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Abstract: This study introduces a novel approach to address challenges in workpiece surface defect
identification. It presents an enhanced Single Shot MultiBox Detector model, incorporating attention
mechanisms and multi-feature fusion. The research methodology involves carefully curating a dataset
from authentic on-site factory production, enabling the training of a model with robust real-world
generalization. Leveraging the Single Shot MultiBox Detector model lead to improvements integrating
channel and spatial attention mechanisms in the feature extraction network. Diverse feature extraction
methods enhance the network’s focus on crucial information, improving its defect detection efficacy.
The proposed model achieves a significant Mean Average Precision (mAP) improvement, reaching
99.98% precision, a substantial 3% advancement over existing methodologies. Notably, the proposed
model exhibits a tendency for the values of the P-R curves in object detection for each category
to approach 1, which allows a better balance between the requirements of real-time detection and
precision. Within the threshold range of 0.2 to 1, the model maintains a stable level of precision,
consistently remaining between 0.99 and 1. In addition, the average running speed is 2 fps lower
compared to other models, and the reduction in detection speed after the model improvement
is kept within 1%. The experimental results indicate that the model excels in pixel-level defect
identification, which is crucial for precise defect localization. Empirical experiments validate the
algorithm’s superior performance. This research represents a pivotal advancement in workpiece
surface defect identification, combining technological innovation with practical efficacy.

Keywords: target detection; defect detection; attention mechanism; multi feature fusion

1. Introduction

In the industrial field, it is difficult to avoid the defects of industrial production
workpieces. On the production line, there are many kinds of workpieces, and the size
is getting smaller and smaller. Often, workers with experience in workpiece detection
and classification want to identify artifacts. With the continuous improvement of product
quality requirements, the production of workpiece is affected by many comprehensive
factors, such as the quality of the material of the workpiece and the processing equipment.
Artifacts need to be classified and tested. In order to improve the efficiency of workpiece
generation, ensure the detection of defective products in production engineering [1,2],
and reduce the unqualified rate of workpiece products, there are different degrees and
types of defects on the surface of the workpiece, which will affect the quality, safety, and
performance of the workpiece [3,4]. Product quality inspection is an important part of
industrial production. At first, people mainly used traditional machine learning algorithms
to study this problem. With the large-scale application of deep learning models such as
Convolutional Neural Networks (CNNs) in the field of computer vision [5], the use of
deep learning methods for defect detection has gradually become a hot research direction.
This study focuses on the surface of stainless steel rectangular pipes, hereafter referred to
as “workpieces”. The objective is to propose an enhanced model that combines attention
mechanisms and multi-feature fusion to improve the precision of defect identification on
workpiece surfaces. This approach has practical value.
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2. Related Work

In order to promote the development of defect detection, researchers have put forward
many effective target detection methods [6]. Some of these methods use special subnet-
works to provide candidate target location suggestions to improve the detection precision
of the network, and some generate higher resolution super-resolution images for small
target detection through subnetworks. However, the complex subnet structure not only
improves the detection performance, but also increases the number of parameters to the
network, which will undoubtedly seriously reduce the speed of target detection.

Some methods based on multi-scale characterization enhance the detection capability
of the network by making full use of the useful information in the network feature graph [7],
which significantly reduces the operation cost. The proposed attention mechanism has
introduced new vitality into the research of target detection. The attention-based method
makes the network focus more attention on the target area of interest, and effectively
improves the detection performance of the target detection network. The principle of
the Single Shot MultiBox Detector (SSD) algorithm is to provide the classification and
location information of the target directly through the backbone network, which exhibits the
superior performance of simultaneously achieving high detection precision and speed [8,9].
This network structure can accommodate various sizes of targets, but there are also certain
issues that need to be improved. SSD detects small targets in the underlying network, as
the features in the underlying network have higher resolution compared to the high-level
network, providing more specific positional spatial information for small targets. However,
the feature representation of small targets in the underlying network is insufficient, and the
feature information contained is not rich, causing trouble during actual testing. The research
in [10] proposed to improve the structure of SSD networks, which optimizes traditional
convolutional layers and effectively enhances the training effect and convergence speed
of SSD networks. Nowadays, it has been widely used in many target classification and
detection tasks.

