
computers

Article

Intelligent Intrusion Detection of Grey Hole and
Rushing Attacks in Self-Driving Vehicular Networks

Khattab M. Ali Alheeti 1,2,*, Anna Gruebler 1 and Klaus McDonald-Maier 1

1 Embedded and Intelligent Systems Research Laboratory, School of Computer Science and
Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
contact@annagruebler.com (A.G.); kdm@essex.ac.uk (K.M.-M.)

2 College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq
* Correspondence: kmali@essex.ac.uk; Tel.: +44-1206-872770

Academic Editor: Thomas Strang
Received: 27 May 2016; Accepted: 14 July 2016; Published: 22 July 2016

Abstract: Vehicular ad hoc networks (VANETs) play a vital role in the success of self-driving
and semi self-driving vehicles, where they improve safety and comfort. Such vehicles depend
heavily on external communication with the surrounding environment via data control and
Cooperative Awareness Messages (CAMs) exchanges. VANETs are potentially exposed to a number
of attacks, such as grey hole, black hole, wormhole and rushing attacks. This work presents an
intelligent Intrusion Detection System (IDS) that relies on anomaly detection to protect the external
communication system from grey hole and rushing attacks. These attacks aim to disrupt the
transmission between vehicles and roadside units. The IDS uses features obtained from a trace
file generated in a network simulator and consists of a feed-forward neural network and a support
vector machine. Additionally, the paper studies the use of a novel systematic response, employed to
protect the vehicle when it encounters malicious behaviour. Our simulations of the proposed detection
system show that the proposed schemes possess outstanding detection rates with a reduction in
false alarms. This safe mode response system has been evaluated using four performance metrics,
namely, received packets, packet delivery ratio, dropped packets and the average end to end delay,
under both normal and abnormal conditions.

Keywords: security; vehicular ad hoc networks; intrusion detection system; self-driving car; semi
self-driving car

1. Introduction

Vehicular ad hoc networks (VANETs) play a vital role in the growth and the use of self-driving and
semi self-driving vehicles [1]. Internal and external communication systems are considered important
components in autonomous and semi-autonomous cars. VANETs represent the communication
between vehicles (V2R) and their Road Side Units (RSUs) or intra vehicular communication (V2V) in
radio coverage areas, as shown in Figure 1.

External communication between self-driving vehicles and roadside equipment in Intelligent
Transportation System (ITS) depend primarily on IEEE 802.11p wireless transmission [2].
In autonomous and semi-autonomous vehicles, the communication utilises Cooperative Awareness
Messages (CAMs) or Basic Safety Message (BSM), which are transferred between RSUs and vehicles or
just between vehicles in that zone [3]. The major objective of ITS communication is to enable traffic
and passengers’ safety. VANETs [4] are mobile nodes that facilitate communication in a particular zone
as well as with RSUs in the absence of a fixed security infrastructure, which is used in conventional
networks like wired networks [5]. Many researches consider VANETs a subclass or subtype of
Mobile Ad hoc Networks (MANETs) [3]. They directly affect the ITS through the provision of comfort
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services and safety applications to drivers and passengers. The major goal of VANETs is to guarantee
safety of road users and also the vehicles themselves. As indicated above, through the exchange of
warning message and control data, these networks can achieve their goals and provide emergency and
comfort notifications to passengers and drivers, such as messages concerning emergency braking or
accidents [6].
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Figure 1. A basic structure of Vehicular ad hoc networks.

In ad hoc networks, three types of routing approaches are utilised: (1) the proactive approach;
(2) the reactive approach; and (3) the hybrid approach [7]. One of the reactive protocols that is
generally applied in external communication for autonomous vehicles is the routing protocol utilising
the demand vector. High rate of throughput, low rate of delay and sequence numbering are key
factors for the selection of the Ad hoc On-Demand Distance Vector (AODV) routing protocol [7].
The usage of sequence numbers enables AODV to perform more proficiently when compared with
other routing protocols.

