
computers

Article

Improved Measures of Redundancy and Relevance
for mRMR Feature Selection

Insik Jo 1, Sangbum Lee 2 and Sejong Oh 2,*
1 Department of Data Science, Dankook University, Yongin 16890, Korea; isjo1031@naver.com
2 Department of Software Science, Dankook University, Yongin 16890, Korea; sblee@dankook.ac.kr
* Correspondence: sejongoh@dankook.ac.kr; Tel.: +82-31-550-3484

Received: 4 April 2019; Accepted: 22 May 2019; Published: 27 May 2019
����������
�������

Abstract: Many biological or medical data have numerous features. Feature selection is one of the
data preprocessing steps that can remove the noise from data as well as save the computing time
when the dataset has several hundred thousand or more features. Another goal of feature selection is
improving the classification accuracy in machine learning tasks. Minimum Redundancy Maximum
Relevance (mRMR) is a well-known feature selection algorithm that selects features by calculating
redundancy between features and relevance between features and class vector. mRMR adopts mutual
information theory to measure redundancy and relevance. In this research, we propose a method to
improve the performance of mRMR feature selection. We apply Pearson’s correlation coefficient as a
measure of redundancy and R-value as a measure of relevance. To compare original mRMR and the
proposed method, features were selected using both of two methods from various datasets, and then
we performed a classification test. The classification accuracy was used as a measure of performance
comparison. In many cases, the proposed method showed higher accuracy than original mRMR.
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1. Introduction

Recently, with the rapid development of machine learning and the increasing accumulation of data
through the internet, various methods of analyzing data using past techniques have been difficult to
apply to modern big data problems, and various data preprocessing techniques have been developed.
Among them, feature selection is a process of selecting a set of features (variables, attributes) that
meet the purpose of analysis for a high-dimensional dataset having thousands or tens of thousands of
features. Analysts can benefit from a selection of features, including better performance of predictive
models, and faster and more efficient data analysis. The advantages of feature selection are as follows:

(a) reduces the dimension of the dataset and therefore reduces the cost of computing resources
(b) improves classification model performance by reducing data noise
(c) facilitates data visualization and understanding

The main purpose of the general feature selection is to determine a set of related features that is
of interest regarding particular events or phenomena. This feature selection is usually divided into
filtering methods and wrapper methods, depending on how the relevant features are searched [1–4].
Filter techniques assess the relevance of features by evaluating only the intrinsic properties of the data [1].
In most cases, relevance scores between each feature and class vector are calculated, and high-scored
features are selected. Filter techniques are simple, fast, and easy to understand. However, they do not
consider redundancy and interaction between features; they assume features are independent from
each other. To capture the interactions between features, wrapper methods embed a classification model
within the feature subset evaluation. However, as the space of feature subsets grows exponentially with
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the number of features, heuristic search methods such as forward search and backward elimination
are used to guide the search toward an optimal subset [1]. Feature selection can be categorized into
supervised, unsupervised, and semisupervised [5–7]. Supervised feature selection algorithms consider
features’ relevance by evaluating their correlation with the class information whereas unsupervised
feature selection algorithms may exploit data variance or data distribution in its evaluation of features’
relevance without labels. Semisupervised feature selection algorithms use a small amount of labeled
data as additional information to improve unsupervised feature selection [5]. Minimum Redundancy
Maximum Relevance (mRMR) and the proposed method belong to the supervised method.

Ding and Hanchuan [8,9] suggested the mRMR measure to reduce redundant features during
the feature selection process. They tried to measure both redundancy among features and relevance
between features and class vector for a given set of features. Their redundancy and relevance measures
are based on mutual information as follows:

I(x, y) =
∑

i, j
log

p
(
xi, y j

)
p(xi)p

(
y j

) (1)

In the Equation (1), x and y are feature vector or class vector, and p() represents probability.
Suppose S is a given set of features and h is a class variable. The redundancy of S is measured by
Equation (2):

Wi =
1

|S|2
∑

i, j∈S
I(i, j) (2)

In Equation (2), |S| is the number of features in S. The relevance of S is measured by Equation (3):

VI =
1
|S|

∑
i∈S

I(h, i) (3)

There are two types of methods to evaluate S:

MID : VI −WI (4)

MIQ : VI/WI (5)

In many cases, MIQ (Mutual Information Quotient) shows better performance than MID (Mutual
Information Difference). We cannot test all subsets of features S for a given dataset, so the mRMR
algorithm adopts a forward search in its implementation. The procedure is described in Algorithm 1.