Most studies have applied attention mechanisms to conventional size object detection
tasks, and small object detection methods based on attention mechanisms have become
an urgent research direction. Based on this, this paper proposes an improved SSD defect
detection model that combines feature fusion, and adds hollow convolutional units to
expand the receptive field, so that each convolutional output contains a large range of
information while improving model precision.

The following Table 1 provides a performance comparison of deep learning models.
Different models show differences in performance in terms of feature extraction, multi-scale
object detection, and robustness in low-light conditions. References [7,10] focus on feature
extraction and fusion, with accuracies of 75.3% and 76.48%, respectively. References [8,9]
emphasize layered feature fusion for multi-scale object detection, achieving accuracies
of 51.23% and 94.16%, respectively, indicating room for improvement. Reference [11]
excels in multi-scale shallow feature fusion but requires enhanced robustness in low-light
scenarios, with a precision of 80.42%. Reference [12] optimizes the model’s loss function
by incorporating inhibitory loss and achieves a precision of 83.50%, yet improvements
are needed in prediction boxes. The analysis of these model strengths and weaknesses
suggests that enhancing precision and robustness is a future research direction in the field
of object detection. In addition, the choice of an appropriate model should be aligned
with practical requirements and scene characteristics. The findings contribute valuable
background information and analysis for the development of the target defect detection
model in this study.
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Table 1. Performance comparison of deep learning models.

Literature Methods mAP Advantages Disadvantages

[7] ESA-Net 75.3% It can extract and construct advanced
features for pyramid networks.

The network can better detect small
features with further improvement

in performance.

[8] FFR-SSD 51.23% Layered feature fusion for multi-scale
object detection Precision still needs improvement.

[9] SSD-BSP 94.16% Integrating deep learning with
computer vision

The increase in model complexity
has raised computational costs.

[10] B-FPN-SSD 76.48% Implementing feature fusion at
different scales on the feature layer

There is a slight deficiency in
recognition speed.

[11] Improved YOLOv3 80.42% Multi-scale shallow feature fusion The robustness in low-light
conditions is not ideal.

[12] Inception Resnet-SSD 83.50% Incorporating inhibitory loss to
optimize the model’s loss function

Optimization is required for the
model’s prediction boxes.

3. Materials and Methods
3.1. Materials Collection

The selection of workpiece defect images mainly focuses on flat workpieces and metal
material surfaces. Workpiece defect detection is the detection of various defects on the
surface of a workpiece. It has the characteristics of multiple defect types, diverse defect
shapes, and sizes [13]. The types of workpiece defects in this study are mainly divided
into three types: inclusion, scratch, and speckle, which appear at different positions on the
surface of the workpiece. The data images used in the experiment mainly come from the
collection of surface defects on workpieces in the factory. Each of the three types of defects
has its own characteristics: the number of speckled defects in the speckle category is not
constant, the pits are small, and they exhibit a certain degree of reflectivity. The length of
defects in the scratch category is inconsistent, and the direction is not certain. There are
scratches of varying lengths and positions, and the depth of the scratches is very small.
Under the background, the display is not obvious. As shown in Figure 1, the inclusion
category has a relatively dark background due to process production reasons, making it
difficult to distinguish. The width, length, and position of the inclusion defects in this
category are not necessarily the same, and the color depth is also inconsistent. Therefore,
the data images become very diverse during collection because there is a lot of noise in the
defect background of the workpiece, including incomplete image information, low clarity,
and unclear target objects. These data are not conducive to the learning and training of
deep convolutional neural networks, so our laboratory conducted preliminary screening
on these data, leaving 300 original images for each category.
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3.2. Materials Processing

