,73].

Table 2. Comparison between early feature-level fusion methods and related works.

Feature-Level
Fusion Methods Strengths Weaknesses Works

Principal Component
Analysis

Reduces the complexity of the data and
identifies the most important features.
This method captures the directions of
maximum variability in the data. This means
that the most informative features are retained
as valuable in data fusion where relevant
information is sought to be preserved.
After the transformation, the variance of the
data is preserved.

It is necessary to choose the correct number of
principal components needed for the data set to
avoid some loss of information.
Although the method works quickly for large data
sets, it requires high computational complexity
and memory requirements.

[6,64,74–76]
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Table 2. Cont.

Feature-Level
Fusion Methods Strengths Weaknesses Works

Singular Value
Decomposition

This mathematical technique is precious for
reducing the dimensionality of the data,
capturing the most relevant and distinctive
feature information, and eliminating
redundancies and noise.

SVD can be computationally expensive for large
data sets, mainly when applied to
high-dimensional arrays.
It only makes use of a single data set, and by
default, the resulting dimension reduction cannot
incorporate any additional information that may
be relevant.
The accuracy of the data may decrease if the data
patterns are not linear.

[65–67,77–79]

Multidimensional
Scaling

The solutions are relatively accurate.
It can be used to fuse different types of data
into a shared space, which is useful when the
features of the sensors are different.
The method provides a visual representation
of the data in a two- or three-dimensional
space, which can help to understand patterns
and relationships.

It does not allow quantifying the level of quality of
the result. Since it is based on the relationship
between dimensions or factors, evaluating this
relationship in numbers is tough.
Can be computationally expensive for large data
sets and may require iterative optimization.
As the data are projected into a lower dimensional
space, there may be a loss of information, which
could affect the quality of the fused data.

[68,69,80–83]

Deep Learning

It assists in trend and pattern detection and
does not need human assistance, i.e., it makes
its own decisions.
It can handle many multidimensional data and
constantly improves the algorithm to achieve
more accurate results. It can fuse data from
multiple sources, such as images, text, and
signals, into a single architecture, leveraging
information from different modalities.

Requires a large amount of data for training, which
is time-consuming and computationally complex.
Therefore, more powerful computers are needed
for it to work.
Limited data availability can affect performance, as
large amounts of data are needed for effective
training.
Can be trapped in local minima instead of reaching
the best possible solution (global minimum).

[70–73,84]

4. Late Fusion from Scores and Decisions
4.1. Late Fusion from Scores (Late Soft Fusion)

Information from different detectors or classifiers is often referred to as scoring [85].
Score-level fusion is usually preferred because it offers the best compensation in terms of
information content and ease of fusion [86,87]. Figure 7 shows a schematic of the workflow
for these methods.
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According to the literature, Sum Rules, Likelihood Ratio (LR), Fusion by classifiers,
Alpha Integration, and Behavior-Knowledge Space (BKS) are widely used score fusion
methods. These techniques are described below, and Table 3 with the strengths and
weaknesses of these methods and related work is presented.

✓ Sum and Weighted Sum Rules.

The Sum Rule is a simple fusion technique that operates directly on the raw data of
the match scores [88]. It is given by the following equation:

f s = s1 + s2 + · · · sn, (19)
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where f s is the fused score and si represent the scores results. The weighted sum is similar,
except that a weighting is assigned wi to each score depending on performance. It can be
calculated as:

f s = w1s1 + w1s2 + · · ·wnsn, (20)

✓ Likelihood Ratio (LR).

LR is a fusion approach based on the Neyman–Pearson theorem. This method does not
require parametric adjustments and achieves a maximum valid acceptance rate (GAR) [89].
This approach is density-based and can achieve optimal performance at any desired false
acceptance rate (FAR) point, provided that score density is accurately calculated.

The LR method reduces the feature values into a single metric (score) representing
the similarity between the comparison items [90]. The genuine and impostor match score
vectors are modeled using Gaussian mixture models. The likelihood ratio is calculated as
the ratio of the genuine probability density over the impostor probability density.

✓ Fusion by classifiers.

Score fusion using classifiers is a technique in which classification models are used to
combine scores. It aims to improve the accuracy and reliability of final decisions by taking
advantage of the diversity of information provided by different classifiers.

The choice of classifier depends on the nature of the input scores and the application
in question. It can be a simple classifier, such as logistic regression, or a more complex one,
such as random forest (RF), support vector machine (SVM), and quadratic discriminant
analysis (QDA). In addition, the right fit between performance and generalization must
be achieved.

✓ Alpha Integration.

Alpha integration is a group of integrators containing many combinations, as may be
the particular case of the alpha parameter. This approach was first proposed by Amari [91]
to integrate multiple stochastic models by minimizing their alpha divergence. It has also
been used to perform optimal integration of scores in binary classification problems [10].

