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Abstract: Novel monitoring architecture approaches are required to detect viticulture diseases early.
Existing micro-climate decision support systems can only cope with late detection from empirical
and semi-empirical models that provide less accurate results. Such models cannot alleviate precision
viticulture planning and pesticide control actions, providing early reconnaissances that may trigger
interventions. This paper presents a new plant-level monitoring architecture called thingsAI. The
proposed system utilizes low-cost, autonomous, easy-to-install IoT sensors for vine-level monitoring,
utilizing the low-power LoRaWAN protocol for sensory measurement acquisition. Facilitated by
a distributed cloud architecture and open-source user interfaces, it provides state-of-the-art deep
learning inference services and decision support interfaces. This paper also presents a new deep
learning detection algorithm based on supervised fuzzy annotation processes, targeting downy
mildew disease detection and, therefore, planning early interventions. The authors tested their
proposed system and deep learning model on the grape variety of protected designation of origin
called debina, cultivated in Zitsa, Greece. From their experimental results, the authors show that
their proposed model can detect vine locations and timely breakpoints of mildew occurrences, which
farmers can use as input for targeted intervention efforts.

Keywords: viticulture decision making; agriculture 4.0; precision agriculture; deep learning models;
decision support systems for the agriculture industry; distributed IoT systems and services

1. Introduction

Plasmopara viticola (P. viticola), commonly known as downy mildew, is a North Ameri-
can origin fungus [1]. It invaded Europe at the end of the 18th century [1]. Downy mildew
attacks vines mostly during spring when plants are in their most stressful developing stages.
As a fungus, it has a two-stage-infection cycle of primary infections and repeated secondary
ones [2–4]. The first signs of the fungus development from oomycete occurs in spring
inflorescence growth, close to the 12th E-L vine stage [5], and its results are devastating if
not detected and treated early [3,4,6]. Two significant environmental parameters influence
P. viticola’s fungus growth. These are temperatures between 10 ◦C and 32 ◦C and increased
humidity levels [3,7–9]. The spring oospores’ maturity succeeds the fungus oospores’ over-
wintering. Then spring environmental conditions lead to sporangia germinations, which in
turn incubate zoospores that form germinations during wet periods, spread by wind or
rain splashes to nearby leaves or berries [2,6,8].

Downy mildew oospore maturation starts with mild and rainy days in spring, usu-
ally with prolonged rainfall (e.g., at least 3–6 mm), temperatures between 12 and 26 ◦C,
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and relative humidity above 90% [2]. Then, the oospores form sporangia that, with the
help of rain splashes and wind, reach the potential host tissue, typically wet young leaves
near the soil. As a primary infection cycle, sporangia releases zoospores. The germinated
zoospore infects young green tissues through open stomata and produces a mycelium that,
by colonizing the intercellular spaces, leads to the appearance of oil spots on the leaves [2,6].
Germination mechanisms work faster when the temperature is between 20 and 24 ◦C and
when there is rainfall or concentration of leaf litter [8,9].

According to [2,4,6], as a secondary infection cycle, the fungus initiates asexual repro-
duction, producing sporangiophores. Sporangia are released from the tip of the sporangio-
phores’ branches, and the released zoospores will emerge as secondary infections. In this
cycle, the zoospores reach the berries, giving them a whitish appearance. The initial oil
spot lesions usually appear as a brownish area spreading on the infected tissue at this stage.
The cycle (up to sporangiophores’ production) typically lasts 5–7 up to 18 days [3,6,8].

According to Rossi et al. [4], sporangia incubation occurs at temperatures between
9.5 ◦C and 32 ◦C, and wet conditions or relative humidity above 65% ( [10]). On American
varieties, the phenomenon occurs at temperatures ranging from 10 to 30 ◦C, with an opti-
mum at 18–20 ◦C [11]; however, on Vitis vinifera Caffi pinpointed sporulating temperatures
between 10.6 and 32.9 ◦C. Nevertheless, the authors consider Zacho’s observations for a
minimum sporulating temperature of 13 ◦C for Vitis vinifera [12]. Furthermore, according
to Caffi et al. [6], rainfall used by the majority of downy mildew models does not seem to
be a triggering factor for secondary infections because the surface wetness for zoospore
release and mobility can be generated by dew.

As modern Viticulture is continuously Industrialized and its practical appliances are au-
tomated, revolutionary viticulture technologies are incorporated into the vine fields [13,14].
Such technologies refer to sensors that monitor environmental conditions near the vine
plants or vine plant clusters [2,15–17]. These data acquisition technologies bring forth
elaborated processes, supported by machine learning or deep learning models, to improve
agricultural practices in a more precise manner (proximal sensing) [14]. Focusing on the
downy mildew fungus and the interventions that need to be accounted for the amelioration
of this disease, the paper focuses in the following subsections on existing downy mildew
(P. viticola) models applicable for viticulture use as well as Decision Support Systems that
host such models for downy mildew forecasts at vine-plant level [15,16,18–20].

1.1. Related Work on Viticulture Downy Mildew Models

Several models have been proposed over the years, either of heuristic origin (empirical)
or deterministic via experimentation (mechanistic), for P. viticola predictions [9,21]. Many
of them have been incorporated into existing DSS systems [21]. The following models are
presented in the literature as empirical models:

Muller model is an empirical model based on temperature observations setting the infec-
tion occurrence when leaves are o 2 cm in diameter (E-L 9 development stage) and
after heavy rain. According to this model, If the weather is dry (east wind), there
is no risk of downy mildew, nor if the mean daily temperatures are below 12 ◦C or
above 28 ◦C [10], the incubation period can be calculated in days. The actual daily
add-ons to the sum based on the average daily temperature are provided by [22].

Rule 3–10 is an empirical rule set by [23]. The rule states that infections initiate when the
following conditions occur: Temperature, T ≥10 ◦C, vine shoots of 10 cm long, and at
least 10mm of rainfall over the last 24–48 h.

Goidanich model. This model assumes initiation of primary infections at E-L 12 develop-
ment stage, based on Rule 3–10. After infection, the percentage of daily development
of incubation is calculated as Infection Risk Cycles (IRC), using an index value
(Goidanich Index-GI) based on the average daily relative humidity and temperature
until it reaches 100% [24]. An appropriate table of Goidanich’s model infection per-
centages is used for both primary and secondary infections [19]. Above 25◦, IRC is
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constant. Furthermore, according to Puelles et al. evaluation [25], this model on Vitis
vinifera usually delivers over-prediction infection blocks with very few matches to
field observations. Nevertheless, this differs from the research in northwestern Spain
provided by [26].

EPI model. This model, developed by Stryzik et al. [27], uses an EPI index metric that
represents the pathogen potential infection energy Ep for primary infections and the
kinetic energy Ec for secondary infections. For primary infections, it utilizes a set of
equations that consider monthly rainfall and temperature, the number of days with
rain per month, and the rainfall during the last ten days. For secondary infections,
the model takes into account inputs of temperature, relative humidity, and relative
humidity at night [9,28]. Potential infection energy Ep is calculated using Equation (1)
from October until January [27].

Ep = 2 · [k (
√

Ri −
√

0.95Rm)] + 0.2 · [
√

Ri · Ti − (
√

0.95 RmTm)]− [
1.5 RDm

18
log10

Rd
RDd

] (1)

where the value k is 1.2 in October, 1 in November, and 0.8 for the rest of the months
(until March), Ri is the daily rainfall, Rm is the mean monthly rainfall, Ti the mean
daily temperature, Tm the mean monthly temperature, Rd cumulative rainfall the last
ten days, RDm, number of monthly rainy days and RDd number of rainy days the
last ten days [27].

Equation (2) gives the kinetic energy of the model calculated from April until Septem-
ber and corresponds to primary and secondary infections since the model assumes
that oospore maturity is reached by the 31st of March [27].

Ec = 0.012 ·
1
4 (5 · RHmnight + 3 · RHi10–18h)

2 √
Ti − RH2

i10–18h

√
Tm

100
(2)

where RHmnight is the average relative humidity at night, and RHi10–18h is the average
relative daily humidity, Ti the average daily temperature, and Tm the monthly average
temperature. Finally, the EPI index value is calculated based on Equation (3) [27].

EPI =
March

∑
Oct

Ep +
Sept

∑
Apr

Ec (3)

From October until the end of March, the value of the EPI metric is an estimate of
oospore maturation, where the first infection occurs when EPI > −10, while the EPI
increases for three consecutive days [27].

Empirical models are easier to implement using sparse meteorological stations’ sen-
sory data input, they require further evaluation and calibration to the applied viticulture
environment. On the other hand, mechanistic models try to capture the infection mecha-
nism in a holistic, more deterministic manner. Nevertheless, it requires the calculation of
more elaborate metrics that cannot be easily inferred directly from environmental sensors.
The following mechanistic models are presented in the literature.

Downy Mildew foreCast is a model that tries to provide primary and secondary infection
predictions. It uses a probabilistic normal distribution for primary infections using
Equation (4) [29]

P(d) =
1

σ
√

2π
e
−(d−µ)2

2σ2 , µ = 118 − 0.3Ra , σ = 13.5 + 0.02Ra (4)
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where mean and standard deviation parameters are calculated by parameter Ra, which
is the cumulative rainfall effect at the end of January according to Equation (5) [29].

Ra =
31Jan

∑
21Sept

Rm +
std(Rm)

RDm
− 2 Ri (5)

where Rm is the mean monthly rainfall, std(Rm) is the mean standard deviation of
monthly rainfall, RDm are the total monthly rainy days and Ri is the daily rainfall.
Primary infections initiate when the daily probability P(d) outcome reaches 3%.
From this day forth, secondary infections are calculated as mentioned at [29]. It is
considered that infections occur when rainfall is at least 2 mm and T ≤ 11 ◦C, while
for seven up to 22 days after the beginning of oospore germinations [29].

UCSC model was developed by Rossi et al. [8]. The model simulates, using a granularity
time step of one hour, the entire process, starting from oospore maturation and
germinations to zoospore discharge and dispersal and finally to secondary infection
cycles [9]. The model uses sensory measurements of temperature, relative humidity,
leaf wetness, and rainfall as inputs. Briefly, the model calculates the time when the
first break of the oospore’s dormancy occurs (about the 1st of January), as well as
the primary and secondary infection progress, by calculating the Relative Incidence
of Infection (RII) metric value [2,4,8]. The metrics used by the model are shown in
Table 1 [8].

Table 1. UCSC model metrics and coefficients [8].

Metric
/Coef.