The data for collecting workpiece defect images primarily come from workpieces
produced by Zhaoqing No. 2 Machine Tool Factory Co., Ltd., in Zhaoqing, China. The
analysis of this workpiece data aims to uncover issues that arise in practical situations,
provide insights into real-world workpiece classification and defects, and obtain firsthand
workpiece images. The selection of defective workpiece images mainly focuses on flat
workpieces and the surfaces of metal materials. Taking into account the potential differences
by binarization in the images and the need to have a sufficient number of images in the
dataset to ensure that the model captures important features, data augmentation was
introduced. Various transformations, including horizontal and vertical flips and color
variations, were applied to the images. This process not only helps the model better
adapt to different binarization levels but also enhances its generalization capabilities [14].
Therefore, after obtaining the original images, the number of images in the dataset was
increased through data augmentation. Data augmentation was implemented through
three primary methods: horizontal flipping, vertical flipping, and color transformation.
This process generated a total of 3600 images, with 1200 images for each category. This
dataset comprehensively encompasses various situations of the three types of defects in real
workpieces, with strong sample representativeness. It can basically meet the requirements
of diversity learning training for deep learning object detection and avoid overfitting in
model training. The preprocessing of this dataset involves first performing image size
transformation to adjust the image size to the input size of the model, simultaneously
resizing it to maintain the aspect ratio of the original image. Otherwise, the image size
needs to be directly adjusted to the input size of the model. Then, the image needs to be
normalized, which scales the pixel values of the image from [0, 255] to the range of [0, 1],
and performs mean removal and normalization. The specific operation is to subtract the
mean of the image, and then divide it by the standard deviation to add gray bars to the
image, achieving undistorted resizing.

3.3. Methods

The deep learning methods used in our study are described below.
(1) Transfer learning: The emergence of transfer learning methods is mainly due to

the inability to obtain a large number of training images on their own, as deep learning
relies on a large amount of annotated data. In theory, more training images are better, so
in the field of image classification or object detection, a lot of time and effort is needed to
annotate. At the same time, insufficient data are a common problem, due to the correlation
between most data and tasks. Therefore, this correlation can be used to train new data, and
transfer learning can use other large-scale data to train the obtained model weights. The
learned classification parameters can be applied to another set of target domain models
through transfer [15]. The transfer method used in this article is to use the weights of SSD
pre-trained networks, which are the weights of the backbone feature extraction network
used for feature extraction. The advantage of this is that the weights of the backbone are
not random, and the feature extraction effect is more obvious. The choice of a pre-trained
model as the foundation typically involves the selection of models that perform well on
large-scale datasets. To adapt to the new network structure, the pre-trained model, in
this case, is the SSD model [14], which was trained on the large-scale dataset. Once the
pre-trained model has learned general features and patterns, the output weights are then
applied to the proposed model, as shown in Figure 2.
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During the proposed model training process, the training is divided into two stages,
namely the freezing stage and the thawing stage. The freezing stage trains parameters, and
at this point, the backbone of the model is frozen, the feature extraction network does not
change, unless fine-tuning the network. During the thawing phase, the parameters are
trained. At this point, the backbone of the model is not frozen, and the feature extraction
network will change.

(2) Feature fusion method: The feature fusion method is an important concept in
deep learning networks and plays an important role in different fields of deep learning
recognition tasks. The attention mechanism is an important component of feature fusion
methods, which draws on human attention mechanisms and enables neural networks
to selectively focus on specific parts of input data, thereby improving task execution
efficiency [16]. By learning a set of weights and weighting features at different scales,
the response of important features is improved. The attention mechanism allows the
network to pay more attention to the target area, which can focus more on small target area
information, reduce noise interference, and effectively improve the detection performance
of the network [17]. The process can be represented by Equation (1).

Attention = f(g(x), x) (1)

This equation g() represents the attention generated by the input feature x in the focus
area, while f() represents the enhancement of the input feature x in the focus area based on
the attention generated by g().

The mechanism and methods used in the model are described below.
The channel attention mechanism captures specific categories of features by extracting

local and global information from the image, adaptively weighting the features of different
channels to enhance useful features. Its purpose is to improve the generalization ability and
performance of the network by adjusting the relative weights between channels [18]. As
shown in Figure 3, the channel attention mechanism is mainly composed of three parts: the
Squeeze operation, the Excitation operation, and the Scale operation. The principle of the
Squeeze operation is to perform global average pooling on C × H × W to obtain a feature
map of 1 × 1 × C size. The next step is the Excitation operation, which performs a nonlinear
transformation on the result of the Squeeze operation, using two fully connected layers
to transform the number of channels. This mechanism effectively makes the model pay
more attention to channel features with important information, thereby suppressing those
irrelevant channel features. The last operation is the Scale operation, which can be seen as
a recalibration process of the original features on the channel information. The results of
the Exception operation are used as weights, and they are weighted and multiplied by the
original features according to the channel.
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Figure 3. Squeeze-and-Excitation Attention Module.

