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Abstract: Text input using hand gestures is an essential component of human–computer interaction
technology, providing users with a more natural and enriching interaction experience. Nevertheless,
the current gesture input methods have a variety of issues, including a high learning cost for users,
poor input performance, and reliance on hardware. To solve these problems and better meet the
interaction requirements, a hand recognition-based text input method called iHand is proposed in
this paper. In iHand, a two-branch hand recognition algorithm combining a landmark model and
a lightweight convolutional neural network is used. The landmark model is used as the backbone
network to extract hand landmarks, and then an optimized classification head, which can preserve
the space structure of landmarks, is designed to classify gestures. When the landmark model fails to
extract hand landmarks, a lightweight convolutional neural network is employed for classification.
Regarding the way letters are entered, to reduce the learning cost, the sequence of letters is mapped as
a two-dimensional layout, and users can type with seven simple hand gestures. Experimental results
on the public datasets show that the proposed hand recognition algorithm achieves high robustness
compared to state-of-the-art approaches. Furthermore, we tested the performance of users’ initial use
of iHand for text input. The results showed that the iHand’s average input speed was 5.6 words per
minute, with the average input error rate was only 1.79%.

Keywords: wearable device; hand recognition; text input method; human–computer interaction

1. Introduction

Augmented reality and virtual reality are preferably implemented on wearable de-
vices [1–6] for an immersive user experience. Unlike unwearable devices, wearable devices
are no longer equipped with the conventional input devices, e.g., keyboards, mice, touch
panels, etc. In order to input commands and texts in various application scenarios [7–11],
speech/voice recognition is a feasible input method. However, speech/voice recognition
suffers from many downsides. First, under noisy surroundings, speech recognition is not
reliable. Second, for private or sensitive information, e.g., passwords, it is definitely not a
good option. Third, users have to passively accept the as-recognized texts. Fourth, for those
who cannot talk, the speech/voice recognition is not accessible. For the above scenarios,
hand recognition is considered as a better choice.

The hand recognition-based input method simulates the hand movements in human
daily life. Compared to physical keyboard input or hand-held controller input, the gesture
input method is closer to human habits and actions, providing a more natural and conve-
nient experience. The character encoding module and hand recognition module are the two
core modules of the gesture input method. The function of the character encoding module
is to encode characters into gestures. The gesture recognition module is responsible for
recognizing the gestures made by users. Nowadays, a variety of input methods based on
hand gesture recognition have been proposed. However, there are still many problems and
challenges to be solved. Firstly, computer vision-based gesture recognition algorithms have
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poor robustness due to complex backgrounds [12–14]. Therefore, most of the current input
methods have to use gesture recognition algorithms based on hardware devices such as
smart gloves, which not only increases the users’ cost but also destroys the immersion of
the interaction experience. Secondly, in the case of character encoding, whether a character
is encoded as one gesture or multiple gestures, there is a high learning cost for users, who
either need to learn a large number of gestures or memorize the unfamiliar codes.

In order to solve these problems, we invent a hand gesture text input method called
iHand. To avoid the dependence on additional hardware devices such as smart gloves, a
computer vision-based gesture recognition algorithm combining a landmark model and
a lightweight convolutional neural network model is proposed. The landmark model is
used as the backbone network to extract hand landmarks under complex backgrounds, and
then an optimized classification head, which can preserve the space structure of landmarks,
is designed to classify hand gestures. When the landmark model fails to extract hand
landmarks, a lightweight convolutional neural network is used for classification. Thanks to
this hand gesture recognition algorithm, iHand only requires the built-in RGB camera of
the head-mounted display to recognize gestures and input text, without the need for any
additional devices such as controllers. In the character encoding module, to truly reduce
learning costs, we encoded characters using a two-dimensional layout mapping approach.
The main contributions of this work are given below:

Contribution 1: A robust hand gesture recognition algorithm is designed, providing
an efficient and real-time solution for vision-based static hand gesture recognition. The
use of the landmark model can greatly improve the robustness of the recognition. The
optimized GMLP classification head and the lightweight convolutional neural network can
further improve the recognition accuracy.

Contribution 2: A hand recognition-based text input method called iHand is proposed,
with which users can input characters by seven simple hand gestures. A user study is
conducted to investigate the performance of iHand, proving the proposed technique is
efficient and could be adopted for text input.