Authentication of messages and vehicles in cooperative vehicular ad hoc networks safety, warning
messages, control data, and notification messages is needed in self-driving and semi self-driving
vehicles. Traditional security systems like encryption/decryption methods may be able to prevent
external attacks from achieving their goal of hacking sensitive information and data control between
RSUs and self-driving vehicles. However, these vehicles do not possess the ability to secure external
communication from internal attacks. In addition, every layer of the VANETs is vulnerable to
attacks [8,9], and this makes its security one of the greatest challenges [9]. This paper focuses on
protecting the external communication system from internal/external attacks on the network layer,
such as Denial of Service (DoS), black hole, grey hole, wormhole and rushing attacks [10]. Grey hole
and rushing attacks can stop cooperation, which results in disconnection between the vehicles and
the road side units (RSUs) [10]. Creation of a suitable security system for the routing protocols is
required, as the network layers work directly with routing protocols. Instead of forwarding packets
to the correct destination node, malicious nodes displace or drop packets. For such attacks, most
received packets are dropped and are not moved to their destination node. Other problems can arise
in such an attack, for instance an overhead increase and Packet Delivery Rate (PDR) decrease on the
network [10]. The attack detection is a difficult task owing to selective dropping of data packets [11].
A network suffering from grey hole attacks either forwards packets to the destination node in the
period of process discovery as “true” behaviour, and then, when the network behaves maliciously,
be made to drop almost every received packet [11].
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Rushing attacks or sudden attacks are seen as an emerging type of Denial of Service (DoS) attacks
that have a direct and negative effect on the action of the routing protocols, particularly on AODV
and Dynamic Source Route [10]. The source vehicle floods road requests (RREQ) to the destination
vehicle, via VANETs in the road discovery phase. The rushed vehicle receives at this point the RREQ
and moves the packet directly to destination vehicles without delay, i.e., a zero delay [12]. The original
packet will automatically be removed by the destination node as a copy packet, because the node has
already accepted the packet from the rushing attack. Such attacks are particularity effective when they
are near the source or destination vehicles [12].

In this paper, we propose an IDS to protect external communication in autonomous and
semi-autonomous vehicles from grey hole and rushing attacks. This security system is capable of
detecting malicious behaviour in real time, thereby preventing the malicious vehicle from communicating
with other vehicles. In addition, we propose a novel response system to switch infected vehicles into a
“safe mode” without delay to protect passengers’/drivers’ lives and even the vehicles themselves.

This work is presented in the following sequence: Section 2 discusses similar research in the
area of protection for attacks on VANETs. Next, Sections 3 and 4 explore the methodology while
Section 5 gives details of the experimental results. Section 6 discusses these experimental results.
Finally, Section 7 gives the conclusions and directions on future research on this topic area.

2. Related Works

Traffic accidents are a major cause of death and serious injuries [13]. In the field of self-driving
cars, VANETs are developed to enhance the safety of passengers/drivers and vehicles. Their aim is to
ensure the safety of the users on the road through enhanced traffic systems that achieve a reduction in
the number of accidents arising from human errors. Self-driving vehicles require access to essential
information like signs/warning messages and CAMs that are exchanged between vehicles and RSUs
in real-time.

The performance of VANETs is improved by strengthening their defences against malicious
attacks. Alheeti et al. have enhanced detection rate and reduced the number of false alarms that
was generated by IDS [14] based on a Defense Advanced Research Projects Agency (DARPA) dataset
utilising a hybrid IDS to secure host/network from the potential attacks. In [15], statistical techniques
are used in building intrusion detection systems for vehicular ad hoc networks to identify rogue
nodes. The authors can improve the IDS application layer that was based on CAMs for efficient
detection malicious of behaviour for high change dynamic. Banerjee proposes a security system to
discover and eliminate the grey hole and black hole attacks on the VANETs [16], where data are
divided into equal blocks, and these blocks are then sent to the destination node by different routes
instead of sending every data along the same route. The destination node examines the size of
the sent data block; if the system detects differences in the size of the received data, it can identify
the malicious route. At this point, the source node will be used to prevent data from being sent
via the malicious route [16]. Vuong et al. developed traditional IDS for detecting cyber-attacks on
robotic vehicles [17]. Their IDS is based on a decision tree method that relies on physical features
and cyber in detecting malware codes. The system is evaluated by injecting two types of malicious
codes in different scenarios including DoS. Sedjelmaci et al. designed an accurate and lightweight
intrusion detection framework called AECFV [18]. It has the ability to detect the most dangerous
attacks such as black hole, packet duplication wormhole, selective forwarding, Sybile and resource
exhaustion attacks on VANETs. Their security system is based on a clustering approach to provide
sufficient protection for VNETs. The vehicle’s trust-level and nodes’ mobility were used in elected
Cluster-Heads (CHs), the authors also used various performance metrics in evaluating the proposed
system. Alheei et al. proposed an intelligent IDS to identify malicious behaviour to secure the external
communication for self-driving and semi self-driving vehicles [1]. Fuzzy Petri Nets were employed in
this system that is particularly suited for dropping attack detection. Packet delivery rate, end-to-end
delay and throughput were utilised to measure the performance of the proposed security system.
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Bouali et al. propose a prevention and detection system to identify abnormal behaviour of vehicles [19].
This security system has the ability to predict the vehicle’s future behaviour and is based on Kalman
filters that have the ability to predict vehicles’ behaviour. Assila et al. created a new security scheme to
protect VANETs from possible attacks [8], which is based on the verification of the CAMs. This scheme
helps researchers to decrease the number of attacks and tackle threats. Zhang et al. proposed two
systems to detect intruders: anomaly based detection and misuse based detection [20]. Both rely on
using features of the network to train an IDS that can identify intruders and a potential attacks on
an ad hoc network. Reddy et al. propose Cross Layer Intrusion Detection (CLID) to protect wireless
mesh networks (WMNs) from rushing attacks [12]. CLID was created at the network layer and the
MAC layer to decrease the false alarm rate. This cooperative intrusion system assessed the proposed
security system with network simulator. Pavani et al. created an IDS to protect the VANETs against the
grey hole and black hole attacks [21]; they employed several machine learning approaches: Decision
Tree (C-4.5), Multi-Layer Perceptron (MLP), K-Nearest Neighbourhood (KNN) and Support Vector
Machines (SVM). This method was simulated via the popular network simulator version 2 (ns-2) [22].
MLPs discovered intrusions more accurately and with less false error rates.