Algorithm 1: Forward search

/*
M: size of feature subset S that we want to get
S: set of selected features
F: whole set of features of target dataset
*/

S← ∅
REPEAT UNTIL |S| < M
Find fi∈F that maximize MID/MIQ of S ∪{ fi };
S← S ∪{ fi };

Remove fi from F;
END REPEAT
RETURN S;

In the context of statistics or information theory, the term ‘variable’ is used instead of ‘feature’.
We will use ‘variable’ and ‘feature’ as compatible terms according to their context. Mutual information
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can be only applied on two categorical variables (x,y). Therefore, if a dataset has continuous variables,
they need to be converted into categorical variables before performing mRMR. The performance
of mRMR depends on the quality of redundancy and relevancy measures. If we can improve the
measures, we can enhance the performance of mRMR. Several studies [2,10,11] have attempted to
improve redundancy measure WI by introducing equations of joint mutual information I(x1,x2,..xn).
Auffarth et al. [12] compared various redundancy and relevance measures, and suggested ‘Fit Criterion’
and ‘Value Difference Metric’ as best measures. These measures, however, can be applied to only
two-class datasets. mRMR is widely used in bioinformatics including gene selection and disease
diagnosis [8,13–15].

In this study, we propose new measures for redundancy and relevancy. We suggest Pearson’s
correlation coefficient [16] as a redundancy measure and the R-value [17] as a relevance measure.
The R-value and correlation coefficient can be designed for continuous variables whereas mutual
information implies categorical variables. We also implement advanced mRMR (AmRMR) using new
measures. Details of the new measures and AmRMR are provided in the next section.

2. Materials and Methods

2.1. Pearson’s Correlation Coefficient and R-Value

Pearson’s correlation coefficient is a measure of the linear correlation between two variables x and
y, and it is defined by Equation (6):

r =

∑n
i=1(xi − x)(yi − y)
(n− 1)SxSy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(6)

x, y : mean o f x, y

Sx, Sy : standard deviation o f x, y

It has a value range [−1, +1]. If an absolute value of the correlation coefficient is near 1, the
variables (x, y) have strong correlation. In the context of feature selection, if two features (x, y) represent
similar values, then the correlation coefficient of (x, y) will be high; this means that the correlation
coefficient can be used to measure redundancy. If two features (a, b) have strong negative correlation,
their values will be different. However, from the point of view of information theory, the amount of
information in a and b is similar, and they can be considered redundant features.

The R-value is proposed as an evaluation measure for datasets [17,18]. The motivation for using
the R-value is that the quality of the dataset has a profound effect on classification accuracy, and
overlapping areas among classes in a dataset have a strong relationship that determines the quality
of the dataset. For example, dataset D1 produces higher classification accuracy than dataset D2 in
Figure 1. Overlapping area is a region where samples from different classes are gathered closely to
one another. If an unknown sample is located in the overlapping area, it is difficult to determine
its class label. Therefore, the size of overlapping areas may be a criterion to measure the quality of
features or of the entire dataset [19]. The R-value captures overlapping areas among classes in a dataset.
The R-value uses a k-nearest neighbor algorithm to define overlapping areas. If an instance has many
neighbors that have different class values, then it may belong to an overlapping area. Suppose DS is a
given dataset, S is a subset of features, and C is a class vector. Algorithm 2 describes the procedure to
calculate the R-value of S. The R-value has range [0, 1], and if the R-value of S is near 1, then S may
produce lower classification accuracy.
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Figure 1. Two datasets that have different overlapping areas. Dataset D2 is more confused than Dataset
D1. Therefore, Dataset D1 produces higher classification accuracy than Dataset D2.

Algorithm 2: Rvalue(S,C)

//K: number of nearest neighbor

Derive dataset DSs of S from DS;
OV← 0; //

N← number of instances of DSs[];

FOR each instance in DSs[i] DO

Find K nearest neighbor values for DSs[i] and store their instance ID to KNV;
Count the number of elements in KNV that have class value different from C[i], and add it to OV;

END FOR

Rvalue← OV/(K*N);

RETURN Rvalue;

2.2. Formal Description of AmRMR

Suppose we evaluate a feature set S that has m features. The new relevancy measure VR for S is
simply defined using the Rvalue:

VR = 1−Rvalue(S, C) (7)

If a feature set S produces a high Rvalue, it means that large overlapping areas exist between
classes and may cause lower classification accuracy. Therefore, the lower the Rvalue obtained, the
better the classification. We define the new relevancy measure as 1 − Rvalue to give a higher score to a
lower Rvalue.