The Convolutional Block Attention Module (CBAM) is an attention mechanism used
to process channel and spatial dimension information in image or video data. The CBAM
attention mechanism is shown in Figure 4, which combines the advantages of channel
and spatial attention. It uses convolution operations to mix cross-channel and spatial
information, and convolution operations to mix cross-channel and spatial information, and
extract information features [19]. CBAM sequentially obtains effective features through the
Channel Attention Module (CAM) and Spatial Attention Module (SAM). Due to the fact
that CBAM consists of channel attention mechanism CAM and spatial attention mechanism
SAM, effective feature extraction can be obtained from channels and positions. The CAM
module focuses on the importance of each channel, and the SAM module selects meaningful
local regions for each spatial location. By focusing more on specific representations, the
precision of the model is improved.
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(3) ZeroPad2d zero padding method: Zero-padding2d refers to the method of zero
padding the input matrix in a two-dimensional convolutional neural network to avoid pixel
information loss during convolution. Its function is to effectively increase the surrounding
boundary information of the image during two-dimensional convolution, so that the
pixels at the boundary can receive sufficient convolution processing and avoid information
loss [20].

(4) Dilated convolution: To increase the receptive field and reduce computational
complexity, down-sampling is always necessary. To avoid losing resolution and still expand
the receptive field, cavity convolution can be used. This is very useful in detection and
segmentation tasks. On the one hand, larger receptive fields can detect and segment large
targets, and on the other hand, higher resolutions can accurately locate targets [21]. Hollow
convolution can arbitrarily increase the receptive field without introducing additional
parameters. It is best to preserve the internal data structure and avoid down sampling,
which is to retain more information while increasing the receptive field instead of pooling.
The advantage is that the receptive field is increased without losing information through
pooling, so that each convolution output contains a larger range of information.

3.4. Model Structure

The improved SSD model structure adopts multiple feature fusion methods to extract
network feature information, and integrates multi-layer features to improve the detection
performance of the network. As shown in Figure 5, the main modifications were to select
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channel attention and spatial main force mechanisms in the basic VGG model, and to use
the hole convolution method in the fully connected layer connected to the feature extraction
layer in the basic VGG model. The final fully connected layer was replaced by a global
average pooling layer. In addition, the use of transfer learning can enable the model to
first learn the shallow features of images on some recognized high-quality datasets, and
then transfer them to its own dataset for secondary training. The network started using
the pre trained weights of the entire SSD model, so it was loaded at the beginning of the
algorithm training. Since this model already has good learning ability and has undergone a
lot of training, it will also achieve good results when it is transferred to its own dataset for
training. The improved SSD model has a much deeper network depth than the original
VGG model. As the network layers continue to deepen, the feature information obtained
in the images will become more complex and abstract. Therefore, theoretically, better
performance can be achieved. However, due to the continuous increase in network depth,
and after the modeling layers start to saturate, its precision may even decrease without
increasing, which will further decrease the overall modeling performance. Therefore, six
sets of channel attention and spatial main mechanism algorithm modules were added to
the feature extraction layer, and two sets of zero-padding2d methods were used. Hollow
convolution was also used to expand the network’s perception field, which can extract
complex feature information while avoiding the inability to learn just by replicating the
characteristics of the previous layer network, further improving the overall performance
of modeling.

The main network structure methodological approach is based on a series of carefully
developed steps:

(1) The pre-trained weight input of the SSD model is used for the weight part of
the backbone feature extraction network, and then the input image is used for network
feature extraction.

(2) The Conv4 convolution layer uses 3 × 3 convolution processing with a 3-layer
channel count of 512, and performs feature fusion processing on the 3 × 3 convolution of
512 in the second layer. After passing through the channel attention and spatial attention
algorithm modules, it is then convolved again, and finally outputs 512 × 38 × 38 scale
feature maps. This feature map is transferred to classification and regression processing.
After passing through the pooling layer, 512 feature maps of 19 × 19 scale are output. Then,
it switches to Conv5, the convolutional layer.