2. Related Work

In recent years, numerous text input methods have been proposed, such as physical
keyboard input, virtual keyboard input, hand gesture input, handwriting, and voice
input [15]. Although these methods can input text on wearable devices, they each have
their own drawbacks and limitations.

Using a physical keyboard is an easy and simple way to enter text [16–19]. This
approach can preserve the user’s prior input experience, so it is able to achieve a fast input
speed. However, the inability to view the keyboard and hands when wearing a head-
mounted display affects input efficiency—particularly for novices who must continually
realign their finger placements on the keyboard [16]. Research results show that for
inexperienced typists, the inability to view the keyboard and hands leads to a slower input
speed and higher error rate. The second issue is that a physical keyboard needs to be placed
on a flat surface, which means this method cannot be used in some scenarios, such as when
the user is walking.

An additional kind of input method is using a virtual keyboard [20–23]. This method
no longer requires a physical keyboard, but instead displays a virtual keyboard in front of
the user. To enter characters, users require a way to “press” the keys on the virtual keyboard,
such as using controllers [20] or hand gesture recognition [21]. In the CrowbarLimbs system
proposed by Bakar et al. (Yuan Ze University) [20], users hold controllers with both hands.
After moving controllers to the front of the keys, users press the button to input characters.
Singhal et al. (University of Texas at Dallas) [21] used a marker-based hand tracking system
to track the hands of users, in which users make midair clicks to input the characters.
Although these methods no longer require physical keyboards, other devices such as smart
gloves need to be introduced to press the keys of a virtual keyboard, and users often
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need to move their hands over a wide range of space during their interaction with virtual
keyboards, which leads to high fatigue and is not conducive to long-term text input.

There are other input methods, such as handwriting input [24], voice input [25], and
hand gesture input [26–31]. The study conducted by Venkatakrishnan et al. (Clemson
University) [24] examined some handwriting input techniques. Although handwriting
input has the advantages of a natural interaction and low learning cost, prolonged aerial
handwriting can cause high fatigue. In the hand gesture text input method proposed by
Sridhar et al. (Max Planck Institute for Informatics) [26], each character is encoded as a
hand gesture. The learning curve for this method is rather severe, since it requires users to
memorize 26 different hand motions. To reduce the quantity of gestures that users need
to study, Fallah et al. (York University) [28] encoded characters based on Huffman codes.
Base-4 Huffman encoding generates non-redundant codes for the English alphabet using
the character frequency distribution of a corpus. Although the number of hand gestures
is decreased to 4, gestures per character increase to 2.32, meaning that 2.32 gestures are
required to enter a character, which slows the speed of text entry. Moreover, users have to
memorize Huffman codes, so the total learning cost, including the gestures and codes, is
still high. In the works of Fashimpaur et al. (Facebook Reality Labs) [30] and Lee et al. (Ulsan
National Institute of Science and Technology) [31], one hand gesture is associated with
multiple characters, not only reducing the number of gestures but also avoiding complex
encodings. However, given that multiple letters are associated with a given gesture, a
dictionary or language model must be deployed to limit the set of possible words produced
by a series of gestures. In addition to the issue of learning cost, most current text input
methods based on hand gesture recognition are reliant on additional hardware devices,
such as a marker-based hand tracking system, to recognize gestures. The effectiveness of
three methods—speech input, gesture input, and physical keyboard input—was compared
by Bowman et al. (Virginia Polytechnic Institute and State University) [25]. According
to the trial results, voice input offers faster and more comfortable input than alternative
techniques. Voice input, however, is environment-sensitive and cannot be utilized in certain
circumstances, for example, when the user is in a meeting or in a library, it is not suitable
to speak. Furthermore, some private information, such as passwords, cannot be spoken
in public.