Equation Description Phys.
Values

Stage

Degree
Days DDi =

∑m
i=1(Ti−8)

100 , if Ti ≥ 8
cumulative sum of
daily mean temperatures from Jan
1st

-
primary
secondary
infections

Degree
Hours DHi =

∑n
i=1(Ti−10)

1000 , if Ti ≥ 10
cumulative sum of
hourly mean temperatures from Jan
1st

-
primary
secondary
infections

Thermal
Time

TTi = ∑n
t=1(

1
2.6256T̄i

2−116.19T̄i+1330.1)
), if Ti ≥ 0 cumulative hourly mean T̄i - -

Hydro
Thermal
Time

HTi = ∑n
i=1(TTi · Mi) cumulative hourly mean -

oospore
maturation
germination

Vapor
Pressure
Deficit

VPDi = (1 − RH
100 ) · 6.11e(17.47·T)/(239+T)

The amount of water
in the air in terms
of pressure (kPa)

min = 0
max = 12.5
norm = 0.6–0.8

-

Moisture
leaf
litter

Mi =

{
1 VPDi ≤ 4.5
0 Ri = 0 andVPDi > 4.5

cumulative hourly mean
(hourly rainfall Ri mm) -

oospore
maturation
germination

RII RII = e−α·e−β·x
Infection point of the Gompertz
equation
x = DD, DH, TT, HT

0.1 -

Coef. α α =


6.5(4.8–8.2) f or DDi

7.9(5.4–10.4) f or DHi

17.0(10.1–23.8) f or TTi

15.9(10.7–21) f or HTi

Coeficient α values - -

Coef. β β =


0.84(0.75–0.94) f or DDi

0.42(0.36–0.47) f or DHi

0.28(0.25–0.32) f or TTi

0.65(0.58–0.72) f or HTi

Coeficient β values - -
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Furthermore, Table 1 at [9], shows the model input parameters for oospore maturation
and oospore-zoospore germination stages.

UR model. This is a Goidanich-table-based model alternative that tries to address both
primary and secondary infections [25]. According to this model, oospore maturation
in winter is reached if the value of a cumulative temperatures sum reaches 140–160 ◦C.
This sum ∑ Tm is calculated using mean daily temperatures (Tm), starting from the
1st of January, and using the following Equation (6) [30,31].

∑ Tm = ∑
{

Tm − 8 Tm < 8
Tm Tm ≥ 8

(6)

If oospore maturation is reached, then oospore germination occurs, providing primary
sporangia either when mean relative humidity RH8h > 80 and mean temperature
T8h > 8 for an 8-h window or when mean precipitation occurs more than 5 mm
(RFm > 5) for the last 48 h. The first dispersion of zoospores is reached after oospore
germination, when mean rainfall RF > 3 mm and Tm > 8 for a 6 h interval (a modified
3–10 Rule). Then primary infections occur, if Degree hours Dh > 50, calculated based
on Equation (7) [30,31].

Dh =
n

∑
i=1

Ti, i f RHh ≥ 90 (7)

where Ti is the hourly temperature (hour i = 1 . . . n) and RHh is the hourly rela-
tive humidity. Secondary infections are calculated using the Goidanich table index.
To achieve sporulation for secondary infections, two conditions needed to be met:
RHh ≥ 90% or temperatures between 12 ◦C and 29 ◦C for at least 4 h at night [25].
Additionally, the model considers that exposure to more than 6 h above 30 ◦C results
in the death of oospores, both for primary and secondary infections [32].

Milvit Model. Developed by the French Plant Protection Service in the late 80s. It is a
potato downy mildew simulated model, a pathogen with similar pathogen charac-
teristics to P. viticola [33]. As mentioned by Magnien et al. [33], it uses temperature
and relative humidity, four stages of the pathogen cycle. It is also supported by a DSS
system. Nevertheless, this model is not taken into account since it is not targeting the
phenological characteristics of V. vinifera and since, as mentioned by Puelles et al. ex-
perimentation [25], it has shown both over-prediction and under-prediction infection
blocks compared to field observations.

Vitimeteo—Plasmopara is a mechanistic model based on experimental observations, cre-
ated by Bleyer et al. [34]. This model tries to predict both primary and secondary
infections. The main model components are three stages: (1) Maturation oospores
stage, (2) primary, and (3) secondary infections. Regarding (1) and (2) the UR model
is used. However, secondary infections are calculated using mean temperature Tm
degree hours Dh > 50, if 3 < Tm < 29, and if hourly relative humidity RHm > 95% [34].

The aspect of incorporating deterministic epidemiology models for precision viticul-
ture planning is significant. Therefore, Savary et al. presented the critical factors and
framework to develop dynamic epidemiology models for dual process epidemics [35]. That
is, by calculating the disease x rate: dx

dt = c · Rc p(x) f (x) · (1 − p(x)) h(x|y), as part of a
model that takes into account an introductory infection rate as weight Rc, that compensates
for the number of dispersed propagules per infectious lesion and its infectious efficiency.
In contrast, p(x) is the probability of the regression process of infected tissues, while f (x)
represents the disease rate x, considering disease multiplication, environmental parameters,
latencies, and plant growth. h(x) is the healthy issues growth parameter according to either
infection rate x or plant growth parameter y.

Based on the previous paragraph mentioned framework, Bove et al. [3] developed
a two-stage infection P. viticola simulation model taking into account environmental met-
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rics of temperature, humidity, and variety that affect primary and secondary infections.
According to Bove et al.’s elaborated model simulation scenarios, four major parameters
can be considered catalytic on the rate of secondary infections: age, temperature, moisture,
and grape variety [7]. Table 2 presents the simulation results of [7], under different temper-
ature and humidity conditions, expressed as fuzzy sets, that downy mildew infestations
depend on. Table 2 has been used as a piece of base information to implement the fuzzy
logic annotation process of their deep learning model proposition.

Regarding vine aging, Reuveni has experimented with vine leaf aging and vine aging,
showing increased resistance of both older leaves and older vine plants [36]. Variety
also plays a significant role, as mentioned by [37]. Their paper examined 16 Italian grape
varieties over four years and indicated the grape variety resistance variance towards downy
mildew. The authors highlight here the results from the studies [36,37] that both grapes’
age and variety are discriminant factors for downy mildew. These factors can be considered
uniform if a single grape variety is studied and cultivated in a specific designated area of
origin, with slight aging variations in the examined area cultivation fields.

Table 2. P. viticola dependence on environmental parameters, according to [7], based on [11,38].

Environmental
Description

Temperature
(T ◦C) Humidity (%RH) Daily Rainfall

(RFmm)
FGI (RcT ·
RcW)

warm and wet 13 < T ≤ 28 70 < RH ≤ 100 RF ≥ 5 1
warm and partly wet 13 < T ≤ 28 70 < RH ≤ 95 0 < RF < 5 0.6
warm and dry 13 < T ≤ 28 70 ≤ RH ≤ 95 RF = 0 0.4
warm and very dry 13 < T ≤ 28 RH < 70 RF = 0 0.1
cold and wet 0 < T ≤ 13 RH < 70 < RH ≤ 100 RF ≥ 5 0.8
cold and partly wet 0 < T ≤ 13 70 < RH ≤ 95 0 < RF < 5 0.48
cold and dry 0 < T ≤ 13 70 ≤ RH ≤ 95 RF = 0 0.32
cold and very dry 0 < T ≤ 13 RH < 70 RF = 0 0.08

Since Millardet in 1882 who discovered the effects of copper against downy mildew,
by observation, the Boareaux mixture was created using copper sulfate (CuSO4) and lime
(Ca(OH)2) in water with a copper sulfate analogy of 2–3% up to 4%, the most suppressing
competitive towards P. viticola. Another similar mixture is the Burgundy mixture that uses
sodium carbonite (Na2CO3) instead of lime [39]. Therefore, the most successful protective
treatment is using pesticide products based on the Bordeaux mixture solution before fungus
development. Nevertheless, its uncontrolled use can threaten human health and soil [40],
and therefore, precise treatment is required, applicable only at the early development
stages before flowering and during berry formation. When environmental conditions favor
fungus development, more active substance FRAC group 4 [41] fungicides are used [42].
In infection germination peaks, mixtures of copper protectants and phosphate-based fungi-
cides can arrest the infection [43]. We also have to mention the use of microorganisms for
the bio-control of plants as the alternative to chemical pesticides [39].

1.2. Conclusions of Downy Mildew Models Examination

Based on Section 1.1 presentation of existing models used for downy mildew, the fol-
lowing remarks are reached by the authors:

1. Unlike the experimental varieties and conditions examined, all models fail to cope
with the phenomenon’s evolution over attributes such as different environmental
conditions, variety, and vine ages. No mechanistic model can be set as a catholic-
holistic model due to the non-uniformity of the attributes described above, with the
exception of some conservative empirical generic rules (for example, Rule 3–10).

2. Mechanistic models trying to time the downy mildew disease process accurately
can easily lead to erroneous calculations of significant offsets if the coefficients or
variable parameters used do not match the examined environmental conditions that
have been experimentally calculated (miscalibration). That is why, in several cases,
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empirical models can outperform mechanistic ones and can provide much more
safe-ground predictions.

3. Most mechanistic models target on-time evolution modeling of downy mildew and
do not excerpt a decision suggestion required by Decision Support Systems. They are
leaving such decisions to the non-expert’s eye. Such as precision viticulture practices
(for example, vine leaves removal) or pesticide appliances and analogies (such as
Bordeaux mixture products appliance).

4. All models, specifically mechanistic ones (of higher sensory measurements, high
granularity dependency), utilize meteorological station measurements. Such measure-
ments are kept at best in hourly mean intervals. Furthermore, meteorological stations
located at high elevation grounds, with 5–20 km radius coverage, servicing large areas
of nonuniform terrestrial fields, cannot cope with the condition extrapolates. Due to
this type of exploited input, they can provide only best-effort forecasts of significant
field-level disease variations, thus leading to over-pesticide field uses in many cases.

5. Downy mildew mechanistic models are trying to provide time-frames and thresholds
for primary and secondary infections corresponding to large areas of different con-
ditions. Because their inputs are in sparse hourly periods and are of single points of
reference (single meteorological stations), without experimental calibrations of their
coefficients, on field vine clusters, or on the monitored field areas, such models will
consistently be outperformed by empirical ones.

Next-generation Agriculture 4.0 models should target mostly suggestions or phenom-
ena evolution time-frame breakpoints. Their calculations should not be deterministically
inferred by a single equation but by a machine learning process that has as input a time
series of annotated measurements. To achieve better than best effort plant level forecasts,
dense input real-time or close to real-time measurements of 1 min, 5 min, or at least 10 min
periodic intervals are needed. Furthermore, more sensor nodes are required, installed in the
viticulture fields of at least 0.5 Ha coverage areas per sensor node, providing measurements
of wetness or soil moisture or evapotranspiration, vapor pressure deficit, or at least temper-
ature and humidity. The next-generation models should consider a simplified approach
regarding their data inputs, outputs, and trainable coefficients so that the training process
is algorithmic and easy to program as a repetitive process that can provide a set of different
trained models inferring different forecasts under different field conditions.

More data-driven machine-learning alternatives must be exploited to provide a holistic
approach to cope with different environments. As mentioned by [44], ML algorithms,
such as binomial LASSO regression, random forest, and gradient boosting, can infer
better results and more accurate results than existing mechanistic models. Nevertheless,
up to now, these models have yet to outperform mechanistic ones due to the lack of
annotated measurements for model training purposes, thus degrading their accuracy
and precision. Therefore, a more of a fuzzy logic annotation approach is fundamental to
acquiring annotated data. Before presenting the authors’ deep learning implementation for
P. viticola incident forecasting, a short subsection follows with the existing state-of-the-art
Decision Support Systems implementing the described downy mildew detection models.

1.3. Downy Mildew Forecasting DSS Systems

Several Decision Support Systems that provide P. viticola predictions in the Mediter-
ranean area have emerged over the last decade and are presented in literature [21]. One of
the first DSS systems attempts for P. Viticola using meteorological station data inputs end
empirical models is GrapeMilDeWS [45].