In summary, there are two kinds of detection methods: (1) anomaly detection; and (2) misuse
detection [23]. The work presented here proposes a security system that makes use of anomaly
detection. Signature or misuse based detection which relies on the features of the known attacks
is highly accurate and has a lower false alarm rate; however, it cannot consistently identify novel
attacks. Behaviour or anomaly detection is based on the vehicle’s normal behaviour which classifies
several actions that deviate significantly from normal behaviour thus indicating an attack. Anomaly
detection systems conversely suffer from a high rate of false alarms, have complications in handling
regular misbehaviour and are often computationally expensive. We have used the ns-2 in designing
the proposed IDS here. There are many characteristics inherent in ns-2 that have encouraged various
researchers to make use of it, such as low cost, high speed of simulation, open source and a rich library.

3. The Proposed Intrusion Detection System

We propose a security system that determines the vehicle’s behaviour as normal or malicious
based on data that are collected through a trace file. The IDS uses trace files produced by a simulation
that includes both normal and abnormal behaviour in VANETs [24]. The types and quantity of features
play an important role in increasing the rate of detection and decreasing false alarms in such a system.
Based on a prior study [25] we focus on highly relevant features extracted from a trace file [25]. We use
both Support Vector Machines (SVM) and Feed Forward Neural Networks (FFNN) in the design of the
IDS as both techniques have been successfully applied in self-driving vehicles [26].

The proposed IDS attempts to offer sufficient protection against grey hole attacks and rushing
attacks of the external communication system in self-driving vehicles. The following details the
methodology of the proposed security system:

3.1. Simulation of Traffic and Mobility Scenarios

We utilised two software tools to generate a real-world traffic of abnormal/normal behaviour for
self-driving and semi self-driving vehicles: Simulation of Urban Mobility Model (SUMO) and MObilty
VEhicles (MOVE) [27]. The output files of these tools are used as input to ns-2 [28]. The reasons for
employing SUMO to generate mobility scenarios are that it is open source, widely used in VANETs,
microscopic and facilitates multi-model traffic simulation [29]. In addition, it is computationally
efficient and straightforward to adapt with various numbers of vehicles as well as the MOVE model
designed on SUMO [30,31].

The mobility models are divided into three types: urban, highway and rural models [32].
The urban mobility model includes many types of models, such as the Random Way Point (RWM)
model, the Manhattan mobility model and the Rice University Model (RUM) [32]. In this paper, we use
the Manhattan mobility model because it is widely used in the research field and it allows vehicles
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to move in different directions [32]. The Simulation of Urban Mobility Model (SUMO) and MObilty
VEhicles (MOVE) are shown in Figure 2.Computers 2016, 5, 16 5 of 18 
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Figure 2. Screenshot of Simulation of Urban Mobility Model (SUMO) and MObilty VEhicles (MOVE).

The self-driving communication simulation is carried out using ns-2 and employs four abnormal
vehicles: two rushing attacks and two grey hole attacks on the system. Figure 3 shows the system
simulation designed in ns-2.
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Figure 3. Screenshot of network simulator.

A vital problem in simulation systems are the parameters employed during the initial stages
because they have an important role in identifying the mobility, behaviour and traffic type of vehicles.
Table 1 details initial parameters like the Radio Propagation Model (Two Ray Ground), Type of Traffic
(CBR), and Routing protocol (greyholeaodv) [33].



Computers 2016, 5, 16 6 of 18

Table 1. Simulator Environmental and Parameters.