This method was extended to integrate multiclass classifiers by considering the scores
of each class in isolation in a technique called separated score integration (SSI) [26]. A
new alpha integration method for late fusion of multiple classifiers that considers the
combined effect of all classes in the multiclass problem called vector score integration (VSI)
is proposed in [27].

✓ Behavior-Knowledge Space (BKS).

The BKS method is a trainable combination scheme at the abstract level, requiring
neither measurements nor ordered sets of candidate classes. It attempts to estimate a
posteriori probability by calculating each class’s frequency for each possible set of classifier
decisions based on a given training set [92].

In BKS, each classifier can assign a sample to one of the M possible classes. Each unit of
a BKS represents a particular intersection of the decisions of an individual classifier. Thus,
all possible combinations of the decisions of the individual classifiers are represented [8].

Table 3. Comparison between late score-level fusion methods and related works.

Score-Level Fusion
Methods Strengths Weaknesses Works

Sum Rule

It does not require training samples. No sample
distribution modeling is required.
The addition process is fast and
computationally efficient.
This method works well for significant
data inputs.

Requires estimation of normalized parameter
and weights vector, and its accuracy is
rarely consistent.
It requires that match scores be of the
same nature.
It assumes comparable scales and strengths for
input match scores

[88,93–96]
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Table 3. Cont.

Score-Level Fusion
Methods Strengths Weaknesses Works

Likelihood Ratio

It has the potential to converge to maxima when
maximizing the likelihood. It is able to handle
discrete values in the score distribution.
It does not involve the normalization of the score
vector but the transformation of its respective
likelihood ratio.
If the densities of the scores are accurate, an
optimum level is reached at any desired value of
false acceptance rate (FAR).

Requires detailed modeling of score
distributions.
It is complex to implement due to the estimation
of densities and is computationally complicated.
It is very time-consuming as it involves a large
amount of training samples.
Requires a high knowledge of statistical
techniques.

[89,90,97–100]

Fusion by classifier

It increases the overall accuracy of predictions by
combining the strengths of different algorithms
and reducing their weaknesses.
Reduces the bias inherent in any algorithm and
achieves greater flexibility by adapting to
different data patterns.

Data fusion usually requires more data to train
and validate the classifiers.
It can increase computational complexity,
especially if the data sets are large.
Convergence to local and global minima is
related to the type of classifier to be used.

[101–105]

Alpha Integration
It integrates many classic fusion operators and
classifiers, optimizing fusion parameters and
achieving more results that are accurate.

Optimizing the parameters is done by the
gradient method, which may not converge to the
global optimum. This method would inherit the
weaknesses of the optimization method used.

[10,26,27,91,106]

Behavior-Knowledge
Space

It does not depend on a prior hypothesis, such as
statistical independence between classifier
outputs.
It allows the creation of a knowledge model that
can organize and represent the knowledge
extracted from the classifiers’ prior behavior.

A limitation of this model is that with increasing
data size the memory requirements increase
exponentially.

[107–110]

4.2. Late Fusion from Decisions (Late Hard Fusion)

Decision-level fusion aims to combine the decisions made by different classifiers to
reach a common consensus and obtain a more accurate decision. Figure 8 shows where late
fusion is performed at the decision level.
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Majority Voting, Bagging, Boosting and Copula fusion are the most commonly used
decision-level fusion methods. Table 4 below presents a description of these techniques,
as well as the work related to these methods and a comparison taking into account their
strengths and weaknesses.

✓ Majority Voting.

This type of method is based on a weighted process that combines the decisions
provided by the classifiers. The simplest and most intuitive approach is based on voting by
the predominant class, i.e., assigning a sample based on the most frequent class. In case
of a tie, the sample is not classified. Protective approaches derive from applying specific
limits, meaning that a sample is assigned only if the frequency of assignments to a class is
greater than a selected threshold [111,112].
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✓ Bagging.

It was originally introduced in 1996 [113] and expanded by [114]. It is based on
sampling in its simplest form. The idea here is to sample subsets of the training set,
generating independent bootstrap random replicates. The classifier is then constructed on
each of these bootstrap samples, and finally, the constituent classifiers are aggregated by a
simple majority vote [115].

The strength of bagging lies in unstable classifiers. These can be sensitive to minor
alterations in the data set. Training the same classifier with slightly different data can give
substantially different classifiers. Bootstrap sampling provides small random perturbations
of the data set [116].

✓ Boosting.

Boosting has been proposed and perfected in the works of [117] which led to the most
successful implementation called AdaBoost. Unlike the bagging method, which is based
on random changes of the bootstrap sampling, the boosting method relies on classifiers
built on weighted versions of the training set, which depend on previous classification
results [115].