To develop a better redundancy measure, we replace mutual information with a correlation
coefficient. The original redundancy measure, WI, is simply the mean of the mutual information for a
pair of features in S. From several experiments, we found that the value of a specific pair of features is
more important than the mean of all pairs if the value is high. Therefore, we calculate a maximum
(maxC) and a mean (meanC) of the correlation coefficient, and choose maxC as a new redundant measure
WR if maxC ≥ 0.5, otherwise WR = meanC. If the absolute value of correlation coefficient of variables (x,y)
≥ 0.5, we accept that they have meaningful correlation. In Equations (8) and (9), Cor() is a correlation
coefficient function, abs() is an absolute value function, and max() is a maximum value function.

maxC = max
{
abs

(
Cor

(
fi, f j

))}
fi, f j ∈ S, i, j = 1, 2, 3, . . . , m (8)
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meanC = mean
{
abs

(
Cor

(
fi, f j

))}
fi, f j ∈ S, i, j = 1, 2, 3, . . . , m (9)

WR =

{
maxC, i f maxC ≥ 0.5

meanC, i f maxC < 0.5
(10)

From the new definition of relevance measure VR and redundant measure WR, we redefine MID
and MIQ as RVD and RVQ, respectively. RVD is similar to MID. We define RVQ in a more sophisticated
manner. In evaluation function RVQ, VR indicates benefit and WR indicates penalty. Therefore, (VR/WR)
cannot be larger than VR. However, 0 ≤ VR, WR ≤ 1 in our equation, and sometimes (VR/WR) > VR.
Therefore, we adjust for this discrepancy in Equation (12).

RVD = VR −WR (11)

RVQ =

 VR, i f
( VR

WR

)
> VR

VR
WR , i f

( VR
WR

)
≤ VR

(12)

We have described a new evaluation measure for feature subset S. As we mentioned earlier,
we cannot evaluate all instances of S for a given dataset; thus, a heuristic approach is required.
We implemented AmRMR based on mRMR code. It applies a forward search to reduce the search
space. Algorithm 3 describes the pseudo code for AmRMR. We only consider the case of RVQ.

Algorithm 3: AmRMR(DS,C,M)

/*
DS: target dataset

C: class vector of DS
M: size of feature subset S that we want to get
F: set of features in DS
*/

Find fi ∈ F that produces max(R-value( fi,C));
S← {fi};
Remove fi from F;

REPEAT UNTIL |S| < M
max_eval← 0;
max_idx← 0;
FOR each fj ∈ F DO

Target← S ∪ {fi};
Calculate RVQ for Target;
IF RVQ > max_eval THEN

max_eval← RVQ;
max_idx← j;

END IF
END FOR
S← S ∪{fmax_idx};
Remove fj from F;

END REPEAT

RETURN S;

3. Result

To compare mRMR and AmRMR algorithms, we collected several types of datasets that have
different numbers of features, classes, and instances. Table 1 summarizes the datasets. We obtained
GDS2546, GDS2547, and GDS3715 from the NCBI Gene Expression Omnibus [20], and arcene and
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madelon from NPIS2003’s challenge of feature selection [21], and others were obtained from the UCI
Machine Learning Repository [22]. We took 5–25 features using mRMR and AmRMR, and performed
classification tests using k-nearest neighbor (KNN), support vector machine (SVM), C5.0 (C50), and
random forest (RF). To avoid an overfitting problem, we adopted a k-fold cross-validation, where k
is 10. In the case of arcene and madelon, we took feature set from the training dataset and performed
classification tests using validation datasets because they support separated training/validation datasets.
Tables 2–5 summarize the results. In most of the cases, AmRMR produces better performance than
mRMR. Figure 2 summarizes the classification results in Tables 2–5. Each accuracy means average
classification accuracy from 5 to 25 features of datasets. Each graph clearly shows AmRMR chooses
better features than mRMR.

Table 1. Summary of benchmark datasets.

Dataset Instances Features Classes

GDS2546 167 1000 4
GDS2547 164 1000 4
GDS3715 109 1000 4

Hill Valley 1212 100 2
Isolet 7797 617 26

Madelon 2000 500 2
Phoneme 4509 256 5

MLL 72 12533 3
Arcene 99 10001 2
Gisette 5999 5000 2

Table 2. Summary of classification accuracy tested by KNN.