Parameter Value

Simulator ns-2.35RC7
Simulation time 499 s

Number of nodes 40 Vehicles
Number of RSUs 9 RSUs

Type of Traffic Constant Bit Rate (CBR)
Topology 600 ˆ 600 (m)

Transport Protocol UDP
Packet Size 512

Routing Protocol AODV
Channel type Wireless
Queue Length 50 packets

Number of Road Lanes 2
Radio Propagation Model Two Ray Ground

MAC protocol IEEE 802.11p
Speed 30 m/s

Interface queue type Priority Queue
Network Interface type Physical Wireless

Mobility Models Manhattan Mobility Model

3.2. Feature Sets and Extraction

As indicated above, the IDS is based on a trace file which was extracted from ns-2. The IDS deduces
from the features whether the behaviour of vehicles is normal or malicious. Overall, extracting features
from a trace file for the purpose of an IDS could be difficult as it involves large and overlapping data.
We made use of the AWK language to obtain features that define the actions of vehicles in VANETs [34].
They define five events: receive (r), send (s), drop (D), movement (m), and forward (f) [35].

The detection system rate and false alarms numbers and the features were obtained from the trace
file as follows:

1. Generate the trace file from ns-2.
2. Use the AWK language to evaluate the output file from ns-2. The trace file is processed using the

AWK language to determine the packet delivery rate (PDR), end-to-end delay and throughput.
3. Produce 21 features that define normal and malicious behaviour.
4. Choose 15 features that, based on our previous study [25], accurately reflect the behaviour of

self-driving vehicles. Proportional Overlapping Score (POS) were used to extract significant
features from the trace files.

Table 2 shows the 15 selected features from the entire features space extracted from the trace file
that are generated in ns-2.

Table 2. Features Selection.

Basic Trace IP Trace AODV Trace

Packet ID
Payload Size and Type Source and

Destination MAC Ethernet
IP Source and Destination

Packet Tagged
Hop Counts
Broadcast ID

Destination IP with Sequence number
Source IP with Sequence number

POS is considered the most suitable and efficient scheme with a dataset that has common
classification problems such as outliers and high-dimensional binary [36,37]. It was employed to
calculate the overlapping rate in the features extracted. The R code the POS method using the
following pseudocode [36]:
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Algorithm POS Method
1. inputs: “data1.csv”.
2. output: Sequence of the selected features.
3. install.packages(“propOverlap”).
4. source(“http://bioconductor.org/biocLite.R”).
5. biocLite(“Biobase”).
6. library(propOverlap).
7. ?propOverlap.
8. getwd().
9. data <- read.csv(“data1.csv”,header=T).
10. str(data).
11. data <- t(data).
12. G <- data[1:23,] # define the features matrix 23.
13. G <- jitter(G). # to avoid the noise in data
14. class <- as.factor(data[24,]) #define class labels.
15. set.seed(1234).
16. selection <- Sel.Features(G, Class, K = 23,Verbose = TRUE) # the main function.
17. selection$Features. # extract the number of features.
18. selection$Measures. # extract name of features.

All extracted features were tagged with the repetition value, and then the features with the lowest
weight were removed.

3.3. Fuzzification of the Dataset

The features that were extracted have some issues, which may have direct impact on the average
rate of detection and number of false alarms of the system; for instance, if the normal or abnormal
behaviour is not obvious from the features, or if they do not classify as well-defined normal and
abnormal behaviours. In this case, we have to design a mathematical model that can be employed to
redistribute the features and cope with ambiguity. Fuzzy sets are increasingly popular to tackle such
problems efficiently [38] and will thus be employed to address the problem of classification using a
fuzzification of the features that were obtained from the ns-2 trace file. Our previous work [39] did
not employ fuzzy sets and we obtained a false alarm rate of 12.24%. After incorporating fuzzy sets,
we obtain a false alarm rate of 0.17% [25].

In Equation (1), each value was distributed in five values of fuzzy with a range in [0,1]:
low, medium low, medium, medium high and high.

f px, a, b, cq “ maxpminpx´ a{b´ a, c´ x{c´ bq, 0q (1)

where x is the feature value while a, b and c represent the values of the fuzzy domain. By using
fuzzification data, we attempt to increase the detection rate of the proposed IDS while reducing the
number of false alarms at the same time.

3.4. Intelligent Detection System

In this section, we detail an intelligent IDS that utilises SVM and FFNN to identify the vehicles
performing rushing attacks and grey hole attack in VANETs. Our proposed IDS makes use of a data
set of 30,000 records to define the normal and malicious behaviours in VANETs. The data set, obtained
from the trace file, was split into three subsets: (1) the validation set; (2) the test set; and (3) the training
set. This is in order to manage a common problem with neural networks Artificial Neural Network
(ANN), i.e., the over-fitting of training data.