3. Methodology

In this paper, we propose iHand, a hand recognition-based text input method for
wearable devices. Figure 1 illustrates the architecture of the proposed iHand, including a
hand recognition module, a gesture confirmation module, and a text input module. The
role of the hand recognition module is to classify the gesture from the current frame image
captured by an RGB camera. As shown in Figure 1, after acquiring the user’s image using a
normal camera, in order to remove the redundant data in the image, a trained palm detector
is used to obtain the bounding box of the hand region. The image inside the bounding box
region will be retained, whereas the redundant data outside the region will be removed.
Then, the preprocessed hand image is fed into a trained hand landmark model to output
21 hand landmarks, after which we judge the completeness of the hand landmarks. If the
quantity of hand landmarks is equal to 21, the hand landmarks are directly input to an
optimized classification head containing a message-passing layer to obtain the category
label of the hand gesture. When the hand landmarks are incomplete, the original hand
image is input to a lightweight convolutional neural network to classify gestures. Through
the hand gesture recognition module, the gesture label of the current frame is output. In
order to prevent users’ misuse or system misrecognition, the gesture confirmation module
is designed to detect whether the hand gestures in five consecutive frames are the same or
not. If the hand gestures in five consecutive frames are consistent, the module considers
the hand gesture valid; otherwise, the hand gesture is invalid. According to the valid hand
gesture from the user, the text input module will output the character corresponding to the
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gesture. The algorithms of hand recognition and using iHand for text input are shown in
Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 : Algorithm of hand gesture recognition module
Input: image
Output: class label
1: bounding_box = palm_detector_model(image) // Detect the region of hand
2: cropped_image = crop_function(bounding_box, image) // Remove redundant data
3: landmarks = hand_landmark_model(cropped_image) // Get hand landmarks
4: // If the number of detected hand landmarks is equal to 21, we use GMLP head to classify the

hand gestures. Otherwise, we use a lightweight convolutional neural network for classification.
5: if the length of landmarks ! = 21 then
6: class_label = g_mlp_head(landmarks)
7: else then
8: class_label = cnn_model(image)
9: end if
10: return class_label
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Algorithm 2 : Algorithm of using iHand to input characters
Output: character
1: valid_hand_gesture = −1
2: while true then
3: image = camera.get() // Acquire hand images with the camera
4: current_frame_gesture = hand_gesture_recognition_module(image)
5: if the hand gestures of 5 consecutive frames are the same then
6: valid_hand_gesture = current_frame_gesture
7: end if
8: character = text_input_module(valid_hand_gesture, coding_table)
9: break
10: end while
11: return character

3.1. Hand Recognition Algorithm

We propose a hand gesture recognition algorithm based on the landmark model.
Unlike other lightweight convolutional neural network algorithms, our algorithm first
uses a landmark model as the backbone network to directionally extract hand joint point
features from complex backgrounds and then utilizes a classification head to classify hand
gestures based on the joint point features. For the purpose of better classifying gestures
based on hand landmarks, the MLP classification head is optimized. A message passing
layer is added before the flatten layer, which can transfer information according to the
connection relationship between joint points. When using the landmark model to detect
joints, the problem of failing to detect complete landmarks may occur. To address this issue,
a lightweight network model is employed to classify gestures when the hand landmarks
cannot be extracted completely.

In other algorithms, a convolutional neural network model is designed and trained as
the backbone network to extract features from the image, and then an MLP classification
head is used to classify gestures. Due to the presence of complex backgrounds, the features
extracted by the backbone network may come from the background rather than the hand,
and thus the robustness of model is bad. To improve the performance, a landmark model
that extracts 21 hand landmarks is applied as the backbone network. In this paper, we
use the Mediapipe Hands model designed by Google, which can be run in real time to
predict the hand landmarks from images taken by a normal RGB camera to acquire the
hand landmarks [32]. The Mediapipe Hands model consists of two sub-models: a palm
detector model and a hand landmark model. The palm detector model is able to detect and
output a hand bounding box. The hand landmark model can predict hand landmarks from
the image.

In a convolutional neural network, the model usually uses an MLP classification head
after the backbone network to classify gestures. The MLP classification head simply flattens
and sums the features extracted from the backbone network by applying a simple weight
to them. However, the hand joint points are spatially interconnected and geometrically
related. The conventional MLP classification head does not utilize the connectivity between
joints when classifying. Therefore, we add a message passing layer before the conventional
MLP classification head to build the connectivity between landmarks.