Dataset
Number of Features

5 10 15 20 25

GDS2546
mRMR 0.623 0.647 0.628 0.598 0.628

AmRMR 0.695 0.719 0.719 0.719 0.719

GDS2547
mRMR 0.598 0.610 0.628 0.634 0.653

AmRMR 0.726 0.762 0.744 0.762 0.793

GDS3715
mRMR 0.780 0.79 0.808 0.770 0.798

AmRMR 0.89 0.936 0.964 0.936 0.955

Hill Valley mRMR 0.546 0.553 0.542 0.549 0.557
AmRMR 0.601 0.609 0.6 0.605 0.612

Isolet
mRMR 0.374 0.56 0.607 0.688 0.713

AmRMR 0.528 0.756 0.830 0.875 0.893

Madelon
mRMR 0.702 0.824 0.83 0.819 0.8

AmRMR 0.866 0.894 0.895 0.896 0.896

Phoneme
mRMR 0.830 0.857 0.863 0.879 0.895

AmRMR 0.884 0.916 0.921 0.922 0.925

MLL
mRMR 0.941 0.821 0.906 0.917 0.930

AmRMR 1 1 1 1 1

Arcene
mRMR 0.52 0.58 0.56 0.66 0.65

AmRMR 0.79 0.79 0.82 0.81 0.82

Gisette
mRMR 0.608 0.67 0.79 0.828 0.825

AmRMR 0.886 0.9 0.9 0.901 0.901
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Table 3. Summary of classification accuracy tested by SVM.

Dataset
Number of Features

5 10 15 20 25

GDS2546
mRMR 0.677 0.736 0.688 0.677 0.695

AmRMR 0.652 0.647 0.706 0.743 0.713

GDS2547
mRMR 0.701 0.652 0.681 0.695 0.689

AmRMR 0.701 0.701 0.738 0.739 0.719

GDS3715
mRMR 0.79 0.771 0.771 0.808 0.789

AmRMR 0.853 0.899 0.908 0.899 0.890

Hill Valley mRMR 0.518 0.516 0.516 0.52 0.52
AmRMR 0.526 0.527 0.529 0.525 0.526

Isolet
mRMR 0.382 0.603 0.667 0.741 0.775

AmRMR 0.556 0.793 0.870 0.902 0.919

Madelon
mRMR 0.719 0.714 0.696 0.678 0.674

AmRMR 0.829 0.81 0.752 0.705 0.685

Phoneme
mRMR 0.848 0.866 0.872 0.889 0.905

AmRMR 0.895 0.923 0.928 0.927 0.932

MLL
mRMR 0.899 0.899 0.942 0.957 0.942

AmRMR 0.971 0.957 0.971 0.985 0.958

Arcene
mRMR 0.719 0.714 0.696 0.678 0.674

AmRMR 0.829 0.81 0.752 0.705 0.685

Gisette
mRMR 0.848 0.866 0.872 0.889 0.905

AmRMR 0.895 0.923 0.928 0.927 0.932

Table 4. Summary of classification accuracy tested by C50.

Dataset
Number of Features

5 10 15 20 25

GDS2546
mRMR 0.612 0.653 0.641 0.641 0.628

AmRMR 0.653 0.611 0.664 0.623 0.658

GDS2547
mRMR 0.537 0.512 0.591 0.598 0.659

AmRMR 0.622 0.634 0.628 0.677 0.640

GDS3715
mRMR 0.798 0.743 0.771 0.733 0.689

AmRMR 0.752 0.752 0.752 0.764 0.754

Hill Valley mRMR 0.475 0.475 0.475 0.475 0.475
AmRMR 0.475 0.475 0.475 0.475 0.475

Isolet
mRMR 0.388 0.566 0.609 0.684 0.750

AmRMR 0.511 0.715 0.769 0.805 0.815

Madelon
mRMR 0.693 0.712 0.720 0.729 0.743

AmRMR 0.741 0.807 0.804 0.786 0.786

Phoneme
mRMR 0.815 0.825 0.830 0.843 0.878

AmRMR 0.876 0.898 0.889 0.888 0.884

MLL
mRMR 0.845 0.818 0.804 0.901 0.800

AmRMR 0.859 0.859 0.859 0.859 0.830

Arcene
mRMR 0.690 0.830 0.840 0.820 0.800

AmRMR 0.780 0.860 0.860 0.820 0.830

Gisette
mRMR 0.849 0.854 0.866 0.882 0.904

AmRMR 0.916 0.943 0.949 0.947 0.949
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Table 5. Summary of classification accuracy tested by Random Forest (RF).