Rossi et al. [46], created a DSS system called vite.net utilizing meteorological station
data inputs and from farmers’ meteorological sensors monitoring Vine Units (VUs) to
provide decision support towards downy mildew using empirical models and mechanistic
ones, specifically the UCSC model [4,8].
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Agrometeo and Vitimeteo DSS systems also utilize weather stations to provide P. viti-
cola primary infections and observe first oil spot alerts using a table-based Vitimeteo-
Plasmopara model [47].

The authors of [26], created a custom system for dense micro-climate monitoring,
collecting data from nearby meteorological stations, using average temperature, rainfall
and pathogen concentration on the previous day and applying a linear regression prediction
line, calculating the infection risk using the Goidanich algorithm [24]. Similarly, Decitrait
DSS provides cultivation practices and forecasts using Goidanich and EPI models [48].

Finally, the authors of [49] presented a set of tools used for partitioning viticulture
areas in Greece and post-processing data analysis of meteo station sensory measurements
in the vicinity of these vine areas. In addition to precision viticulture treatments and DSS
systems with inputs from sparsely located meteorological base stations, advancements in
IoT and cloud technologies can provide new advanced Decision Support Systems (DSS)
capable of better than micro-climate monitoring using dense monitoring stations for less
than 2km sensory measurements acquisition [50]. Such systems can collect environmental
data even at the plant-vine level using cheap IoT meteorological stations that aid farmers
in making tactical and operational decisions.

Towards vine-plant sensory monitoring, Perez et al. [19] presented a DSS system
(VineSens) that utilizes two types of monitoring end nodes using ARM MPUs that transmit
temperature, humidity, and moisture sensory measurements. The measurements are
transmitted over Wi-Fi to gateways, and then data is transmitted over 3G/4G(LTE) to the
central DSS logging service using the appropriate ReST HTTP API. The system utilizes the
Rule 3–10 and the Goidanich model for mildew predictions.

Furthermore, Trilles et al. [16] presented a cloud-based DSS system called SEnviro that
includes edge IoT devices with temperature, humidity, and rainfall sensors. Using edge
computing nodes, the Goidanich model cumulative index is calculated at the node level,
and appropriate alerts are sent to the farmers via SMS. Other communication channels
are also supported. SEnviro system can periodically collect measurements using GPRS
transponders over long distances [16] and utilizing Wi-Fi transponders for short distances,
as mentioned in [51]. The benefits of this platform are the use of open-source APIs, Non-
relational sensory measurements data storage capabilities, and mainly its ability to perform
end-node edge computing [16]. The authors express only a slight concern about how the
selection and control tasks of different edge computational models can be performed at
the SEnviro things edge nodes since relevant information is not provided in [16]; that is
information regarding the control and orchestration of edge computational models or over-
the-air SEnviro nodes forecasting model selections and updates via the SEnviro platform.

Mezei et al. implemented the Winet DSS, which uses NBIoT technology [52], to im-
plement autonomous nodes spread on vine fields. Their DSS implementation transmits
temperature, humidity, and soil moisture sensory measurements over UDP protocol streams
to the Winet central service. For mildew predictions, a custom model that uses the 3–10
Rule for infection initiation and a polynomial equation: f (t) = 0.076t2 − 3.454t + 42.925
fitted on the Muller model [10,18].

ZenAgro company [20] has implemented a DSS system using open-source Things-
Board Application Service and sensory data acquisition SDK [53]. Their platform is capable
of monitoring vine parameters of temperature, humidity, and leaf wetness via LoRa point-
to-point transmissions, currently updated to LoRaWAN Dragino sensors capable of data
transmissions using the LoRaWAN class A protocol [54]. Their DSS now provides only
P. viticola forecasts using Rule 3–10 and a simplified Muller model [10].

Hnatiuc et al. have implemented a vine disease detection framework supported by a
sensory measurement data collection service that implements clustering and classification
algorithms using TensorFlow [55] and utilizing IoT devices that monitor plant level sensory
parameters of temperature, leaf moisture, soil moisture, sap flow meters, solar radiation
sensors and soil oxygen sensors [17].
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Further technological achievements on plant-level monitoring for P. viticola in
grapevines systems and services include the use of ground base LiDAR scanners for leaf
area index estimations as mentioned in [56,57], as well as the use of static cameras modules
that utilize deep learning Faster-RCNN, SSD and Yolo object detection models on real-time
or close to real-time intervals using RGB image acquisition from grapevine fields [15,58].
Such RGB images can also be acquired for deep learning model training and inferences by
mobile cameras or low-altitude flying drones (flying 3–5 m above vine clusters).

In addition, multispectral and specifically hyperspectral imaging (HSI), acquired from
handheld cameras or methodologies for HSI image acquisition from drones [59], can pro-
vide more detailed color information than RGB images. The imaging spans at 400–800 nm
bands are set for plant activity monitoring by calculating normalized vegetation coefficients,
crucial in environmental remote sensing [60]. Reflectance differences between 470 nm and
700 nm frequency bands can easily distinguish and extract vine leaves contours [60]. Fur-
thermore, reflectance differences combined with using Support Vector Machines (SVMs)
can distinguish downy mildew spots on symptomatic leaves in the bands of 500–700 nm
and 800–1000 nm, as mentioned at [61].

This paper focuses on sensory-measurement-driven DSS systems capable of issuing
downy mildew forecasts and recommendations. Table 3 presents each system mentioned
in the literature and its corresponding capabilities. The authors set these capabilities as Key
Performance Indicators (KPIs) required for vine-level monitoring, forecasting, and decision
support. DSS systems presented in Table 3 have been examined based on the following
KPIs set by the authors for plant-level monitoring and support:

Meteo Station Data: Weather the DSS system also receives data inputs from meteorological
stations via specifically designed protocols or interfaces. Meteorological stations.

IoT Plant level Monitoring: Whether the DSS system acquires plant-level information
using IoT sensors.

Auto location tracking: Whether the DSS system can track its data input sources using
GPS receivers (locality).

data acquisition: The schema form that the DSS logging service stores the sensory data
measurements, that can sustain big data records of different measurements-attributes
over time as mentioned at [62].

Low-cost data transmissions: Covers the low-power data transponder specifications of
DSS systems that use nodes capable of plant-level monitoring. Such transponders are
RF-based, NBIoT, LoRa, LoRaWAN, Wi-Fi, ZigBee, or BLE/Bluetooth, which maintain
low energy footprints, in contrast to the power consumption of GSM GPRS/3G/4G-
LTE transponders [63]. This performance characteristic also considers the required
network provider costs per node, especially for technologies such as NBIoT and
GSM/GPRS/3G/4G.

ReST API: If the DSS system includes appropriate SDK API to fetch data measurements or
forecasts by clients using HTTP/UDP/CoAP/MQTT or custom protocol requests [64].

Interfaces: Type of accessible user interfaces offered by the DSS system (Web, Mobile App,
Custom Application UI)

OpenSource components: If the DSS utilizes open-source components SDKs or libraries

Installation-Maintenance efforts: Whether the DSS system and its end vine-level nodes
are easy to Install and scale, and the farmers’ minimum or no maintenance efforts are
required.
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Table 3. Viticulture DSS systems capabilities.

DSS
System

Meteo
Station
Data

IoT Plant Level
Monitoring

Auto Location
Tracking Data Acquisition Low-Cost Data

Transmissions ReST API Interfaces OpenSource
Components

Installation-
Maintenance
Efforts

Agrometeo-
Vitimeteo Yes No

Static
Meteo-Station
location-based

central DB,
relational schema - - Web-based - Low

Decitrait Yes No
Static -
Meteo-Station
location-based

- - Yes Web Based,
Mobile App - Low

vite.net Yes

Vine Unit
monitoring. Use
of farmers meteo
stations

VU meteo stations
GPS

PSQL, relational
schema

Annual Provider
costs per VU No Web-based Yes VU stations main-

tenance

VineSens No Yes No MySQL, relational
schema Wi-Fi No Web-based Yes

High, low
coverage area
transpon-
ders(100m)

SEnviro No Yes Yes-GPS equipped
nodes

Postgres-
PostGIS
Mongo
Non-
relational
schema

Yes, GPRS,
Annual Provider
costs per node

Yes Web-based,
Mobile App Yes Medium

Winet No Yes No-static node
locations

Mysql
relational
schema

Yes, NBIoT,
Annual Provider
costs per node

No Web-based,
Mobile App Yes Low

ZenAgro Yes Yes No-static node
locations

PSQL
Non-
relational
schema

LoRa P2P Yes Web-based Yes Low
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As shown in Table 3, both SEnviro and ZenAgro DSS systems are the ones that fulfill
all DSS system capabilities (KPIs), set as necessary DSS capabilities by the authors for
vine-level monitoring. Medium installation efforts are set for SEnviro because custom
User Interfaces and panels have to be made for the Open Geospatial Consortium (OGC)
SensorThings API [65], or Sensor Observation Services (SOS) [66].

This paper presents a new DSS system architecture called thingsAI. The proposed sys-
tem adopts ZenAgro’s DSS architecture regarding LoRaWAN sensory data transmissions
and vine-level nodes for sensory measurements. ThingsAI utilizes long-range autonomous
GPS-equipped devices called motes. These devices include sensors that use different
profiles to monitor temperature and humidity, leaf wetness, and soil moisture [15]. Thing-
sAI also utilizes autonomous LoRaWAN meteorological stations. These stations include
additional pressure, wind speed, direction, and rain gauge sensors.

ThingsAI measurements data storage engine utilizes the No-SQL capabilities of the
Cassandra database [67,68], and ThingsBoard Web panels and alerts logic to provide mes-
sages via Twilio SMS, e-mail, and Slack interfaces [53]. ThingsAI also includes independent
docker containers to implement, train, and infer deep-learning classifiers and detectors [69].
In such a dockerized container, the deep learning algorithm proposed by authors called
the fuzzy-stranded-NN model is installed. The following section presents the author’s
thingsAI implementation and their proposed fuzzy-stranded-NN algorithm, based on the
stranded-NN implementation of [70], for detecting downy mildew.

2. Materials and Methods

This section provides information regarding the proposed thingsAI high-level system
architecture, motes structure, and the authors’ deep learning algorithm proposition for
detecting downy mildew events.

2.1. Proposed High-Level System Architecture

This paper proposes a new high-level architecture based on open-source libraries
and tools comprising a system called thingsAI. Figure 1 illustrates the core structural
parts of our proposition. These components can be categorized as field components and
cloud components. Field components include IoT modes and devices that collect field
measurements. In contrast, cloud components include the Virtual Machines and Dockerized
services [69] that provide measurements storage, Deep Learning algorithms computational
tools and services, and farmers’ monitoring and management User Interfaces. In detail,
the thingsAI system architecture is comprised by the following components:

Vine field device components: These include: 1. the IoT mote devices equipped with
GPS receivers and a LoRaWAN transponder, acquiring field sensory measurements
(see Figure 1, (1)), such as temperature, humidity, leaf wetness and soil moisture,
and 2. the LoRaWAN meteorological stations (see Figure 1, (2)), which include a
GPS receiver, LoRaWAN transponder, pressure, temperature, humidity, wind speed,
direction sensors, and a rain gauge. In each viticulture field, the farmers place the
IoT motes to measure plant-level sensory parameters of different mote profiles, for in-
stance, temperature and humidity, according to our downy mildew experimentation.
The suggested coverage area for an IoT mote is more of a regular hexagon with
either height (h = 2acos(30◦ ≈ 1.732a) or width (w = 2a), where a = 100 m. That is,
a coverage area of A = 3s2

2·tan(30◦) ≈ 2.598a2 per IoT mode device. The authors set the
maximum coverage area for an IoT mode for vine-level monitoring up to 1 Ha. Usu-
ally, IoT motes are placed according to the following rules: (1) If there is a significant
elevation difference between two points in a field more than 1 m, (2) If there is a slope
of more than 20◦, offering different soil drainage, and (3) if there is tree coverage near
the field contributing to a significant reduction of at least 2 h of sun throughout the
day concerning the rest of the viticulture field. LoRaWAN meteorological stations
are usually installed in pinpointed locations based on the ground morphological
characteristics, covering field areas of 70–80 Ha. The field components also include
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the LoRaWAN gateway, which acts as a sensory measurements concentration and
thinsAI data forwarding point to the thingsAI LoRa Server [54].