3.1.1. Palm Detector

In order to minimize the effect of redundant information such as the background,
before extracting hand joint point coordinates, we use a detector to obtain the hand region
and remove the non-hand region in the image. Acquiring hand regions from images is
a difficult task because our model needs to detect hands of different shapes and sizes.
To address the above challenges, we use a palm detector with a pyramid structure, as
shown in Figure 2. Compared to hands with variable shapes, the shape of palms is more
fixed, typically a rectangle, and therefore is easier to be detected. The hand area can be
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obtained by expanding the palm area. In addition, the network model with an hourglass
structure can extract different sizes of bounding boxes, so different scales of hand regions
can be detected.
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3.1.2. Hand Landmark Model

After obtaining an image of the hand region using the palm detector, as shown in
Figure 3, we use a landmark model to extract the coordinates of 21 hand joint points
by regression. The landmark model contains three outputs: hand presence, handedness,
and hand landmarks. In iHand, we only need the model to output the landmarks of
the hand. The input is a picture with height H, width W, and C channels, represented
by x ∈ RH×W×C. The output is a sequence of coordinates of the joints, represented by
y ∈ RN×2, where N is the number of detected hand joint points, and each joint contains x,
y coordinates.
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3.1.3. GMLP Head

After obtaining the hand joint point features using the landmark model, if the number
of detected landmarks is equal to 21, then we use an MLP classification head embedded in
a message passing layer, called GMLP, to classify gestures.

The architectures of an MLP head and a GMLP head are shown in Figure 4. Unlike
the conventional MLP classification head, the GMLP classification head embeds a message
passing layer before the linear layer, allowing each joint point to obtain information about
neighboring nodes, which facilitates the subsequent gesture classification. The hand joint
points are spatially connected. The conventional MLP head directly flattens the sequence
of hand landmarks into a one-dimensional vector and then obtains the output vector by
linear transformation, which does not utilize the connectivity between joints, as shown in
Figure 5. To better classify gestures, the GMLP first performs a message passing based on
the adjacency matrix between the hand joints to build the connectivity between landmarks
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and then flattens them to obtain the output vectors through a linear layer. Taking joint 0 as
an example: joint 0 is connected to joint 1, 5, 9, 13, and 17. Therefore, the information of
nodes 1, 5, 9, 13, and 17 is transmitted to node 0 by adding the vectors of 1, 5, 9, 13, and 17
to the vector of node 0.
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Figure 4. (a) Common MLP classification head. (b) MLP classification head embedded in the message
passing layer called GMLP. GMLP first passes the message based on the adjacency matrix between
the hand joints to preserve some of the spatial features and then flattens them to obtain the output
vectors through a linear layer.
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3.1.4. Lightweight Convolutional Neural Network

After obtaining the hand landmarks, if the number of detected articulation points
is not equal to 21, then we take the original image as input and use the lightweight
convolutional neural network model to obtain the category label. As shown in Figure 6,
there are three types of landmark detection result: normal, distorted, and incomplete. When
the landmarks are incomplete, we cannot classify gestures through the GMLP head, so
a lightweight convolutional neural network model, such as ShuffleNet or MobileNet, is
employed to recognize the gesture from the image.

ShuffleNetV2 is a lightweight convolutional neural network model proposed by
Megvii for image classification tasks [33]. ShuffleNetV2 uses computationally smaller
group convolutions to obtain feature maps and then fuses the feature maps with a shuffling
operation. Table 1 presents the overall architecture of ShuffleNetV2. In 2018, Google
designed MobileNetV2 using inverted residuals and linear bottlenecks [34], which achieves
good results in both image classification tasks and target detection tasks.
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Table 1. Architecture of ShuffleNetV2. BasicUnit means the basic ShuffleNetV2 unit. Repeat means
the number of the operator repeats.

Input Operator Output Channels Stride Repeat

2242 × 3 Conv 3 × 3 24 2 1
1122 × 24 MaxPool 3 × 3 24 2 1
562 × 24 BasicUnit 116 2 1

282 × 116 BasicUnit 116 1 3
282 × 116 BasicUnit 232 2 1
142 × 232 BasicUnit 232 1 7
142 × 232 BasicUnit 464 2 1
72 × 464 BasicUnit 464 1 3
72 × 464 GlobalPool 7 × 7 464 / /
12 × 464 Conv 1 × 1 1024 1 1

12 × 1024 Linear 7 / /

3.2. Alphabet Coding and Input Method

In a hand recognition-based text input method, in addition to the gesture recognition
module, the encoding method of letters is also important. The coding method of letters
refers to the mapping relationship between the letters and gestures. In iHand, in order to
reduce the learning cost for users, we map a one-dimensional sequence of characters into
a two-dimensional layout, and the position of a character in the two-dimensional layout
is its corresponding codes. Figure 7 shows the two-dimensional character layout and the
codes table. Take the letter “m” as an example. The position of the letter “m” in the layout
is row 3, column 1, so its corresponding code is 31. Users can use gestures to input letters
according to the alphabet codes. In our coding method, users only need to learn 7 simple
gestures, as shown in Figure 8, to type the texts.