Generally, when there is little noise, boosting offers a reasonably accurate classifier;
however, for situations with substantial noise, it is better to use other techniques [118,119]
as previously shown.

✓ Copula fusion.

The theory of copulas relates multivariate distribution functions to their univariate
marginal distribution functions and is explained by Sklar’s theorem [120].

Considering an m-dimensional distribution function with marginal distribution func-
tions F1, . . . , Fm, a copula function C exists for all continuous random variables x1, . . . , xm.

F(x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)) (21)

The function C is nothing more than a joint probability distribution of uniformly
distributed random variables in the interval [0, 1].

Table 4. Comparison between late decision-level fusion methods and related works.

Decision-Level Fusion
Methods Strengths Weaknesses Works

Majority Voting

Since this method is based on the
linear combination of multiple
detection algorithms, errors or
misclassifications of one model do not
affect the result. The excellent
performance of the others can
compensate for the poor performance
of one classifier. It allows the results to
be more robust and prone
to overfitting.

It does not take into account the accuracy of
the individual predictions of each classifier.
If one classifier is more accurate, it will not
have more influence than a less accurate one.
Therefore, the result may be erratic.
It should also be noted that the
computational complexity could be high.

[111,121–123]

Bagging

Reduces variance and, in many cases,
improves the accuracy of some
predictors, especially if individual
classifiers are prone to bias.
Increases stability and eliminates the
problem of overfitting for large
amounts of data.

Introduces a loss of model interpretability;
may experience biases when proper
procedure is ignored.
This method involves training and
maintaining several models, which can
significantly increase computational
requirements compared to a single model.

[113–115,119]
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Table 4. Cont.

Decision-Level Fusion
Methods Strengths Weaknesses Works

Boosting

Reduces variance and bias. Can
generate a combined model that
minimizes errors by avoiding the
drawbacks of individual models.
Weights those classifiers with better
performance on the training data.
Therefore, the accuracy of the model
generally tends to improve.

It does not help solve the overfitting
problem; on the contrary, it may increase it
for large data sets.
The computational complexity of the
Boosting method can be considerable,
especially in terms of training time and
storage space. The number of iterations and
the complexity of the base classifier are vital
factors affecting complexity.

[115,117–119,124]

Copula fusion

It helps improve the fusion model’s
accuracy and generalization,
especially when there are uncertain
classifier outputs.
If the choice and settings of copulas
are correct, it converges to parameters
that adequately represent the
dependence between
classifier outputs.

Depending on the copulas’ complexity, the
method may require complex
computational calculations.
Having sufficiently large data sets to train
and evaluate the machine learning models
is advisable.

[125–127]

5. Conclusions

A comparative study on recent automatic data fusion methods has been presented. The
fusion approaches were divided in four categories for ease of comparison: early fusion from
sensors; early fusion from features; late fusion from scores (late soft fusion); and late fusion
from decisions (late hard fusion). A theoretical analysis of the conditions for applying early
or late fusion was included. It was demonstrated that if the available data samples are
sufficient, i.e., if the a posteriori probability or score is known precisely, late fusion will not
be able to outperform early fusion. Early fusion can lead to the curse of dimensionality,
which can be alleviated by using dimension reduction methods such as principal component
analysis. On the other hand, late fusion is the practical option in real scenarios, and it
was demonstrated that late hard fusion will not be able to outperform late soft fusion.
Nevertheless, determining the best option in a specific application context requires a strong
experimental component. The specific comparison of weaknesses and strengthens of the
state-of-the-art methods shows that, generally, the computational complexity is usually
higher for early fusion, as it involves integrating information in the early stages of the
data flow. Optimization may be easier to achieve in late fusion, as it focuses on scores and
decisions, and accuracy, which may be more robust for specific contexts despite the loss of
information. In summary, the choice of method to apply requires a thorough understanding
of the context of the problem.

As a general conclusion, it is evident that fusion is a current topic in machine learning
with significant room for continued research. Specifically, it is possible to suggest some
lines of work. Firstly, a good part of the experimental work and most of the theoretical
contributions only consider the two-class problem, the interest of an extension to an
arbitrary number of classes being obvious. Along these lines, it should be mentioned
that there is a great need for theoretical analyses that allow a better understanding of the
very high number of experimental works existing in this area. For example, it would be
most convenient to have an analysis of the different kinds of fusion when a posteriori
probabilities are unknown and have to be estimated, as well as including in the theoretical
analysis other factors such as computational complexity for real-time implementation.
Another possible line of research could be called “fusion of fusions”, that is, we could
combine different levels of fusion, e.g., the output from an early feature fuser could be
fused with the output of a soft late fuser. This could lead to the definition of complex fusion
schemes. In a sense this is related to fusion in the context of deep learning, where the
system itself can learn the best combination at different levels of the elements to be fused.
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