The sensory motes transmit measurements of temperature and humidity every Tp
period intervals. These intervals can be programmable over the air by the farmers
via ThingsBoard panels (with a minimum value of every 1 min and a maximum
value of 4 h), using Class A LoRaWAN data reception windows RX1, RX2 [71].
The motes also transmit GPS location LoRaWAN frames that can be set to every
8–48 h. The same applies to the LoRaWAN meteorological stations. The LoRaWAN
meteorological station coverage area may extend more than 70–80 Ha and is used
to capture meteorological measurements that accurately correspond to the included
viticulture fields vine-clima. There is no need for vine-level measurements of wind
speed, direction, or rain since their variations can be accurately captured using at
least 1 km meteo-stations dense coverage. LoRaWAN meteorological stations are
autonomous battery-operated devices with a mean power consumption of 1.8–3 W,
transmitting measurements per-minute intervals via class A LoRaWAN protocol to
the LoraWAN gateways. For the meteorological stations, different communication
technologies can also be used, such as NBIoT UMTS(3G) or Wi-Fi, in order to transmit
measurements to the thingsAI cloud infrastructure directly through the ThingsBoard
container (see Figure 1, (7) ThingsBoard AS) bypassing the LoRaWAN application
server (see Figure 1, (4) LoRaWAN AS).

Figure 1. Proposed thingsAI high-level system architecture.

The thingsAI system field components utilize a dense grid of GPS-equipped IoT
motes (see Figure 1, (1)) and a sparse grid of GPS-equipped LoRaWAN meteoro-
logical stations (see Figure 1, (2)) to provide sensory measurements at vine level.
All motes (see Figure 1, (3)) transmit their GPS location using LoRaWAN frames
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via the gateway. The gateways use two communication technologies (NBIoT and
LoRaWAN) deliberately made to minimize telecommunication provider costs. NBIoT
transponders could have been used instead of LoRaWAN for end-device data trans-
missions (motes and meteorological stations). Nevertheless, such a technological
alternative enforces a per mote SIM card annual communication fee for the farmers.
Depending on the number of IoT motes used, the provider fees could reach up to
2–4€/device/month. Instead, the authors propose using the LoRaWAN communica-
tion as a free long-range narrow-band alternative of a single connection point with
one cellular telecommunications link at the gateway bridge. Since the LoRaWAN
coverage extends from 5–12 km, a single gateway may cover a significant portion of a
huge cultivation area [72].

LoRaWAN gateways (see Figure 1, (3) LoRaWAN gateways), are responsible for
forwarding IoT mote measurement frames to the LoRaWAN network service and,
therefore, to the application server (Figure 1, (4) LoRaWAN container) [69]. This is
achieved by maintaining Internet connectivity via a cellular NBIoT network provider
at the gateway level. The LoRaWAN gateways are autonomous devices of con-
tinuous operation, with a mean power consumption of 5–6 W, because they are
operating simultaneously two different transponders: an NBIoT(GR-800MHz/B20)
UART transponder of a 10 MHz/channel bandwidth and a LoRaWAN (EU:863–870
MHz) concentrator board of a 125 KHz/channel bandwidth. In areas where the B20
band is unavailable, the UMTS B21 band of 2100 MHz is used with higher channel
bandwidths of 20 MHz/channel. All IoT motes and meteorological stations join the
LoRa server using Over The Air Activation (OTAA). All IoT motes and meteorological
stations have ADR LoRaWAN capabilities enabled. All motes transmit sensory data
via the available LoRaWAN channels 1–8 and receive downlink windows RX1 via the
data transmitting channel and RX2 at 869.5 MHz [71].

Cloud Components: These are mainly docker containers that reside in a single or multiple
cloud Virtual Machine instances [69]. The thingsAI cloud components as shown in
Figure 1, include the: 4. LoRaWAN container of the chirpstack LoRa server [73],
the 5. Cassandra No-SQL clustered database [74], for storing sensory measurements,
the 6. AI containers running deep learning training and classification, prediction
tasks, and the 7. ThingsBoard Application Server (AS), platform container capable
of providing visualization outputs, motes control, and suggestions-alerts to the
end users.

The chirpstack LoRa server [73] (see Figure 1, (4)), is an open-source network and
application server capable of receiving encrypted AES-128 data transmissions from
the LoRaWAN gateways. Upon data validation and decryption, the data are pushed
to the Chirpstack container mosquito Message Queue Telemetry Transport (MQTT)
service [75]. Then, the appropriate data logging agent using MQTT subscribe mech-
anism acquires the sensory measurements and submits them as HTTP post-device
telemetry requests, depending on the LoRaWAN mote device ID, to the ThingsBoard
Application server [76].

The ThingsBoard AS (see Figure 1, (7) ThingsBoard AS) is responsible for controlling
all thingsAI devices (motes and meteorological stations) and device attributes at the
application level, as well as storing the per-device sensory measurements and GPS
locations at the Cassandra distributed Database cluster [74] (see Figure 1, (5)). In the
ThingsBoard AS container reside the data logging service, the geo-location module,
acquiring Google Map layers information (see Figure 1, (8)), the RPC motes control
service, and notification services described in detail in Section 2.3.

Finally, the thingsAI cluster (see Figure 1, (6)), described in Section 2.3, is a set of
docker containers where the Deep Learning models, models’ training agents and
inference services are instantiated, providing classifications and predictions.



Computers 2024, 13, 63 14 of 36

The following subsection reveals technical characteristics of the IoT motes and LoRaWAN
meteorological stations used by the thingsAI system.

2.2. ThingsAI IoT Motes and Stations

thingsAI end-devices have been implemented to provide a dense distributed grid of
monitoring sensors. The implemented sensory devices called motes design is illustrated
in Figure 2a. These devices operate autonomously and can be easily attached to striped
viticulture fields’ viticulture iron corner stands. The end motes can be automatically spotted
by the thingsAI system via their GPS receivers and are equipped with temperature and
humidity sensors. Several other sensors, such as leaf wetness and soil moisture sensors, can
be attached to these end devices, providing different profiles supported by the thingsAI
data transmissions LoRaWAN protocol.

ThingsAI system IoT mote installations are performed using the following criteria:

1. At least one sensory mote must exist in a rectangular area of 100 × 100 m (1 Hectare)
called the maximum partitioning area

2. If required due to elevation differences >0.8–2 m, the maximum partitioning area
can be clustered into two or more areas where different motes are placed (vertical
partitioning)

3. If significant variances inside the maximum partitioning area occur with respect to
direct hourly solar radiation measured daily at W/m due to shadowing caused by
nearby tree clusters or other environmental factors, such as nearby water streams.
Such calculations preferably take into account either monthly mean hourly differences
of Vapor Pressure Deficit (VPD) in kPa for months May–Aug or reference evapotran-
spiration ETo, in mm, based on PenMan-Monteith equations [77], as a cumulative
sum for months May-August. At least one monthly variance of VPD ≥ 0.4, or a
yearly evapotranspiration difference of 30 mm/y, taking into account as a full year the
months of May-Aug, denote an area partitioning into two different regular hexagon
areas, whose centers are the two variation points of either VPD or ETo.

The components included in the IoT plant-level motes (see Figure 2b,c, 1), are design-
illustrated in Figure 2a, and are the following:

1. Either a COTS 32 bit ESP32 cortex-M3 MPU 32 MHz, of 128 KB Flash, 16 KB or RAM
and 4 KB of EEPROM and LoRaWAN onboard transponder that periodically collects
and transmits sensory measurements using LoRaWAN frames [78], or Seeduino
LoRaWAN RHF76-052AM board with the ATSAMD 48 MHz CPU and an onboard
GPS receiver [79] can be used.

2. DHT22 temperature and humidity sensor. Other sensors, such as leaf-wetness and
soil moisture sensors, can also be attached.

3. LoRaWAN 14 dBm, 868 MHz transponder supporting class A LoRaWAN protocol.
4. a Ublox NEO-6M GPS on board UART receiver.
5. 3.6 V, 8000 mA Lithium replaceable battery case connected with the board using a

JST2.0 cable.
6. External casing magnet for easy attachment to iron vineyard corners (see Figure 2a,

7, and Figure 2b, motes attached to iron corners). External tie wraps can be used for
better grasping.

7. Plastic IP67 casing.
8. GPS antenna.
9. LoRAWAN antenna.
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(a) (b)

(c) (d)
Figure 2. IoT plant-level monitoring LoRaWAN motes, meteorological stations and vine field place-
ments of motes and meteorological stations. (a) IoT plant-level autonomous LoRaWAN sensory motes
with GPS receivers included. (b) IoT plant-level monitoring motes placement in viticulture fields.
(c) IoT plant-level (1) end motes, and (2) meteorological stations processing unit boards including
onboard communication LoRaWAN transponders and GPS receivers. (d) IoT plant-level LoRaWAN
meteorological station placement in viticulture fields.

thingsAI motes sensory data and GPS location transmissions are controlled by the
LoRaWAN Application server per mote accordingly, using downlink LoRaWAN control
frames. Usually, sensory measurements are transmitted every 1–4 h so as to conserve motes
energy. Motes and meteorological stations’ GPS location frames are usually sent every
24 or 48 h or more. thingsAI IoT end-nodes data transmission application protocol uses
two modes: (1) binary data mode and (2) stream data mode transmissions, controlled by
the LoRaWAN Application Server. Binary data transmission’s advantage is the 1–3% less
battery consumption by reducing the over-the-air data transmission time compared to
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stream transmissions. Nevertheless, external APIs and interfaces can manipulate stream
transmissions much more easily, favoring the system’s scalability.

The thingsAI meteorological stations are illustrated in Figure 2d. Their processing
unit and interface board are illustrated in Figure 2c, 2. It includes a Seeduino LoRaWAN
RHF76-052AM board with the ATSAMD 48 MHz CPU and an onboard GPS receiver [79].
The Seeduino has an onboard GPS receiver, which is using a UART serial port where NMEA
data are accumulated. It also has an onboard SPI connected, 14 dBM 868 MHz, LoRaWAN
transponder. The sensors attached to the meteorological stations using the Seeduino
digital interface pins are a DHT22 humidity sensor, a BMP280 pressure-temperature sensor
connected to the I2C Seeduino digital pins, and via the Seeduino analog pins, an analog
wind direction, speed sensor, and an open-type analog rain gauge.