(3) Convolutional layer FC6 replaces the fully connected layer with a convolutional
layer, allowing the network to accept input of any size. FC6 uses 3 × 3 convolutional
processing with a channel count of 1024 in one layer, and then outputs 1024 × 19 × 19 scale
feature maps after processing through the channel attention and spatial attention algorithm
modules, which will then be transferred to the convolutional layer FC7.

(4) Convolutional layer FC7 replaces the original fully connected layer with a con-
volutional layer. FC7 uses 1 × 1 convolution processing with 1024 channels in one layer
and dilated convolution to expand the perception field of the network. After processing,
the feature map is transferred to classification and regression processing, and outputs
1024 × 19 × 19 scale feature maps, and then transitions to the convolutional layer Conv8.

(5) The Conv10 convolutional layer consists of two convolutional layers. Firstly, it
undergoes 1 × 1 convolution processing with a channel count of 128, and then passes
through the channel attention and spatial attention algorithm modules. After processing, it
undergoes 3 × 3 convolution processing with a channel count of 256 channels and finally
outputs 256 × 3 × 3 feature maps. This feature map is transferred to classification and
regression processing, as well as to the Conv11 convolutional layer.

(6) The Conv11 convolutional layer is composed of two convolutional layers. First,
it undergoes 1 × 1 convolution processing with a channel count of 128. Then, after
passing through the channel attention and spatial attention algorithm modules, it undergoes
3 × 3 convolution processing with a channel count of 256. Finally, 256 × 1 × 1 feature
maps are output, which are then transferred to classification and regression processing.
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3.5. Hardware and Software Configuration

The dataset is divided into a training set, a sample validation set, and a sample
testing set. According to the methods and recommendations provided in the reference
literature, adjustments have been made to enhance model performance while further
reducing information leakage and ensuring a more precision representation of the model’s
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effectiveness [22,23]. The ratio of the training set to the validation set is 9:1, and the
ratio of the training set to the validation set to the test set is 9:1. The input image pixels
are 4032 × 3024, with epochs set to 100, the optimal number of iterations is determined
through testing results, typically by monitoring the convergence of the loss value. The
iterations can be concluded when the loss value stabilizes or converges, indicating that
the model has achieved satisfactory performance [15,24–26]. The training is divided into
two stages, namely the freezing stage and the thawing stage. The first 50 epochs are
the training parameters for the freezing stage. At this time, the specific initial learning
rate should be adjusted based on the particular circumstances of the task at hand. The
learning rate plays a critical role in helping the model converge effectively. Experimenting
with different learning rates and observing how they impact the training of the model
can help determine the most suitable initial learning rate for your specific problem. It is
often necessary to perform hyper-parameter tuning to find the optimal learning rate for a
model [8,27,28]; the backbone of the model is frozen, and the feature extraction network
remains unchanged, except for fine-tuning the network, where 0.0005 is the initial learning
rate and the remaining 50 epochs are the training parameters for the thawing stage. At
this point, the backbone of the model is not frozen, and the feature extraction network will
change. All parameters of the network will change, and the learning rate will be set to
0.0001, where the model optimization algorithm is Adam. For some relatively small object
detection tasks, setting the IOU threshold to a reasonable range, such as 0.5, to increase the
sensitivity of the detection could be considered. A lower IOU threshold can make the model
more likely to detect smaller or partially visible objects, but it might also result in more
false positives. The choice of the IOU threshold depends on the specific requirements of the
task and the trade-off between sensitivity and precision that is willing to be made [29], with
0.5 as the default IOU threshold for judging positive and negative samples. In training,
the IOU threshold is set to be positive for prior boxes above 0.5 and negative for boxes
below 0.5. It is used to determine whether the predicted results are correct to filter out
those prediction boxes with low confidence. The network input sets the image size to
300 × 300; the specific configuration of the experimental platform is shown in Table 2.

Table 2. The configurations of the experiment.