As shown in Figure 9, take an example of typing the lowercase letter “m”. Since the
position of “m” in the layout is row 3, column 1, the user first uses gesture 3 to select row 3
and then uses gesture 1 to select column 1 so that the character “m” in row 3, column 1 can
be input. In addition to the 26 letters of the alphabet, iHand also supports the “space” and
the “delete”, which are often used in input tasks. The code for the “space” is 53 and the
“delete” is encoded as 54.
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4. Hand Recognition
4.1. Datasets and Experimental Environment

The hand gesture recognition algorithm is evaluated on the following public datasets:
NUS-II [35] and HGR1 [36]. Table 2 shows some details of NUS-II dataset and HGR1
dataset. The NUS-II dataset contains ten classes of hand gestures from 40 subjects captured
under a complex and variable background. The HGR1 dataset consists of 899 images of
27 different sign language gestures performed by 12 individuals. Figure 10 shows some
samples from NUS-II and HGR1. To assess the robustness of the proposed algorithm,
experiments are conducted on a subject-independent (SI) scheme, which divides images
into four folds according to different subjects. When experimenting, three folds are used
as the training set, and the remaining fold is used as the test set. This process is repeated
four times.
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Table 2. Details of NUS-II dataset and HGR1 dataset.

Dataset Class Number Subject Number Image Number

NUS-II [35] 10 40 2000
HGR1 [36] 27 12 899
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The network is trained by NVIDIA Geforce RTX 3060 Laptop GPU. The CPU is
i7-11800H, 2.30 GHz with eight cores, and the memory is DDR4 32 GB. The software
development environment is CUDA 11.6, Cudnn 8.3.2, and Pytorch 1.13.1.

4.2. Evaluation Criteria

In this paper, Accuracy, Precision, Recall and F1 Score are used as the evaluation
metrics of the model. For a binary classification problem that divides instances into
positive and negative classes, the prediction results will appear in the following four cases:
(1) Predicting the positive class as positive is called TP (True Positive); (2) Predicting the
positive class as negative is called FN (False Negative); (3) Predicting the negative class as
negative is called TN (True Negative); and (4) Predicting the negative class as positive is
called FP (False Positive).

Accuracy refers to the number of instances correctly predicted as a percentage of the
total and is calculated using the formula shown below:

Accuracy = (TP + TN)/(TP + FN + TN + FP) (1)

Precision refers to the proportion of instances predicted to be in the positive cate-
gory that are really samples in the positive category and is calculated using the formula
shown below:

Precision = TP/(TP + FP) (2)

Recall refers to the proportion of samples that are actually positively classified that are
predicted to be positively classified and is calculated using the formula shown below:

Recall = TP/(TP + FN) (3)

Because in practice, precision and recall are in conflict with each other, the F1 value is
used to reconcile and average the precision and recall in order to take into account both
precision and recall. The formula for calculating the F1 value is shown below:

F1 = 2 × Precision × Recall/(Precision + Recall) (4)

4.3. Comparative Experiment

The performance of the proposed recognition algorithm on the NUS-II dataset and
HGR1 dataset is summarized in Table 3. Furthermore, a comparative study of the accu-
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racy, precision, recall, and F1-score of the proposed network with the existing state-of-art
approaches is also given in Tables 4–6. Tables 4 and 5 explicitly state that the proposed ap-
proach significantly improves performance in NUS-II and HGR1 datasets, thus establishing
the effectiveness of the method proposed in this paper. Table 6 indicates that our algorithm
achieves competent results in inference time, with the fastest speed of classification on the
HGR1 dataset.

Table 3. Performance of proposed algorithm on NUS-II dataset and HGR1 dataset.