The meteorological station’s field placements (see Figure 2d) usually follow a dense
micro-climate grid monitoring approach of 1–1.5 km of coverage radius [50]. LoRaWAN
meteorological stations also operate autonomously. Usually, data transmissions of me-
teorological stations are statically performed every 1 min, and their GPS location data
transmissions every 24–48 h. Due to the per-minute granularity of sensory data transmis-
sions and the number of sensors, meteorological stations are never in sleep mode. For this
reason, a 12 V Pb 60 Ah battery and a pull-down 12–5 V converter are used to power
those stations, including a 10–12 W/12 V PV panel directly connected to the battery using
alligator clips.

Both IoT end motes and LoRaWAN meteorological stations use the Over The Air
Activation OTAA mode and class A mode for LoRaWAN frame transmissions [54]. That
is, prior to each transmitted frame, a LoRaWAN join process initiates according to the
LoRaWAN protocol specification. The following subsection describes in detail the thingsAI
cloud distributed services and LoRaWAN data transmission protocol used both by thingsAI
motes and meteorological stations. Section 2.3 provides detailed information regarding the
thingsAI system offered services and interfaces.

2.3. ThingsAI LoRaWAN Application Protocols and Cloud Services

The following services have been implemented in the thingsAI system: (1) the data
logging service, (2) the geo-location module, (3) the distributed database architecture and
interfaces, (4) the RPC motes control service, (5) the AI containers model training agent
and inference service, and (6) the ThingsBoard data visualization and notification services.

The data logging service is on the ThingsBoard container. Its main functionality is to
subscribe to the MQTT service of the open-source chirpstack LoRaWAN Application server
for a specific application topic names and for every mote or meteorological station device
ID in that area, as registered to the ThingsBoard Application Server (AS). The data logging
service can store measurements in the Cassandra database cluster by performing Things-
Board AS HTTP POST requests using each device’s unique token ID for authentication.
ThingsBoard also has an MQTT broker installed, but it is not used for publishing requests
directly since token authentication knowledge per device is required to publish data. In-
stead, the chirpstack MQTT broker is used as a central gathering point for all messages
under a single application area topic. Henceforth, the data logging service is responsible
for the per-device message classification and database sensory records submissions us-
ing per-device JSON HTTP POST requests. The devices’ Universally Unique Identifiers
(DEV-UUIDs) and authentication tokens are maintained separately in the ThingsBoard
PostgreSQL database. The data logging service uses this UUID-authentication token tuple
information to listen for MQTT messages and forward HTTP POST measurement requests
to the ThingsBoard AS, which in turn stores these measurements in the database cluster.

The geo-location module is instantiated in the ThingsBoard AS. It includes a map
panel User Interface that can be added to a specific farmer’s monitoring dashboard and
a set of notification rule chains that may notify the farmer using external ReST APIs (via
e-mail, SMS, or Slack messages). The module keeps track of specific customer-farmer
device nodes and updates the per-farmer map panel with the locations of the owned
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mote devices. The map panel can illustrate mote and meteorological station locations in
real-time using the Google Maps API and satellite layer view. The panel can also illustrate
the latest telemetry sensory data, recorded date, and battery status using the JavaScript
marker popup balloons. Suppose a polygon-activated area is enabled (by drawing a default
polygon at the map panel). In that case, the module can issue notifications if a node moves
out of the polygon of interest (geofencing), the motes’ GPS coordinates have not been
received for more than 48 h, or the mote battery is low.

The Cassandra No-SQL clustered database is a decentralized concept of database
nodes that have the same responsibility, and data replication is performed by cloning
data from one to the next. All mote records are parts of the same database with different
cluster copies. This means that the ThingsBoard AS can directly access any mote stored
data, thus enhancing data availability and speed in contrast to the MongoDB hierarchical
clustered alternative. Data availability is, in fact, a more crucial parameter than speed for
DSS systems offering forecasts since several agents from the AI containers may try to access
data over time for model training and inference processes. However, as mentioned by [68],
Cassandra outperforms MongoDB for large time ranges, while they have a comparable
performance for shorter ones. For example, suppose statistical analysis trends are requested
to plot mean temperatures on-demand over the last 20 years or when the requested data
size is above 1 M records. In that case, some minor visualization latencies may occur,
at most 5–10 s. Nevertheless, its direct any-node connect architecture makes it an ideal
database for minimizing data loss and corruption compared to a hierarchical clustered
model such as MongoDB [67].

The Remote Procedure Call (RPC) control service is instantiated on top of the Things-
Board AS. It includes a set of control options that can be set per device entity as server
attributes. Such attributes are the time interval, which specifies the mote telemetry trans-
mission period, and the GPS time interval, which specifies the GPS latitude-longitude
coordinates acquisition and transmission intervals. Other control options that can be speci-
fied are the device-enable attribute and the device-GPS-enabled device server attributes.

End motes and meteorological stations data transmissions are performed using class-A
LoRaWAN protocol. In order to cope with different types of sensory motes having differ-
ent types of sensors installed, different device profiles have been implemented. Profile
S1 indicates a temperature-humidity mote. Profile S2 indicates a meteorological station
with installed temperature, humidity, pressure, wind speed, direction sensors, and rain
gauge (meteorological station profile). Profile S3 indicates a temperature-humidity and leaf
wetness sensor, and profile S4 corresponds to a temperature-humidity and soil moisture
sensor. Two different types of frames concerning sensory measurements or GPS location are
also being transmitted (Type 1 and Type 2 accordingly). Table 4 shows Type 1 sensory mea-
surements payload frame encoding for both binary and stream modes of motes operation.
Table 5 shows Type 2 GPS location payload frame encoding for binary and stream modes
accordingly. The end motes sensory transmission process flow is illustrated in Figure 3.

LoRaWAN mote data transmission process initiates with the sensory measurements
data collection and set up of the control parameters, including parameters such as periods of
sensory and GPS location data transmissions, GPS timeout, and transmission mode (binary
or stream). Upon successful measurements collection, the device battery status is checked
and using the appropriate alarm field, as indicated in Table 4. For sensory measurement
transmissions, the data frame encoding process initiates (see Figure 3), and LoRaWAN
class-A data transmission occurs without the data acknowledgment flag set. Then, the end
device checks whether the GPS location transmission interval is reached. If so, a time
interval of 500 s to 2 min to acquire NMEA GPS data from the GPS UART port is initiated
as set by the GPS timeout control parameter. A LoRaWAN frame is constructed upon a
successful GPS fix, and GPS data are payload-encoded using Table 5.
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Figure 3. LoRaWAN class A data transmission process of mote devices and meteorological stations.

Table 4. ThingsAI LoRaWAN frame data encoding for sensory measurements—Type 1 message.
For profile S1, the maximum frame size for stream mode is 30 bytes, while for profile S2, the maximum
frame size for stream mode is 50 bytes.

Field Description Binary Length
(bytes)

Maximum Char Length
(bytes) Example Hex Value

Protocol Header
ThingsAI protocol header. 0 × 54 for
binary encoding, 0 × 53 for string
encoding

1 2 0 × 54|S

DevEUI 64 bit Device Unique ID in hex 8 - 0 × 0095690600003796

Device Profile S1 (0 × 31-1) | S2(0 × 32-2) |
S3 (0 × 33-3) | S4(0 × 34-4) 1 1 1

Frame Type Type 1(A) (sensory data) or Type 2(B)
(GPS data) 1 2 0 × 41|A

Sequence Number Frame sequence number 2 5 1–65,535

Event
Event Code 0: Normal, 1: Battery low,
2–7 (bit|value): sensor measurement
error

1 1 indicates all sensors with
errors (1 bit/sensor)

Temperature Temperature sensor value in ◦C 4 6 (−9.00–99.00) 10.00

Humidity % relative air humidity 4 4 (0.0–99.0) 75.0

Pressure Pressure in kPa (Profile S2 only) 4 6 (90.00–110.00) 93.09

Wind speed Wind speed km/h (Profile S2 only) 4 5 (0.0–160.0) 12.3

Wind direction
Wind direction
(N|NE|E|SE|S|SW|W|NW) (Profile
S2 only)

4 2 0 × 02|NE

Rain Gauge mm Rain (Profile S2 only) 4 5 (0.0–999.9) 34.5

Leaf wetness 0–1024 analog value (Profile S3 only) 4 4 Dry (230)

Soil moisture sensor 0–1024 analog value (Profile S4 only) 4 4 Wet (980)

Battery voltage Current Battery Voltage (V) 4 3 (0.0–5.0) 3.5
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Table 5. ThingsAI LoRaWAN frame data encoding for GPS measurements—Type 2 message. Maxi-
mum GPS measurements frame size for stream mode is 44 bytes.

Field Description Binary Length (bytes) Maximum Char Length (bytes) Example Hex Value

Protocol Header
ThingsAI protocol header. 0 × 54
for binary encoding, 0 × 53 for
string encoding

1 2 0 × 54|S

DevEUI 64 bit Device Unique ID in hex 8 - 0 × 0095690600003796

Device Profile S1(0 × 31-1) | S2(0 × 32-2) |
S3(0 × 33-3) | S4(0 × 34-4) 1 1 1

Frame Type Type 1(A) (sensory data) or Type
2(B) (GPS data) 1 2 0 × 42|B

Sequence Number Frame sequence number 2 5 1–65,535

Event Event Code 0: Normal, 1: Battery
low, 2: location change 1 1 2

Longitude
Longitude value (double lng for
binary, E0–E180/W0–W180 for
stream)

8 13 (8 decimal places) E21.03456871

Latitude
Latitude value (double lat for
binary, N0–N90/S0–S90 for
stream)

8 12 (8 decimal places) N40.03556845

Time
UTC timestamp (long int for
binary, none for stream- Use
Lora-server time)

8 - timestamp

Battery voltage Current Battery Voltage (V) 4 3 (0.0–5.0) 3.5

GPS LoRaWAN frame transmissions are followed with appropriate ACK (acknowl-
edgment frame) reception from the network server during the class-A receive window
intervals L1 and L2. During this mote frame receiving state, the LoRaWAN AS down-
links the control data updates using explicit stream encoding of comma-delimited control
streams. The end devices receive these control parameters and update their EEPROM
or Flash control variables. After each data transmission, the motes sleep until the next
measurement interval, as shown in Figure 3. The same measurement process applies to
the meteorological stations with the difference that GPS measurements may be completely
disabled (GPS turn off control command). If the meteorological station devices acquire mea-
surements per minute intervals, due to the large number of sensors that need measurements
to be acquired (which requires a mean data acquisition time of 25–30 s including a 5–15 s
OTAA join process), the meteorological devices are never put to sleep mode. The following
Section 2.4 describes the proposed authors’ deep learning model for the downy mildew
events detection implemented by the authors in their thingsAI system implementation.

2.4. ThingsAI Downy Mildew Model

There are significant implications for using deep learning models regarding precision
and decision making. Nevertheless, there are limited existing annotated datasets. That
is because the need to annotate the sensory datasets properly requires efforts by experts,
thus still leaving space for deterministic and empirical models to be used. Towards this
direction, Fuzzy logic can offer an alternative utilizing fuzzy measurement sets and fuzzy
operations that, if properly supervised, can lead to automated annotation processes. More-
over, the data annotation steps can be performed by auto-encoders to provide vine-level
big-data collections as trainable datasets based on human fuzzy linguistic rules. Such
datasets can, therefore, be exploited to train deep learning models for precise classification
and prediction purposes rather than deterministic mechanistic models that are hard to
implement or generalized empirical models.