The FFNN includes one or more hidden layer, the input layer and the output layer. The input
layer is made up of 75 neurons, which equals the number of fuzzified features obtained from the trace
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file after using a fuzzy set. We utilise two hidden layers to raise the accuracy of detection of the system
and to reduce the amount of false alarms. There are five neurons in the first hidden layer while the
second hidden layer contains 11 neurons. There are two neurons (normal and abnormal) in the output
layer. In order to determine the optimal FFNN configuration in terms of hidden neurons and layers,
we made use of the trial and error method in order to configure and choose the best ratio of training
based on the situation selected that have been created in the proposed system. The parameters in the
initial stages have a vital role to play in the performance of the FFNN, which has a direct effect on
the performance of detection. We show in Figure 4 below the optimal structure of the FFNN that was
thus determined.Computers 2016, 5, 16 8 of 18 
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The formal mathematical formula for the parameters for SVM and FFNN are detailed as follows.
Equation (2) is the learning function for the SVM with C data training:

C “
!

pxi, yiq
ˇ

ˇ

ˇ
xi P RP

)

(2)

where the range value of yi P t´1, 1u, i = 1, 2, 3, 4, . . . , n. The value of xi indicates the class. In FFNN,
the training phase ends when the least-square-error E value between the desired di and actual output
yi is less than Emax “ 1ˆ 10´5.

E “
1

2p

P
ÿ

p“1

m
ÿ

i“1

pyi ´ diq
2 (3)

where p is the total number of training patterns, and

di “

«

1 I f the training pattern P ith texture
´1 otherwise

As indicated above, the initial parameters play a vital role in the FFNN performance, which has a
direct effect on the performance of detection. These parameters form the basis of our study, and they
influence the detection rate in the training phase of the simulation. The parameters of the training
phase used in the FFNN are shown in the Table 3 below:
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Table 3. Feed Forward Neural Networks (FFNN) Parameters.

Parameter Value

Train Param. Epochs 46
Train Param. Lr 1 ˆ 10´8

Train Param. Goal 0
Train Param. min_grad 1 ˆ 10´13

Gaussian Radial Basis Function 1
BoxConstraint 1 ˆ 105

The simulation is executed on a PC with an Intel 5744 core i3-380M processor and 4GB
RAM memory.

3.5. Generate Grey Hole and Rushing Attacks

In order to analyse the security system performance, we designed two types of scenarios identified
in the previous stage, i.e., the normal and abnormal behaviours. Numerous researches consider that
creating grey hole attacks is hard [11] in VANETs due to the fact that these attacks exhibit two
behaviours. Thus, the vehicle may be considered normal at time t = 0 and become abnormal at t = n.

This condition makes creating grey hole attacks a difficult challenge in ad hoc networks.
The abnormal behaviour that caused the dropping of some or sometimes all received packets was
implemented in ns-2 using the Object-oriented programming and Object Tool Command Language
(OTCL) script. However, we were required to create a new routing protocol in order to generate
grey hole attacks in VANETs. Additionally, we need to adapt the AODV routing protocol so as to
create rushing attacks. Two functions were incorporated into the standard AODV routing protocol
to simulate selective packet dropping. There are 40 vehicles and nine RSUS [33] in our simulation
environment, with two rushing vehicles and two grey hole vehicles. Detection is focused on identifying
which vehicle drops packets received from RSU or vehicles in coverage radio area.

3.6. Methodolgy

This section details the methodology for proposed IDS that has the ability to provide sufficient
security of the external communication of self-driving and semi self-driving vehicles.

The general structure of the proposed security system is shown in Figure 5. There are the following
eight stages in the IDS:

1st Stage (generation of the realistic world): Obtain the mobility and traffic model which shows the
actual movement of vehicles in VANETs. The ns-2 in this stage made use of the output file from
MOVE and SUMO as input to obtain a trace file that defines both normal and abnormal.

2nd Stage (ns-2): We made use of the output file extracted from the former stage as input files for the
ns-2 in this stage. We replicate normal, rushing attacks and grey holes to create two files: Network
Animator (NAM) file and trace file.

3rd Stage (data extraction): Here we revisit stage two to extract all the features that were found in the
trace file. Nonetheless, our proposed system can, however, work with a reduced feature set of just
fifteen important features selected from all of the features [19]. Decreasing the number of features
has an important effect in escalating the rate of detection and reducing the rate of false alarms.

4th Stage (pre-processing): Here, we convert some letters and symbols to numerical values using the
selected features that were pre-processed. We also want to use these selected features to generate
a homogenous distribution to balance the various types of classes in the data collection so as to
increase the efficiency of the rate of detection and normalization process to turn all the values of
the features between 0 and 1 according to Equation (4):

X “
x´MIN

MAX´MIN
(4)
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Normalising data often allows an increase in the detection rate and enhances the performance of
FFNN [12].

5th Stage (fuzzy set): In this stage, we convert the ordinary data that were generated in Stage 4 into
fuzzified data. The process here can be used in solving some common problems that usually
occur in the data set like the lack of clarity and overlap.

6th Stage (training and testing phase—FFNN): Stage 5 data are used to train and test the FFNN. We
also obtain the rate of detection for both normal and abnormal behaviour in this stage and then
determine the four alarm types.