Dataset Fold Accuracy (%) Precision (%) Recall (%) F1 (%)

NUS-II

1 96.80 96.98 96.80 96.72
2 98.00 98.05 98.00 97.99
3 98.20 98.23 98.20 98.20
4 93.40 93.56 93.40 93.39

AVG 96.60 96.71 96.60 96.58

HGR1

1 69.95 75.37 71.03 69.24
2 69.68 71.89 68.56 68.01
3 79.60 79.99 78.28 78.63
4 79.92 86.15 79.92 78.59

AVG 74.79 78.35 74.45 73.62

Table 4. Performance of the state-of-the-art methods and the proposed hand recognition method on
the NUS-II dataset.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ShuffleNetV2 [33] 67.90 69.69 67.90 67.83
MobileNetV2 [34] 78.90 80.65 78.90 78.86
GhostNetV1 [37] 70.60 72.66 70.60 70.71

EfficientNetV2 [38] 67.05 69.76 67.05 66.88
ExtriDeNet [39] 61.49 62.26 61.49 60.60
GhostNetV2 [40] 64.45 66.39 64.45 64.31

Ours 96.60 96.71 96.60 96.58

Table 5. Performance of the state-of-the-art methods and the proposed hand recognition method on
the HGR1 dataset.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

ShuffleNetV2 [33] 35.73 38.86 35.75 33.07
MobileNetV2 [34] 25.76 27.09 25.84 24.10
GhostNetV1 [37] 34.52 39.94 34.69 33.89
ExtriDeNet [39] 31.15 35.79 31.15 28.86
GhostNetV2 [40] 29.87 38.97 30.13 29.16

Ours 74.79 78.35 74.45 73.62

Table 6. Inference time (ms) of the state-of-the-art methods and the proposed method on the NUS-II
dataset and HGR1 dataset.

Method NUS-II HGR1

ShuffleNetV2 [33] 4.55 12.65
MobileNetV2 [34] 10.76 29.19
GhostNetV1 [37] 7.08 18.55
GhostNetV2 [40] 10.66 25.66

Ours 10.46 10.43
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Table 4 indicates that on the NUS-II dataset containing 2000 images of 10 hand gestures,
the highest recognition accuracy of the other algorithms is 78.90%, while our algorithm
has a recognition accuracy of 96.60%. In Table 5, compared to the NUS-II, on the more
difficult classification task HGR1, which needs to classify 27 hand gestures but just includes
899 samples, the highest recognition accuracy of the other algorithms is only 35.73%, while
our algorithm has a recognition accuracy of 74.79%. The resolutions of the images in
NUS-II and HGR1 are 120 × 160 and 224 × 224, respectively. Because our algorithm will
standardize the image resolution to 256 × 256, the average inference time is relatively close
to each other on the two datasets. The other algorithms do not unify the resolution, so they
have a faster inference speed on the NUS-II dataset with a smaller resolution and have a
slower inference speed on the HGR1 dataset with a bigger resolution.

4.4. Ablation Study

In order to verify the effectiveness of the hand recognition network, ablation studies
are conducted in two benchmark datasets: the NUS-II dataset and HGR1 dataset. The
results are listed in Tables 7 and 8, respectively. It is apparent that the performance of the
network using two branches is better than that of only a landmark model with a classifier
head. If there is only a landmark model with a classifier head, when the landmark model
fails to extract landmarks, the gesture cannot be classified. The proposed method using
two branches, which means that when the landmark model fails to extract landmarks, then
the CNN model will step in to recognize hand gestures. The experimental results also
indicate that the GMLP head reserving the spatial features of landmarks is better than the
MLP head. Compared with the MLP head, the GMLP head utilizes not only the positional
information of the points but also the connection information between the points, which
helps to improve the accuracy of the recognition.

Table 7. Comparison of proposed algorithm with different settings on NUS-II dataset.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Landmark model + MLP 93.80 94.27 93.80 93.71
Landmark model + MLP or CNN 95.70 95.93 95.70 95.66

Landmark model + GMLP or CNN 96.60 96.71 96.60 96.58

Table 8. Comparison of proposed algorithm with different settings on HGR1 dataset.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

Landmark model + MLP 72.64 74.60 72.59 71.48
Landmark model + MLP or CNN 73.71 75.67 73.66 72.31

Landmark model + GMLP or CNN 74.79 78.35 74.45 73.62

5. Hand Gesture Text Input

The text input experiments are designed to measure the input performance of iHand.
Two male and two female participants (average age: 24) from the university are invited
to input sentences using iHand. Evaluation metrics such as input speed and input error
rate are automatically calculated as the user enters sentences. We also compare the input
performance of the iHand and the H4VR [28].