Towards this automated annotation necessity, the authors propose a new Fuzzy-
stranded-Neural Network (Fuzzy-stranded-NN) model for detecting downy mildew events.
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That is, using sets of Neural Networks of arbitrary depths so as to detect outliers or break-
points more accurately in contrast to empirical or deterministic models with erroneously
calibrated coefficients and parameters due to environmental diversities.

The authors first presented the proposed Stranded-NN model for detecting Industrial
machinery outliers [70], now used for detecting downy mildew. The Fuzzy part of this model
proposition deals with the automatic annotation tasks of measurements based on fuzzy logic
observations, similar to the ones mentioned in Table 3. The model input is a batch of m
number of time-series measurements such as m ≥ 8 and m mod(a) == 0, where a is the
number of sensory attributes used, in our case temperature and humidity measurements
(a = 2). These batches are given as input to the model with a specific order (T, H). The model
batch input series of: T0, H0, . . . , Ti, Hi, . . . , Tm, Hm measurements, represent a 1D array of
(m, 1), measurements taken from a specific thingsAI sensory mote: sl, where 1 < l ≤
k. All measurements are entered in a chronological order stream of t0, . . . , ti, . . . t m

a
timed

(A0, . . . , An) sensory attributes. This 1D array is called model measurements input batch and

corresponds to a specific time length that equals to Tp = ∑
m
a

i=1 ti − ti−1.
The fuzzy-stranded-NN algorithm includes different Neural Network sub-models,

each capable of accepting a specific batch size input (m, 1) for training and inference
processes. Our proposed model has been constructed using Python TensorFlow frame-
work [55,80] and has been implemented in an AI container of the thingsAI system as a
periodic inference service that predicts the criticality of the mildew events using three major
classes: (1) Normal class that corresponds to the class when the downy mildew infections
are in pause, mildew-1 when the downy mildew infections are linearly evolving or mildew-
2 when the downy mildew infections are exponentially evolving. Two more classes are
built in the model corresponding to extremely low and extremely high temperatures with
declining infection phenomena.

The model can maintain different batch sizes of different time intervals Tp. This can
be achieved by partitioning a specific time interval dT using different m lengths for specific
measured attributes a. The model acts as a prediction classifier presenting an output of the
five classes: Cold stress, Mildew-1, Mildew-2, Normal and Hot stress. Cold and Hot stress
classes correspond to the mildew decline phenomena classes due to very low and high
temperatures that prevail; the normal class corresponds to the non-evolving phenomena
class, while mildew-1 and mildew-2 classes correspond to the linear and exponential
infections evolving classes accordingly. To provide classification vector outputs, all batch
inputs need to be annotated (classified) to one of the above classes and rules based on either
experimental results (taken from fungus traps) or simulation results as the ones presented
in Table 2. Based on the input batch size (m, 1), the following Equation (8) determines each
strand’s number of hidden layers q, where q ≥ 2:

q =

{
2 9 ≤ m ≤ 32
int(log2(m))− 1 m > 32

(8)

If 5 > q ≥ 3, two hidden layers instantiate for these strands of nn = 64, 16 neurons
per layer accordingly. The minimum value of batch input measurements is m = 9. If the
number of hidden layers q > 2, then the total number of trainable parameters p per model
strand as well as the number of neurons nni per ith hidden layer are calculated using
Equations (9) and (10) accordingly.

p = 2q +
q−4

∑
i=0

2int(log2(m))−i (9)

nni =

{
2q i = 1, 2
2q−i i > 2

(10)

where q is the total number of hidden layers calculated by Equation (8). For example, let
us assume per-minute measurements of two attributes, temperature, and humidity (T, H),
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acquired by a sensory mote s1 in batches of m = 48 and m = 80 measurements. Each batch
includes 24 and 40 periods Tp of temperature and humidity measurements. For the input
batch values of m = 48 and m = 80, the fuzzy-stranded-NN algorithm generates two fully
connected neural network models of three q = 3 and q = 4 hidden layers accordingly.
The neurons per hidden layer are L32

1 − L32
2 − L16

3 for m=48 and L64
1 − L64

2 − L32
3 − L16

4 for
m = 80. If the measurements correspond to two attributes (T, H), and each measurement is
hourly measured, then the prediction time intervals Tp = 24 h for m = 48 and Tp = 40 h for
m = 80. In order to eliminate degraded gradients, L1 regularization is also performed in
each hidden layer, but the ability to introduce dropout layers per strand to avoid over-fitting
has been disabled to improve accuracy results [70]. Table 6 presents the fuzzy-stranded-NN
model hyperparameters that can be fine-tuned during the model training process.

Table 6. Fuzzy-stranded-NN model hyperparameters and their default tuned values.

Hyperparameter Description Tuning Value Range Default Value

λ L1 regularization parameter 0.2–0.0001 0.005
mmax Maximum number of input measurements (max batch size) 232 1024
λt Learning rate parameter 10−6 ≥ λt ≥ 0.01 10−4

λd Learning rate decrease coefficient 0.00001–0.9 0.2
ns Number of model strands 1 ≥ ns ≥ 128 6
Cmax Maximum number of output detection classes 2 ≥ C ≥ 16 5

Epochs Number of trained epochs 20–200 80
Batchsize Train Batch size >16 64

A separate training process for each model strand must be performed for the model to
provide multi-strand classification results. Therefore, an initial big annotated dataset of
temperature and humidity measurements is needed. The training dataset has been acquired
using a thingsAI meteorological station that the authors have placed in a viticulture field
in Zitsa, Epirus, Greece. The meteorological station device could acquire temperature,
pressure, humidity, wind direction, speed, and rain measurements per minute from 2018 to
2023. In order to obtain additional temperature and humidity measurements, the Open-
Meteo API has been used [81], taking hourly measurements from 2010–2018. In order to
expand these measurements to minute scale, a padding process has been implemented
using a second-order polynomial kernel in the form of ax2 + bx + c between two ith
interval hourly measurements, let T1, T2, T1 ̸= T2 and H1, H2, with H1 ̸= H2. If T1 = T2,
or H1 = H2 then a random uniform padding process has been used starting from the base
temperature T1 or humidity H1 in the (min, max) range of ±0.5 for temperatures and ±1
for humidity measurements accordingly.

Each one of these measurement T, H pairs have been annotated into the five different
classes using an automated fuzzification process of semi-automated set rules. The fuzzy
sets for temperature measurements include low temperatures (temp-cold set), of low tem-
peratures up to 10 ◦C, where mildew infections do not occur according to the literature [12],
mildew temperatures (temp-critical set) where primary and secondary infections occur
(10–23 ◦C) [7], normal-class temperatures set (temp-normal) where secondary infections
occur at a slower pace (23–32 ◦C) [7] and extremely hot temperatures where the infec-
tion cycle stops and diminishes over time (above 32 ◦C) [11]. The fuzzy sets used for
humidity measurements include the dry set of humidity values up to 40%, the wet set of
humidity values above 40% and up to 75% of incremental rate infections, and the moist
set of humidity values above 75% of exponential rate infections [7]. Bounded sigmoid
membership functions (MF) have been used for temp-cold and temp-hot sets according to
the experimentally calculated using Equation (11).

f (x) =
1

1 + ex· 4 log(3)
low−high ·9 e

low·− 4 log(3)
low−high

, 1 ≥ f (x) ≥ 0 (11)



Computers 2024, 13, 63 22 of 36

where x corresponds to the f (x) = 1 membership function (MF) center value and low
and high are the arbitrary bounded sigmoid minimum and maximum values, where the
corresponding confidence level values are zero. The same applies to dry and moist humidity
sets. For all other sets of temperature and humidity domains, triangular sigmoid functions
have been used. Each membership function (MF) output value is the fuzzy probability of
confidence of a specific temperature or humidity value corresponding to a specified fuzzy
state-set. Figure 4a,b illustrate the membership functions of temperature and humidity sets
used for the sensory data automatic annotation process.

The fuzzy inference output set uses temperature as the base measure. It has five fuzzy
states that correspond to the stranded-NN classifier outputs (1–5): Class-0 of cold abiotic
temperature state, class-1, is the mildew-1 state for primary infections and low secondary
infections, class-2, is the mildew-2 state for low primary infections and high secondary
ones, class-3 is the normal state class for minimum secondary infections, or secondary
infections at decline and the class-4 corresponds to hot abiotic stress conditions of high
temperatures. Figure 4c shows the membership functions of the fuzzification output results
corresponding to the fuzzy-stranded-NN classes (0–5). The fuzzy outputs are calculated
from the fuzzy inputs according to the fuzzy rules presented in Table 7. These fuzzy rules
are the non-automatic part of the fuzzy annotation process. The agriculturist experts can
set them accordingly on the area of interest in a fuzzy manner.
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Figure 4. (a) Temperature fuzzy sets, MF and their corresponding confidence levels. (b) Humidity
fuzzy sets, MF and their corresponding confidence levels. (c) Fuzzyfication output sets, MF, and their
corresponding confidence levels. (a) Illustrates confidence levels of temperature sets over tempera-
tures, (b) illustrates confidence levels of humidity sets over temperatures. In contrast, (c) illustrates
both detection classes’ confidence levels and confidence levels per class of the fuzzy annotation
outputs based on the fuzzy inference rules.
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Table 7. Fuzzy inference rules for the fuzzy inferred class annotation of the stranded-NN model.
keyword plus.

Humidity (Dry) Humidity (Wet) Humidity (Moist)

Temperature (cold) very (cold abiotic) plus (cold abiotic) cold abiotic

Temperature (critical) very (mildew-1) mildew-2 very (mildew-2)

Temperature (normal) very (normal) minus (normal) mildew-1

Temperature (hot) very (hot abiotic) plus (hot abiotic) minus (normal)

Table 7 lingual hedges of plus, minus, and very modify the curves of the mem-
bership function values performed at the Mamdani-based fuzzy outputs as mentioned
in [82]. The linguistic term very corresponds to the square of the output (MFv = MF2

v ).
The linguistic term plus equals MFv = 1.2 · MFv, while the minus hedge corresponds to
MFv = 0.75 · MFv. With the use of the proposed fuzzy-stranded-NN model, the thingsAI
platform can offer decision support regarding farmers’ intervention breakpoints starting
from the 1st of May and focusing mainly on secondary infection cycles intervention events
can be estimated from the model inference class outputs provided by Equation (12).

dTINT =


1
kc

pcon f · dT, class = 0

Ci pcon f · dT, class = 1, 2
1
kn

(1 − pcon f ) · dT, class = 3

0, class = 4

(12)

where dTINT is the daily interval fraction that the disease is in progress. The Ci values denote
the model inference class value (For example, class 1 (mildew-1) and 2 (mildew-2)), and pcon f
is the confidence level that the predicted inference class result belongs to that specific class,
as calculated by the model. Coefficients kc, kn determine the contribution percentage of the
disease as a weight parameter for cold abiotic and normal classes accordingly. Suppose the
model inference output denotes a class 0 (cold abiotic) or class 3 (normal); parameter values
in the range of 9 ≥ kc, kn ≥ 3 can be used. dT is the corresponding periodic time interval
that the model issues detections (inferences), as presented in Table 8, dT value. The dTINT
value is measured in daily intervals, using Equation (11). The total number of secondary
infections progress TINT is expressed as a cumulative sum in days by Equation (13).