7th Stage (training and testing phase—SVM): Here, in parallel to Stage 6, the training and testing of
the SVM is carried out with fuzzified data, which was obtained in Stage 5 in order to identify
the efficiency of the security system in the identification of rushing vehicles and grey hole in
comparison to normal vehicles.

8th Stage (Comparison): Here, we compare both of the proposed intrusion detection systems that are
based on categories, the number of false alarms, rate of detection, standard deviation and rate
of error.
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4. Response Mechanism

A novel rapid response reaction mechanism for autonomous and semi-autonomous vehicles is
introduced on the data link layer of the network, which switches affected vehicles into a safe mode;
this protects vehicles by preventing direct communication with the nearby RSUs without mediator.
This response mechanism is based on the communication infrastructure provided in a typical mobility
scenario, such as the Manhattan urban mobility model [26]. Typical external communication of
self-driving vehicle includes three main places in Manhattan scenarios: mobile On-Board Units (OBUs),
a Trust Authority (TA) equipped on each vehicle and immobile RSUs at the roadside every 250 m as
shown in Figure 6 [40]:

‚ TAs are responsible for authorization communication between RSUs and vehicles. They contain
all vital information about traffic statistics and streets. The Certificate Revocation List (CRL) is
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published periodically by the TAs to their RSUs and it has the capability of detecting, receiving
and communicating messages to TAs. The TAs and RSU are the building blocks of the system and
are considered trusted entities of the system.

‚ RSUs provide the backbone communication of self-driving vehicles. These vehicles depend heavily
on these vital units in VANETs. The wired communication between immobile infrastructures on
the road site with TAs is an authentication feature [40].

‚ Every vehicle is equipped with an Identification On-Board Unit (ID-OBU), which allows it to
share local traffic data and control information between vehicles in their radio zone.

The data link layer provides continuous monitoring for malicious situations to manage potential
risk/hazards. Thus, when malicious behaviour is detected the system is put into. Our system relies on
RSUs in emergency because it possesses the following qualities [40]:

‚ trusted element because of its wired connection to TAs;
‚ low delay;
‚ low bit error rates; and
‚ high bandwidth.Computers 2016, 5, 16 11 of 18 
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The basic addressing and access control to the physical layer are core factors to target the
response system on the datalink layer. For malicious behaviour, the response system will configure the
communication on point-to-point protocol to allow the infected vehicle to communicate with nearby
RSUs. In other words, the response system can partially isolate infected vehicles from other vehicles,
and restrict their communication to trust points such as RSUs in that radio coverage area.

The IEEE 802.11p protocol provides wireless access in vehicular environments. The Protocol is an
enhancement to the IEEE 802.11 standard but it is known to have an issue in scalability rate [41].
It cannot offer the required time-probabilistic characteristics in dense road scenarios because it
was originally designed for low mobility networks. Thus, the IEEE 802.11p protocol does not
operate efficiently for high density and mobility scenarios in VANETs [41]. Alternatively, it has
a minimal scalability capability when there are many self-driving vehicles in the same vicinity [42,43].
Thus, we need to employ the RSU end-points to facilitate in emergency or critical situations.

4.1. Data Link Layer

The response system to switch infected vehicles into safe mode without delay was introduced on
the data link layer. It is responsible for transferring control data and information between VANETs
entities and has the ability to identify and correct physical layer errors. There are many factors in the
data link layer that facilitate this [44]:

‚ The data link layer provides basic addressing and access control to the physical layer on VANETs
of self-driving and semi self-driving vehicles.
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‚ It facilitates vehicle communication among the subnet, which is done through a
reconfiguration requirement.

These factors are often seen as crucial for choosing this layer amongst others on VANETs.
Various kinds of communication protocol are used in this layer, such as the point-to-point protocol
(PPP), Advanced Data Communication Control and High-Level Data Link Control (HDLC) [45].
Our suggested reaction system depends on PPP.

4.2. Safe Mode

The safe mode is a response system that is activated when a self-driving vehicle has been infected.
Thus, the proposed system allows a compromised vehicle to communicate only with the closest RSUs
in the same coverage area. The safe mode thus establishes a partial isolation policy: the functionality
of the mobility node could be fully restored through communication with the RSU. In the absence of a
safe mode for vehicular networks, a compromised vehicle may pose a risk to passengers and other
road users. Our proposed safe mode provides increased safety and reliability in the event a vehicle is
compromised in any way.