Name Version

CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz 2.19 GHz
GPU GeForce RTX 2070 Super

Memory Bank 32 G
Operating System Windows 10

Software environment Cuda 10.1.1
Python Version Python 3.7

Deep learning framework TensorFlow2.8

3.6. Evaluation Metrics

Evaluating the performance of deep learning models involves key metrics such as
true positives (TP), false positives (FP), and true negatives (TN). True positives represent
instances correctly identified as positive by the model, false positives represent instances
incorrectly identified as positive, and true negatives represent instances correctly identified
as negative.

In practical industrial applications, the evaluation of the model involves considering
its detection speed, a crucial evaluation metric expressed in frames per second (FPS). This
metric serves as an indicator of the model’s performance in handling data frames.
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The recall refers to how many positive examples in the sample are correctly predicted.
It is the proportion of correctly predicted results in all positive events. The equation is as
follows. Equation (2):

recall =
TP

TP + FN
(2)

The precision evaluation index is the proportion of the real cases in the positive
cases predicted by the model, which refers to the precision. The equation is as follows.
Equation (3):

precision =
TP

TP + FP
(3)

The Mean Average Precision (mAP), or the average precision of the mean, represents
the mean value of the Average Precision (AP) across all defect categories. It serves as a
comprehensive metric for evaluating precision. In essence, mAP is calculated by summing
up the Average Precision values for all categories and subsequently dividing this sum by
the total number of categories. The equation is as follows. Equation (4):

mAP =
1
m∑m

i=1 APi (4)

4. Results and Experimental Evaluation
4.1. Experimental Result

The training results are shown in Figure 6, where “train_Loss” represents the loss
function on the training dataset, while “val_Loss” pertains to the loss function on the
validation dataset. The model’s loss function exhibits a consistent decreasing trend during
the initial 10 epochs. Around the 50-epoch mark, some fluctuations are observed, but
the loss gradually stabilizes. By the time 100 iterations are reached, the loss function
has effectively converged, displaying minimal fluctuations. This convergence signifies a
successful fit of the model with a desirable level of precision.
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To provide a more intuitive representation of the performance of the improved SSD
model in terms of precision and recall, experiments were conducted on the test set using the
improved SSD model, resulting in the generation of P-R curves for detecting different defect
categories. The PR curve graph, with “P” representing precision and “R” representing
recall, illustrates the relationship between precision and recall. Following this pattern,
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the x-axis was set as recall, and the y-axis as precision. The size of the area enclosed
by this line graph and the x- and y-axes is the 0–1 value, where a larger area indicates
higher precision for the corresponding label type, and higher precision implies better model
performance [30]. As shown in Figure 7, the experimental results show that the AP values
of the P-R curves for each category tend to approach 1, and the detection precision for each
category exceeds 99%. This indicates that the improved SSD model is highly effective in
enhancing detection performance.
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The results in Figure 8 show that when the threshold is set between 0 and 0.2, the
recall for all three categories is almost unaffected by the threshold. Moreover, when the
threshold is in the range from 0.2 to 0.8, the “Speckle” category maintains a consistent
recall rate in this range, hovering around 0.95 to 1, and is hardly affected by the threshold.
For the other two categories, there is a noticeable gradient descent trend in the model’s
recall. It is worth noting that when the threshold is set between 0.2 to 0.8, the recall for the
“Inclusion” and “Scratch” categories are particularly affected by the threshold, showing
a gradual decline. In other words, within this range, as the threshold increases, the recall
continues to decrease. For the other two categories, there is a noticeable gradient descent
trend in the model’s recall. It is worth noting that when the threshold is set between
0.2 to 0.8, the recall for the “Inclusion” and “Scratch” categories is particularly affected by
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the threshold and shows a gradual decline. In other words, within this range, the recall
continues to decrease as the threshold increases.
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Figure 9 illustrates that as the threshold increases, the improved SSD model consis-
tently improves in precision. The most significant increase in precision occurs within the
threshold range of 0 to 0.2, followed by a more gradual, steady increase. Furthermore,
the model maintains a stable precision level within the range from 0.2 to 1, consistently
maintaining values between 0.99 and 1. This suggests that within this range, the model’s
performance is relatively stable, and the threshold has a less pronounced impact on the
model’s precision. At a threshold of 0.2, the precision has already reached its peak and
is not increasing. This indicates that a threshold of 0.2 is the highest effective threshold
for the model training. In summary, within the threshold range of 0 to 0.2, the threshold
has a significant effect on precision. However, in the range from 0.2 to 1.0, the threshold’s
influence on precision becomes progressively smaller and is almost negligible. Therefore, it
is evident that a threshold of 0.2 serves as a critical threshold that marks a turning point
in the model’s behavior. When the threshold is set to 0.5, the model’s precision for target
detection is as follows: “Inclusion” is at 99.96%, “Scratch” is at 99.99%, and “Speckle”
is at 100.00%. This indicates that the model has a very low rate of false positives across
all categories. The model’s Mean Average Precision (mAP) is 99.98%, highlighting its
outstanding detection performance.
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The experimental results indicate that the improved SSD algorithm has increased
the average recognition precision, as shown in Figure 10. It has improved the detection
capabilities for various detection targets. The mAP has reached 99.98%, which indicates
that the enhanced SSD algorithm network model can achieve a real-time and accurate
detection of workpiece defects.