5.1. Experimental Procedure

The user experiment is divided into three phases: the teaching phase, the practice
phase, and the testing phase. In the teaching phase, we demonstrate how to use iHand
to input characters. In the practice phase, users will independently input five sentences
with hand gestures. After the practice phase, the user is required to enter 20 consecutive
sentences using iHand. Every five sentences are a block, and there are four blocks in
total. The user’s input speed on each block will be automatically measured by the system.
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The number of incorrect characters typed is also counted to calculate the input error rate.
The sentences entered in both the practice and test phases are randomly selected from
MacKenzie and Soukoreff’s Phrase Sets for evaluating the text input method [41]. The hand
fatigue level is given after users input all sentences.

5.2. Evaluation Criteria

The evaluation indexes of the text input method are divided into objective evaluation
indexes and subjective evaluation indexes. Objective evaluation indexes include input
speed and input error rate. Input speed refers to the number of words that the system can
input per minute, and its calculation formula is shown below:

WPM = SSL/Time × 12 (5)

where SSL refers to the submitted string length, and Time refers to the time taken to enter
the string.

The input error rate refers to the probability that an error occurs when entering a
character and is calculated using the formula shown below:

CER = ErrorCharCount/TotalCharCount (6)

where ErrorCharCount refers to the number of incorrectly entered characters, and To-
talCharCount refers to the total number of characters entered.

The subjective evaluation indicator is the degree of hand fatigue, which is categorized
into five levels. Level 1 indicates no fatigue and level 5 indicates being very fatigued.

5.3. Text Input Performance

The experimental results are shown in Figure 11. iHand, proposed in this paper, has
an average text input speed of 5.6 words per minute, while in H4VR [28], the average text
input speed is 4.1 words per minute. The faster input speed of the iHand compared to
the H4VR is expected for two reasons: (1) compared with the Huffman encoding method
of H4VR, the iHand encoding method allows users to find the corresponding position of
characters more quickly, which has a relatively lower learning cost and is easier to use
for users in the early stage; and (2) the encoding length of each character in the iHand
encoding method is 2 gestures, while the average encoding length of each character in the
H4VR encoding method is 2.32 gestures.
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Table 9 presents the input speed, input error rate, and the degree of hand fatigue of
H4VR and iHand. The experimental results show that iHand has a faster input speed, lower
input error rate, and lower degree of hand fatigue than H4VR, which is in line with our
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expectations. Firstly, with the iHand encoding method, users can quickly locate characters
for encoding based on their familiarity with the alphabetical order. Secondly, iHand uses
only seven hand gestures, and all of these gestures are simpler than that of H4VR, so the
learning cost for users is very low. Thirdly, the average encoding length of each character
in iHand is shorter than that of H4VR.

Table 9. Input speed, input error rate, and the degree of hand fatigue of H4VR [28] and iHand
proposed in this paper.

Method Input Speed Input Error Rate Degree of Hand
Fatigue

H4VR [28] 4.1 words per minute 1.82% 2.29
Ours 5.6 words per minute 1.79% 2.14

6. Conclusions

In conclusion, we have demonstrated a hand recognition-based text input method
called iHand. For the hand recognition algorithm, a landmark model is used as the
backbone network to extract hand joint features, and then an optimized classification head
is designed to classify hand gestures. When the landmark model fails to extract hand
landmarks, a lightweight convolutional neural network model will step in for classification.
In iHand, the one-dimensional letter sequence is mapped to a two-dimensional layout,
and users can input letters with seven simple hand gestures. The proposed algorithm
has been verified on two public datasets: NUS-II and HGR1. In the subject-independent
experiments, the hand recognition accuracy of our method reaches 96.90% and 74.79% on
NUS-II and HGR1 datasets, respectively, which is significantly higher than that of other
similar methods. Overall, the proposed hand gesture recognition algorithm provides a
robust, real-time solution for vision-based static hand recognition. Furthermore, in the
actual typing tests of iHand, the input speed is 5.6 words per minute, with an input error
rate of 1.79% and a hand fatigue of 2.14, which are all better than H4VR hand gesture
text input method. In the future, firstly, we will try to use two-handed gesture input or a
more efficient character encoding scheme to improve the performance of iHand. Secondly,
we will apply the proposed algorithm in other classification tasks, such as sign language
recognition. Thirdly, the landmark model will also be optimized to provide more accurate
hand landmarks, which helps to improve the recognition accuracy of the algorithm.

7. Software Copyright

In light of the potential application of this work, one software copyright under the
name of iHand (certificate number: 11113046) was registered by the National Copyright
Administration of China on 9 May 2023.
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