5. Experimental Results

In order to obtain realistic data, we generated two kinds of outcomes and simulated these
outcomes under real conditions. We processed these data to obtain important features with various
pre-processing of the data. In this situation, we used pre-determined data for training and testing
in order to carry out the measurement of the IDS. Overall, the accuracy of the training reached
99.71%. We also carried out calculation of four kinds of alarms: false positive (FP), true positive (TP),
false negative (FN) and true negative (TN). We are able to calculate the detection accuracy of the
system using Equation (5) [23]:

Accuracy “
Number o f correctly classi f ied patterns

Total number o f patterns
(5)

TPRatepsensitivtyq “
TP

TP` FN
(6)

TNRatepspeci f icityq “
TN

TN ` FP
(7)

FNRate “ p1´ sensitivityq “
FN

FN ` TP
(8)

FPRate “ p1´ speci f icityq “
FP

FP` TN
(9)

5.1. Detection System Phase

5.1.1. Testing Neural Network to Detect Grey Hole Attacks

We used the fuzzified data obtained from the trace file in testing the IDS to detect grey hole attacks
in external communication for self-driving vehicles. In this section, we utilised measurement of the
rate of detection and the calculation of the alarms. We also made use of cross validation for SVM and
FFNN to analyse the performance of the security system. In this instance, we split the dataset into
twenty datasets (k = 20), of which five per cent were employed in the testing phase and ninety per cent
for the training dataset. We replicated this process in the measurement of the performance for the IDS
through the calculation of the rate of detection for normal and abnormal standard deviation (SD) and
alarms. We show the rate of detection accuracy and the number of records that were utilised in our
suggested security system in Table 4.
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Table 4. Classification Rate.

IDS

Class Accuracy Time/s Error Rate SD

SVM-Normal 99.93%
0.12 0.21 0.429SVM-Abnormal 99.64%

Class Accuracy Time/s Error Rate SD

FFNN-Normal 99.82%
0.99 0.15 0.102FFNN-Abnormal 99.86%

Table 5 shows the rate of four alarms for grey holes.

Table 5. Alarm Rate.

Alarm Type FFNN SVM

True positive 99.92% 99.88%
True negative 99.75% 99.89%
False negative 0.08% 0.11%
False positive 0.25% 0.12%

5.1.2. Testing Neural Network to Detect Rushing Attack

There was a difference in the type and numbers of records that we made use of in the training
phase from the data set we used in the testing phase. In this phase, the IDS is supposed to be able
to identify rushing attacks, which have a direct and negative effect on VANETs. We created an IDS
with differences in the both security systems. It has the capability to identify novel attacks. In Table 6,
the rate of detection accuracy, time, error rate and standard deviation utilised are detailed.

Table 6. Classification Rate.

IDS

Class Accuracy Time/s Error Rate SD

SVM-Normal 99.79%
0.23 0.18% 0.139SVM-Abnormal 99.80%

Class Accuracy Time/s Error Rate SD

FFNN-Normal 99.80%
1.01 0.19% 0.127FFNN-Abnormal 99.75%

Table 7 shows the rate of four alarms for rushing attacks.

Table 7. Alarm Rate.

Alarm Type FFNN SVM

True positive 99.86% 99.70%
True negative 99.78% 99.92%
False negative 0.12% 0.30%
False positive 0.22% 0.07%

In addition, we need to calculate additional performance metrics for the both proposed IDS based
on FFNN (FFNN-IDS) and SVM (SVM-IDS) for evaluation of their performance individually, including
their Precision Rate (PR), Detection Rate (DR), Classification Rate (CR) and Mean Squared Error (MSE).
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5.2. Response Mechanism Protocol Phase

This section evaluates the normal and abnormal behaviour of self-driving and semi self-driving
vehicles identified above.

5.2.1. Normal Behaviour

To identify the effect of the proposed response system, we evaluated this under normal conditions.
We made use of the novel response system to program one of the self-driving vehicles. Performance
metrics of vehicles in two instances under similar conditions were determined and are shown in
Table 8.

Table 8. Performance metrics.

Class PR DR CR MSE

FFNN-IDS 99.76% 99.83% 99.89% 0.167%
SVM-IDS 99.90% 99.84% 99.79% 0.150%

Table 9 provides the performance metric of the proposed response system, which is used to protect
self-driving vehicles. We calculated performance metrics such as PDR, total dropped packets and
average end-to-end delay for VANETs, with and without the presence of a response system.

Table 9. Performance metrics of normal behaviour.

Performance Metrics Without Response System With Response System

Generated Packets 8226 8226
Received Packets 5769 8153

Packet Delivery Ratio 70.13% 99.11%
Totally Dropped Packets 3074 74

Average End-to-End Delay 202.17 ms 22.63 ms

5.2.2. Abnormal Behaviour

After evaluating normal behaviour, we also subjected the response system to malicious/abnormal
behaviour, from which we obtained the performance metrics in Table 10. The table below
allows differentiating between the active role of the proposed response system in two cases of
self-driving vehicles.

Table 10. Performance metrics of abnormal behaviour.