To validate the effectiveness of the improved SSD model, this section conducts defect
detection experiments using the model. Figure 11 shows some of the predicted results for
specific images using the proposed model. In complex scenarios, the proposed SSD model
is able to identify defects effectively.

4.2. Error in Erea and Position

For each type of randomly selected defect for image detection (five defects), as shown
in Table 3 (with the upper left corner of the image as the origin), the unit is pixel; analyzing
the data in the table, the defect center location of the maximum error is in the horizontal
coordinates of 20.5, the maximum error is in the vertical coordinates of 38.5, the defects are
in the area of the maximum error of 4.9%. For all data, the average error of the horizontal
and vertical coordinates of the defect center position is less than 2%, and the average error of
the area identification is less than 5%; in the actual detection of the scope of the permissible
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error range, the real-time detection of defects to locate the location of positioning for the
next step can be provided.
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Table 3. Error in area and position.

No. Category Actual Location Identified Location Actual Area Identified Area Location Error Area Error

1 Inclusion (2523.5, 1428.5) (2526, 1429) 11,975 119,328 (2.5, 0.5) 147
2 Inclusion (2790, 1328.5) (2788.5, 1322.5) 145,350 146,157 (1.5, 6) 807
3 Inclusion (2398.5, 208) (2394.5, 209) 35,750 36,100 (4, 1) 350
4 Inclusion (3004, 1166) (2992, 1168) 194,636 197,408 (12, 2) 2772
5 Inclusion (1932.5, 964.5) (1930.5, 951) 326,781 319,800 (2, 13.5) 6981
6 Scratch (2421, 1967.5) (2441.5, 1944.5) 460,750 470,557 (20.5, 23) 9807
7 Scratch (2624.5, 1320.5) (2612, 1305) 387,481 401,544 (12.5, 15.5) 14,063
8 Scratch (1732.5, 941) (1730.5, 936.5) 349,160 335,111 (2, 4.5) 14,049
9 Scratch (1143.5, 2316) (1152.5, 2277.5) 135,992 142,107 (9, 38.5) 6115

10 Scratch (2093.5, 1366) (2086, 1374) 98,010 102,816 (7.5, 8) 4806
11 Speckle (2754.5, 1583) (2755, 1564) 361,020 353,760 (0.5, 19) 7260
12 Speckle (2098, 1819) (2090, 1815) 63,036 64,480 (8, 4) 1444
13 Speckle (2509, 1975.5) (2490, 1963.5) 406,334 415,950 (19, 12) 9616
14 Speckle (2066.5, 1119) (2070.5, 1105) 324,450 333,064 (4, 14) 8614
15 Speckle (1787, 1914.5) (1792.5, 1911.5) 88,796 86,355 (5.5, 3) 2441