TINT =
n

∑
i=1

dTINTi (13)

where i is the model counted inference intervals cycles starting from the 1st of May. Accord-
ing to the bibliography, the initial oil spot lesions typically appear between 7 and 18 days.
This means that an intervention breakpoint must be set when the TINT reaches this value,
usually set to TINT = 7–12 days, in between the infection period intervals set by [3,6,8].
The system issues appropriate intervention alerts if such breakpoints are reached. When
such a breakpoint elapses, the value of TINT is set to zero, i is set to 1, and the calculation is
repeated for the following breakpoint interval.

Table 8. Fuzzy-stranded-NN batch measurement sizes and inference intervals over number of T, H
measurements acquired by a single thingsAI mote.

Hourly (2) 30 min (4) 15 min (8) 10 min (12) 1 min (120)

Inference
Period (h)-dT batch_size Batch_Size Batch_Size Batch_Size Batch_Size

6 h-dT = 0.25 12 24 48 72 720
8 h-dT = 0.33 16 32 64 96 960
12 h-dT = 0.5 24 48 96 144 1440
24 h-dT = 1 48 96 192 288 2880
48 h-dT = 2 96 192 384 576 5760
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In the following sections the authors present their experimentation with their proposed
fuzzy-stranded-NN downy mildew classifier model.

3. Experimental Scenario

The author’s experimentation took place in a 0.7 Ha viticulture field of the Debina
white grape variety in Zitsa, Epirus, Greece. The experimental setup included one Lo-
RaWAN meteorological station set up in the middle of the field and three end motes
(hkt_thp1–3) whose viticulture field placements were based on the elevation and VPD mote
criteria of 2021. The end motes data transmissions have been set to hourly intervals. The me-
teorological station data transmissions have been set to every minute. Figure 5 shows the
viticulture field and the installed temperature and humidity motes (motes htk_thp1–3),
as illustrated on the ThingsBoard AS map-panel, over the satellite layer of the Google Maps
API [83]. The motes used in this experimental scenario include temperature and humidity
sensors. The installed meteorological station includes temperature, humidity, pressure,
wind speed, wind direction sensors, and an open-type rain gauge.

Figure 5. Experimental Debina variety viticulture field and end motes (thp1–3) placements as
illustrated at the ThingsBoard motes map panel. The meteorological station has been placed in the
center of the vine field.

The authors tested and validated their end-mote proposition by collecting temperature
and humidity measurements per end-mote and presenting these results using the appropri-
ate ThingsBoard AS dashboard User Interfaces. Moreover, appropriate dashboards have
also been created for the LoRaWAN meteorological station that can illustrate measurements
in real-time, hourly, weekly, monthly, and yearly. Measurements have been collected from
the viticulture field motes for 2021–2023 and for the months of March until September
for each year accordingly. At first, the fuzzification process was executed using the MF
functions and fuzzy rules described in Section 2.4. The fuzzy inference class annotation
outputs for different temperature and humidity values are illustrated in Figure 6.

The fuzzy-stranded-NN model has been trained using the collected temperature and
humidity measurements. In order to circumvent model erroneous prediction for years
2021–2023 due to over-fitting, additional hourly temperature and humidity measurements
have been acquired from years 2011–2023 from the Zitsa meteorological station using
the OpenMeteo historical API [81] (acquiring Zitsa area historical data for months March
until September each year (2011–2020)). Additionally, all OpenMeteo hourly measurement
intervals have been padded to a minute scale as described in Section 2.4. From this training
process, the author’s meteorological station collected data from the years 2021–2023, which
have been kept and used by their model evaluation scenarios. The collected data set,
upon data padding, included a total of 4.8 million temperature-humidity measurement
pairs. These value pairs have been annotated and fed as input to the fuzzy-stranded-NN
model using 80% of the dataset for training and 20% for testing. From the fuzzy stranded
model, the strands of temperature-humidity batches of size n = 16, 48, 80, 160, 480, and 960
have been trained using the fuzzy annotated dataset as input.
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Figure 6. ThingAI fuzzy-stranded-NN model auto-annotation process over collected temperature
and humidity values. Two classes of linear rate evolving mildew-1 and exponential rate mildew-2 are
used. Mildew-1 tries to cope with oospore maturation and primary sporulation, while mildew-2 with
secondary infections.

Before different batch size model strand training, the input measurements data have
been partitioned into batches of measurements. Since the fuzzy annotation process has been
performed for each measurement of T, H separately, the per batch aggregated annotated
fuzzy output class and class confidence level (that expresses the probability that a set
of measurements belongs to a class), have been calculated as a mean value of the class
and confidence vectors per batch. According to the mentioned partitioning and batch
annotation steps, different annotated batch input sets have been created for each strand to
train. The per-strand training process used the default model hyperparameters as presented
in Table 6. Section 3.1 presents the trained fuzzy-stranded-NN model evaluation results.

3.1. Training Model Evaluation

For the proposed fuzzy-stranded-NN model validation and evaluation, the technique
that we use to minimize the loss is the Adaptive Momentum Estimation algorithm or Adam
optimization, starting with an initial high learning rate parameter of 0.01 that is gradually
reduced by a factor of f = 10−2, newlr = lr · f . This adaptive callback monitors cross-
entropy loss, and if no improvement is seen for three epochs (patience = 3), the learning
rate is reduced until the value of lr = 10−4. During epoch evaluation stages using the test
dataset, both accuracy and the categorical cross-entropy loss function, which calculates
loss between the actual labels and predictions for multi-class data, is used, based on
Equation (14).

LtotCE =
n

∑
j=1

−
C

∑
i=0

ŷjactuali
· log(ŷj predi

) (14)

where i = 0. . . C, the classifier classes, j = 1 . . . n, the testing set members, and ŷactuali , ŷpredi
,

the actual and predicted classification vectors, expressed as a cumulative value called
total loss. Similarly, the accuracy metric is calculated for each epoch during testing as the
percentage of the predicted classification values (yPred) that match actual values (yTrue) over
the total number of testing set members.

The confidence metric Con f j, for each j predicted class output, expresses the dis-
tance between the maximum predicted value (pvi) upon normalization of the classifier
output vector and the actual ground truth class i (vector element position), expressed by
Equation (15).

Con f j = |max{pvi}|, i = 0 . . . C (15)

The metrics of accuracy and total loss(LtotCE ) have been used for each one of the model
strands and different epoch values of 10, 20, 30, 40, 50, 60, 70, and 80 per strand accordingly.



Computers 2024, 13, 63 26 of 36

Figure 7 illustrates the accuracy results over batch size n for different epoch values, while
Figure 8 illustrates the total loss values over batch size n for different epochs.

Figure 7. Proposed fuzzy-stranded-NN model accuracy per strand over trained epochs.

Figure 8. Proposed fuzzy-stranded-NN model loss per strand over trained epochs.

From Figure 7 accuracy results, the accuracy starts with the highest value of 95%
for n = 16, and 92–93% for stranded models of n = 160, 80 and 48 batch sizes over
10–20 epochs. However, these high accuracy scores start decreasing above 20 epochs, achiev-
ing minimum accuracy scores of 85% at 40 epochs. The model accuracy stabilizes close to
90% for 60–70 epochs and close to 90.5% at 80 epochs.

Total loss for models n = 16, 48 remains constant for all epochs, while for n = 80, 160,
the loss decreases starting from 10 to 20 epochs, and above 20 epochs, it also remains
constant. This means that for small batch input size strands (up to 160 measurements
batch), at least a number of 20 epochs is needed for the loss to minimize. Above 20 epochs,
introducing more epoch cycles can contribute to improved accuracy results of 0–5% up until
80 epochs. This improvement is mainly caused by the adaptive learning rate mechanism
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of the Adam optimizer used by the model. Above 80 epochs, accuracy remains constant,
offering no more than 0.5–1% improved accuracy results. The proposed fuzzy-stranded-NN
model manages to maintain a mean accuracy result of 90.5% for stands of batch size less
than 160 measurements. and mean accuracy of 90% for strands of batch size above 480.
The number of measurements per batch size is presented in Table 6.

Large batch size strands of n = 480 and n = 960 present significant losses for low
training epochs (less than 50 epochs) as shown in Figure 7. This is due to the excess size
of their network and the large number of parameters that need to be trained, leading
to categorical losses for a low number of epochs. However, above 70 epochs, the loss
slowly decreases, presenting a minimum mean loss value of 0.7 at 80 epochs. Nevertheless,
the pertained loss of high batch size strands is at least 100–120% more than their small batch
size counterparts. This is not the case for the accuracy. As shown in Figure 7, for n = 480
and 80 epochs the accuracy of 91% has been achieved because of the adaptive learning
rate is similar to the accuracy of small batch size strands. Table 9 presents the number of
hidden layers and trainable parameters for the different strands according to their input
measurements batch sizes.

Table 9. Fuzzy-stranded-NN model number of hidden layers and training parameters per input
batch sizes.

Batch_Size No. Hidden Layers Per Layer Trainable Parameters

16 2 L16, L64
48 4 L48, L32, L32, L16
64 4 L64, L64, L32, L16
80 5 L80, L64, L64, L32, L16
96 5 L96, L64, L64, L32, L16
160 6 L160, L128, L128, L64, L32, L16
480 7 L480, L256, L256, L128, L64, L32, L16
960 8 L960, L512, L512, L256, L128, L64, L32, L16

The same accuracy results close to 90.5% can also be achieved for n = 960 for more than
80 epochs up to 120 trainning epochs. For 80 epochs though, the n = 960 strand presents
the least accuracy of 89.5%. Concluding, the maximum accuracy difference for all stranded
networks at 80 epochs is more or less 1% from the mean model strands accuracy of 90.4%.
This means that for 80 training epochs, all strands present almost similar accuracy results
close to 90% with a window of improvement of 0.8–1.2% for training up to 120epochs. This
is not the case for total loss, where the loss of lower strands is at least two times lower
than that of bigger strands. This, of course, mainly affects the confidence values of the
classification outputs and not the output class values. The following Section 3.2 presents
the author’s model experimentation on the debina white grape variety.

3.2. Trained Model Experimentation

In order to validate their model further, the authors performed the following experi-
mentation in their viticulture field of reference for the years 2021–2023. The authors used
their meteorological station measurements and their fuzzy-stranded-NN model to provide
daily model classifications for their five-model output classes. Figure 9 shows their mete-
orological station rainfall measurements, and Figure 10 shows the vapor pressure deficit
values for the years 2021 to 2023.

For 2021, the authors performed five protective treatments starting from the 15th of
May using Bordeaux mixture every 15 days until the 15th of July. The same methodology
has been repeated for 2022, with the difference that the fifth fungicide intervention has
been replaced with leaf removal close to the fruit, leaving it exposed to sunlight. Both of
these precision viticulture cases have been characterized as normal cases that led to mean
productivity results of 680 kg/1000 m2 for 2021 and 590 kg/1000 m2 for 2022. The pro-
ductivity difference between the years 2021 and 2022 is mostly due to other infections,
specifically white mildew and specifically for botrytis cinerea, that have been treated on
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a separate intervention at the beginning of August each year, while the white mildew
disease has been treated along with downy mildew fungicide interventions starting from
the 1st of July. The experimental vineyard is a 40-year-old debina vineyard, and during
the experimentation, no irrigation or fertilization plans have been performed. The authors
also confirm that their intervention planning managed to prevent and eliminate completely
even early downy mildew appearances for years 2021 and 2022.