Performance Metrics Without Response System With Response System

Generated Packets 8226 8226
Received Packets 3555 6216

Packet Delivery Ratio 43.21% 75.56%
Totally Dropped Packets 4878 2010

Average End-to-End Delay 72.90 ms 44.65 ms

6. Discussion

The core objective of this research was to create an IDS that provides a secure environment for
self-driving and semi self-driving vehicles. We implemented the methodology of this IDS in eight
phases, which lead to generating the mobility and traffic model, the trace file, the ns-2, fuzzification,
data collection and pre-processing, training and testing for the SVM, and training and testing for the
FFNN, and compared the results we generated from the two types of IDS. In Figure 7, two IDS are
compared; we found that the IDS based on the FFNN was more effective and efficient in determining
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abnormal vehicles with a smaller false negative alarm rate than the IDS using SVM; however, we can
observe that SVM performance is much higher that of the FFNN. SVM is faster than FFNN because
the SVM automatically computes the number of hidden layers in an optimised way [46]. Figure 7 also
shows the difference in the performance of FFNN and SVM. The IDS system based on SVM had an
error rate of 0.19%. However, in this particular system, there was fluctuation of alarm rates between
99.92% and 99.70% with high rate and efficient accuracy. Alternatively, the average false negative rate
of alarm recorded was low, around 0.20%, which is a good indicator of the performance of the results.
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The rate of error for the IDS based on the FFNN was found to be 0.17% and the fluctuation of the
alarm rate was between 99.92% and 99.75% with a high and efficient rate of accuracy. Alternatively,
the average false negative rate of alarm was minimal, at about 0.1. Making use of fuzzified data
with FFNN and SVM create flexibility in selecting the system that is very efficient with various
conditions, thus allowing improving the rate of detection. Additionally, 15 significant features were
incorporated, such as payload ID, MAC Ethernet, IP, Packet Tagged and Hop Counts, into the IDS.
Thus, the features selected help in making the proposed security system more efficient in securing the
external communication systems of self-driving and semi self-driving vehicles.

In the experimental result of the response mechanism protocol phase, we note the efficient role
of the safe mode protocol in providing and establishing the safety environment for self-driving and
semi self-driving vehicles. This protocol can adapt with these vehicles under different conditions,
i.e., normal and abnormal behaviours. It has the ability to isolate the communication of the infected
vehicles from the surrounding mobility and immobility nodes but keep connection with the closest
RSU to introduce this victim vehicle in the safe mode communication.

In order to evaluate the performance of the IDS, we need to compare it with the previous best
achieved average error rate, which is 2.05% [39], while we have achieved an 0.18% error rate with the
IDS presented here. In [39], the average of false alarm is 4.68%, while we have achieved 0.15% with
this IDS.

The response model that is proposed in this paper plays an important role in enhancing the
overall performance for the external communication for self-driving and semi self-driving vehicles.
Tables 8 and 9 reflect a vital performance of the proposed approach that was evaluated under normal
and abnormal conditions. In the two scenarios, the number of generated packets is 8226. On the one
hand, the number of received and dropped packets under normal condition without the response
system is 5769 and 2457, respectively. On the other hand, the number of received packets is 8153 and
the number of dropped packets is 73 under normal conditions with the response system. However,
under abnormal or malicious conditions with and without the response system, the number of received
packets is 3555 under the abnormal scenario without response system and 4671 is the number of
dropped packets. Under the same condition with the response system, the number of received packets
is 6216, while 2010 is the number of dropped packets.
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7. Conclusions

In modern systems such as self-driving and semi self-driving vehicles, intelligent intrusion
detection systems have become a vital security application. These vehicles, networks and devices
are subjected to different types of attacks that have a direct effect on the development and use of
self-driving vehicles. The intelligent IDS introduced here has the capability to detect grey hole and
rushing attacks in VANETs. These network types can assure secure self-driving and semi self-driving
by CAMs and control data that are swapped between the different vehicles in a zone. Rushing
attacks and grey hole attacks attempting to bring about a drop in some or all incoming messages,
which can lead to a direct consequence to the lives of passengers, vehicles and drivers. In addition,
without security, self-driving and semi self-driving vehicles will not be able to achieve their function
in providing safety and comfort when being operated.

We created an intelligent security system that can secure external communication system for
self-driving vehicles. We designed the IDS to be used for training and testing with fuzzified data
through the use of SVM and FFNN. This system can produce two system outcomes, which we have
been able to generate and simulate in ns-2. We also studied the behaviour of all vehicles to detect
normal and abnormal behaviour in VANETs. We applied monitoring and analysis of the trace files that
were generated in network simulator to detect grey hole and rushing attacks. The trace file defines the
behaviour of the network using receive, send, forward, move and drop. A possible additional extension
of this system is to study these attacks with different AI techniques like Fuzzy Petri Nets (FPNs).
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