4.3. Comparison with Other Models

To validate the detection performance of the proposed model, comparative experi-
ments were conducted between the improved model and the original SSD model, YOLOV3,
YOLOV4, and Faster R-CNN on the same dataset. The compared models use the same
dataset as this study, with input image pixels set at 4032 × 3024. The initial learning rate
was configured as 0.0005, and the batch size was set to 12, using the Adam optimizer. The
number of prior boxes for the model was set to default, and iterations continued until the
model converged before stopping. The test results, as shown in Table 4, reveal that the orig-
inal SSD model achieved precision of 95.28%, while the improved network model reached
a precision of 99.98%. The performance improvement is significant, and compared with the
other four object detection algorithms, the improved SSD model has the highest mAP value,
indicating superior detection performance. At the same time, the runtime for detection
is quite satisfactory, with little difference compared to existing models, especially when
compared to the time before the enhancement. Despite the increase in model complexity,
the runtime differs by only 1 FPS. This indicates that the proposed SSD model has achieved
excellent precision and performance with the improvements applied.

Table 4. Comparison with other models in precision.

Model Inclusion AP/% Scratch AP/% Speckle AP/% mAP% Time (Fps)

SSD 94.56% 94.56% 97.68% 96.29% 13.27
YOLOV3 91.84% 92.32% 96.48% 93.55% 12.43
YOLOV4 92.54% 93.24% 91.34% 92.37% 19.56

Faster R-CNN 93.42% 90.36% 93.46% 92.41% 14.36
Proposed model 99.96% 99.99% 100.00% 99.98% 12.75

5. Conclusions

The recognition of defects on the surface of workpieces has problems such as difficulty
in manual recognition and small targets. If the recognition is solely based on the human
eye, it is prone to errors and the labor cost is particularly high, so artificial intelligence
technology is needed. To address the issue of low-defect detection precision, a defect
detection model based on attention mechanism and multi-feature fusion is proposed in
the text. This method adds channel attention and spatial main force mechanism algorithm
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modules to the feature extraction network, and adopts two sets of zero-padding2d methods.
It also uses hole convolution to expand the network’s perception field. Through the hole
convolution operation, a feature enhancement module is formed to obtain more detailed
information of small-scale fault target features, while increasing the low-level feature layer
perception field. In addition to enhancing the feature extraction ability of low-level feature
layers for small-scale faults, it can also prevent overfitting phenomena and improve the
detection performance of SSD-improved algorithms for small-scale faults, improving the
situation of missed and falsely detected small defect targets. The experimental results
indicate that, in terms of runtime, the average for the existing models is 14.9 FPS, which is
2 FPS higher than the proposed model. The proposed model does not show a significant
decrease in speed compared to the original SSD algorithm. The decrease in detection speed
is controlled within 1%. The mAP values for YOLOv3, YOLOv4, and Faster R-CNN are
93.55%, 92.37%, and 92.4%, respectively. In terms of mAP, the proposed model outperforms
the existing models by at least 6%. Simultaneously, it indicates that the proposed model
can accurately identify the defective targets on the surface of the workpiece, and the mAP
on the defective dataset is 99.98%, which is significantly improved compared with other
methods. Overall, the proposed model can better balance the requirements of real-time
detection and precision. The localization position of the image is also provided, with a
maximum error of 4.9% in the defect area. The average error of the horizontal and vertical
coordinates of the defect center position is less than 2%. The results indicate that it can
meet the requirements for position detection.

After experiments to prove that the improved target detection algorithm can be
effective, a good condition for the next step is for the localization of work. Based on
the theory, the method proposed in this paper can also be applied to other forms of defect
detection in industrial scenes, for its performance deficiencies, which can be improved by
improving these parameters which should be able to make the model more robust and
generalized to adapt to more difficult detection tasks.

The application of deep learning object detection models faces certain limitations
across different domains. This is due to the distinct characteristics and challenges present
with defect detection problems in different domains. The model parameters proposed
in this study are specifically designed for stainless steel rectangular pipes in an actual
manufactured product, thus having certain scope limitations. If the model parameters are
not appropriately adjusted or if the adjustment methods are inadequate, overfitting issues
may occur, leading to poor performance on surface defect detection datasets with different
materials. This phenomenon is quite common in the field of deep learning. Therefore,
it is necessary to conduct model experiments and optimizations on specific datasets to
ensure the accuracy of the model on the corresponding dataset. The proposed work not
only provides a robust solution for target detection, but also lays the foundation for further
refinement and innovation in the field.
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