Figure 9. Viticulture field meteorological station 8 h rain measurements for years 2021–2023.

Figure 10. Viticulture field meteorological station 8 h mean VPD measurements for years 2021–2023.

For the year 2023, the authors performed no interventions, closely monitoring the
progress of the disease, which started to appear with a minimum number of sporangia at the
back of some leaves on the 1st of June. What followed was a catastrophic collapse. At least
one oil spot/tree appeared until 12/6, the first signs of the disease at the fruit appeared
until 20/6, and until 30/6, the whole fruit has been led to necrosis, with most of the
leaves/tree having oil spots. The productivity results of the year 2023 were 0 kg/1000 m2,
thus characterizing this experiment as a mildew outburst case. Furthermore, the year 2023
has been characterized as a year of mildew outbursts in the area of Zitsa, where most
of the nearby farmers did not manage to save their crops. A few that did were forced
to perform 7–8 interventions from May until the end of August to save 70–80% of their
production, while farmers that performed 5–7 interventions managed to save 30–50% of
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their production accordingly. Since most of the farmers in this viticulture area have in
mind periodic planning of at most five interventions/year, usually applied after more than
5 mm/h of rainfall of more than 2 h, the fact that more than five interventions were needed
for 2023 led to interventions misplanning and thus productivity losses.

Since the installed thingsAI meteorological station offers per-minute measurements,
the strand of batch size n = 960, which offers 8 h interval predictions, has been used. Two
main reasons led to the selection of this strand. First, it’s NN depth that makes it a deep
learning representative concerning its similar accuracy results towards less deep strands,
and second, its meteorological station measurements granularity. Table 10 summarizes the
mean VPD and rainfall results for the years 2021 to 2023.

Table 10. Average monthly rainfall and Vapor Pressure Deficit values for years 2021–2023.

Month_Year Mean Rainfall (mm) Mean VPD (kPa)

05_2021 0.85 0.35
05_2022 0.83 0.57
05_2023 0.49 1.9
06_2021 1.37 0.27
06_2022 1.38 0.7
06_2023 0.76 0.87
07_2021 1.99 0.07
07_2022 2.01 0.2
07_2023 1.79 0.08
08_2021 1.97 0.13
08_2022 1.52 0.39
08_2023 1.41 0.5

As shown in Table 10, it is obvious that for 05/2023, there was an increase in monthly
rainfall 5 and 3 times more compared to 2021 and 2022. For 06/2023 and 06/2022, there
was also an increase in monthly rainfall three times more than in 2021. The same pattern
applies for the 8/2022 and 8/2023 concerning 2021. Significant variations in rainfall appear
for July. However, due to the small mean values (≤0.3) and high mean VPD values (>1.5),
they are considered similar for all years in terms of downy mildew incubation time.

Regarding the mean VPD values between 2021 and 2023, the VPD differences are of
value 0.36 for May, 0.61 for June, 0.2 for July, and 0.56 for August. These differences signify
that monthly mean VPD reductions of more than 0.3 kPa over the years, especially for May
and June, can lead to faster downy mildew growth and, thus, more frequent interventions
to ameliorate it.

The authors experimented with the n = 960 strand of their model, which corresponds
to a measurement time frame of 8 h (dT = 0.33 day). The authors calibrated their model
coefficients kc =

1
4 and kn = 1

6 , derived from Equation (12), using the year 2021 as reference.
Furthermore, they set a breakpoint for an imminent intervention TINT when the metric
reaches the value of 12 infection cycle days. The following sections present the author’s
intervention results over normal and mildew outbursts, as the model predicted.

3.3. Scenario I: Model Experimentation under Normal Conditions

The authors model experimental results for 2021 and 2022, characterized as normal
conditions cases, are illustrated in Figure 11.

As shown in Figure 11, the dTINT infection cycle days are represented on the y-axis
as a cumulative sum, calculated by Equation (12). Time of 8h intervals are shown on the
x-axis, as denoted by the n = 960 model strand, starting from the 1st of May until the end of
August. When the cumulative sum of dTINT infectious days reaches the value of 12 days,
then an alert is triggered by the thingsAI system, indicating an intervention breakpoint,
and the value of dTINT is set to zero for the cycle to repeat. Four intervention breakpoints
have been triggered for 2021, while five breakpoints have been triggered for 2022. The first
three breakpoints have been triggered almost at the same time intervals for both years,
while there is a delayed offset of 10 days for the fourth breakpoint for 2021 with respect to
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2022 and a fifth single breakpoint at 27/8 for 2022. From the farmer recorded interventions,
only four interventions were required for the year 2021 instead of five performed and
exactly five interventions for the year 2022 in order to disperse downy mildew infections.

Figure 11. Viticulture field TINT values for the years 2021 and 2022.

3.4. Scenario II: Model Experimentation under Downy Mildew Outbursts

The author’s model experimental result for the year 2023, characterized as a downy
mildew outburst case compared to the normal case of 2022, is illustrated in Figure 12.

The experimental results, illustrated in Figure 12 show an increase in the number of
interventions required for 2023 concerning 2022 from 5 to 7 interventions and also pinpoint
significant intervention offsets from 2 up to 10 days. This increased frequency and offsetting
made it hard for the farmers to cope with such environmental changes compared to their
previous years’ practices, thus leading to significant productivity losses or collapses due to
downy mildew infections.

Additionally, the authors compared their model intervention outcomes for the year
2023 with the infection alerts provided by the Goidanich model, as adapted by [84]. The au-
thors use a Goidanich index value of at least 100 to trigger an alert (resetting its value
each time) and a cumulative rainfall RF > 10 mm for 72 h starting from the 1st of May for
primary infections to occur. Figure 13 illustrates the fuzzy-stranded-NN n = 960 input
batch size TI NT outputs compared to the Goidanich model alert results, using GI > 100,
for imminent interventions during the 2023 mildew outburst in the Zitsa area.

The experimental results show that both the Goidanich and fuzzy-stranded-NN mod-
els detected the same number of seven seasonal interventions, as indicated by the number
of triggered alerts issued by both models. Additionally, the fuzzy-stranded-NN model for
May-July proposes earlier interventions with a mean offset of 5.3 days (from 1/5 until 6/8)
concerning Goidanich alerts for interventions. This is indifferent for the rest of August,
where the Goidanich model proposed one intervention 12 days prior to the one proposed
by the fuzzy-stranded-NN model. These offsets are probably because the GI index starts
increasing from the 8th of May due to the 72 h cumulative rainfall value > 10 mm threshold
required for GI to start counting and the GI > 100 threshold value set. In conclusion,
this validates the proposed model’s results compared to the most used model for alerts
triggered by DSS systems. Nevertheless, further evaluation is required, set by the authors
as future work.
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Figure 12. Viticulture field TINT values for the years 2022 and 2023.

Figure 13. Viticulture field TINT values and GI values for the year 2023.

4. Conclusions

This paper presents a new cloud-based Decision Support System architecture for the
viticulture industry called thingsAI. It utilizes autonomous end-node devices called motes and
meteorological stations to provide a dense plant-level measurement acquisition grid. Mote
devices and meteorological stations use low-power, long-range LoRaWAN technology for
their data transmissions. The thingsAI system includes a distributed Cassandra sensory data-
collection entry-point and dockerized cloud-ready services hosting its deep learning models
for classification and prediction inference tasks. Furthermore, the thingsAI system is equipped
with the open-source ThingsBoard Application Server rule chains, alarms, and User Interfaces
to deliver sensory measurement trends, suggestions, and decision results to the farmers.

Focusing on the downy mildew disease in viticulture and an extensive literature study
on the methods used for the detection of downy mildew, the authors denote that existing
ones are either too simplified or complex enough. Simplified in using measurements such
as rainfall due to the lack of dense measurement grids. Complex, such as the mechanistic
models of hard algorithmic processes for DSS systems to implement, rely on many parame-
ters of extensive experimental calibration. Specifically, the mechanistic models focus mainly
on the deterministic representation of the downy mildew development with minimum
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accountability on different varieties, environmental conditions, and climate change. That is,
if applied, they do not provide useful feedback information for the farmers to use.

The authors implemented a deep learning model called fuzzy-stranded-NN to amelio-
rate the discrepancies between theory and application of the mechanistic models. The model
utilizes an automated data annotation process based on semi-automated fuzzy rules. Using
simplified lingual expressions, the farmer’s or agronomists’ experience can explicitly set
these rules arbitrarily. The proposed model also utilizes several neural networks called
strands, each of arbitrary layer depths based on the number of input measurements used,
called input batches. This way, more precise predictions can be inferred based on the
density of input measurements offering vine-level detections. Existing meteorological
station grids may offer up to 15 min of sensory measurements and forecasts. The trained
model strands can use these meteorological forecasts to provide 4–7 days of downy mildew
forecasts and emerging and future interventions.

The authors experimented with their downy mildew model implementation on the
debina white grape variety in its protected designation of origin cultivation area of Zitsa,
Epirus, Greece, under normal cases and downy mildew outbursts. From their experimental
scenario, the author’s fuzzy-stranded-NN model proposition trained on downy mildew
fuzzy annotated datasets successfully issues accurate intervention breakpoints as indicated
by the farmers, providing detection accuracies above 90% as indicated by model testing.
The authors’ fuzzy-stranded-NN detection outputs have also been validated using the
Goidanich model index under mildew outburst cases, where it successfully managed to
provide the same number of monthly interventions as the Goidanich model.

Limitations of the presented thingsAI system are the LoRaWAN coverage required
for the motes data transmissions to the cloud. This limitation can be easily surpassed with
the use of a sparse grid of LoRaWAN gateways due to the 5–12 km coverage radius per
gateway offered by the LoRa narrow-band chirp modulation. Another limitation is the
mote’s autonomous operation. Motes transmitting measurements every hour may lead
to the depletion of their included battery packs every 3–4 months. Thus, farmers’ efforts
are required to monitor, replace, and recharge the mote’s battery packs. Regarding the
fuzzy-stranded-NN algorithm as a generic algorithm for events classification, there are
limitations on both the fuzzy and strand parts of the model. Focusing on the fuzzy part,
the definition of the most accurate membership functions that represent a measurement
or metric or a phenomenon and the expression of the most representative fuzzy rules for
the auto-annotation process is critical and must be performed cautiously. Nevertheless,
simulation and trial-and-error experimentation can easily surpass errors in this fuzzy semi-
supervised process. Regarding the model NN strands, more than an adequate number
of measurements due to limited input sources may lead to poorly trained narrow model
strands of low accuracy results.

The authors set as future work the further experimentation of their proposed system
and downy mildew model under different environments and vine varieties. The authors
set future work to incorporate more models into their thingsAI system, focusing on deep
learning irrigation planning models and other disease decision models specifically for
botrytis cinerea and white mildew. The authors also set as future work the cross-comparison
of their model proposition to existing mechanistic models for further improving their model
toward the differentiation among primary and secondary downy mildew infection points,
providing different valuable insights accordingly to the farmers.
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SOS Sensor Observation Services
SPI Synchronous Peripheral Interface, serial communication protocol
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