Dataset
Number of Features

5 10 15 20 25

GDS2546
mRMR 0.653 0.737 0.761 0.755 0.744

AmRMR 0.629 0.665 0.731 0.742 0.713

GDS2547
mRMR 0.677 0.658 0.652 0.683 0.695

AmRMR 0.744 0.780 0.762 0.750 0.768

GDS3715
mRMR 0.844 0.799 0.835 0.808 0.817

AmRMR 0.872 0.890 0.890 0.900 0.890

Hill Valley mRMR 0.543 0.556 0.560 0.582 0.583
AmRMR 0.626 0.648 0.643 0.640 0.637

Isolet
mRMR 0.412 0.627 0.682 0.760 0.790

AmRMR 0.556 0.798 0.868 0.898 0.911

Madelon
mRMR 0.754 0.789 0.794 0.791 0.772

AmRMR 0.849 0.861 0.848 0.840 0.832

Phoneme
mRMR 0.846 0.864 0.874 0.890 0.902

AmRMR 0.893 0.917 0.920 0.924 0.926

MLL
mRMR 0.958 0.986 0.971 0.971 0.971

AmRMR 0.986 0.986 0.971 1.000 0.956

Arcene
mRMR 0.790 0.900 0.870 0.840 0.820

AmRMR 0.890 0.900 0.900 0.880 0.880

Gisette
mRMR 0.857 0.867 0.884 0.900 0.921

AmRMR 0.918 0.948 0.961 0.964 0.967
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4. Discussion

In general, the R-value is better than mutual information as a measure of relevance between
features and class vector. Mutual information is a statistical measure and it needs categorical values to
calculate probability. Therefore, if a target dataset contains continuous values, we need to discretize
them before applying mRMR. Information loss is inevitable in discretization. The R-value does not
need discretization and is more advantageous than mutual information when a dataset has continuous
values. Another weak point of mutual information is that it can calculate I(fi, C) where fi is a feature
and C is a class vector, but it cannot calculate I({f 1, f 2, f 3}, C) because it is based on probability.
Therefore, it uses (I(f 1, C) + I(f 2, C) + I(f 3, C))/3 to calculate relevance between {f 1, f 2, f 3} and C.
This calculation cannot fully capture interactions among {f 1, f 2, f 3}. In contrast, the R-value is a
dimensionless distance-based measure so R-value({f 1, f 2, f 3}, C) can be directly calculated.

mRMR and AmRMR output different feature sets from the same dataset, resulting in different
classification accuracies. Table 6 shows a list of 25 features from GDS3715 dataset evaluated by mRMR
and AmRMR. In the case of Arcene, there is only one shared feature (9970) between mRMR and
AmRMR. In the case of Madelon, there are five shared features. It means that mRMR and AmRMR
have different evaluation criteria for feature selection. Figure 3 shows PCA (Principal Component
Analysis) plots for Arcene and Madelon using five features by mRMR and AmRMR. As we can see,
PCA plots of AmRMR show a clearer distribution of class instances than mRMR. It explains why the
feature set of AmRMR produces better classification accuracy than the one used by mRMR.

Table 6. List of features selected by mRMR and AmRMR.

Dataset Selected Feature’s ID

GDS3715

mRMR 1, 510, 4, 153, 48, 84, 2, 5, 516, 6, 32, 19, 700, 662, 270, 240, 9,
450, 129, 122, 25, 7, 29, 238, 12

AmRMR 25, 269, 132, 90, 15, 108, 577, 301, 121, 991, 167, 273, 334, 661,
447, 19, 873, 210, 583, 26, 751, 248, 197, 558, 215
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Figure 3. PCA plots for GDS3715 dataset. PCA plots of AmRMR show a clearer distribution of class
instances than mRMR.

Table 7 shows averages of the improved classification accuracy for 10 datasets. In the four
classifiers, 4–10% of accuracies are improved. This result indicates that the proposed new redundancy
and relevance measures enhance performance compared to the original mRMR measures. KNN
classifier shows remarkably improved result (10.7%). The reason is in the R-value, which is a measure
of relevance. Both KNN and R-value are based on k-nearest neighbor. Therefore, a set of features with
good R-value may produce good classification accuracy by KNN. The relationship between R-value
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and KNN is similar to the relationship between the classifier and the feature evaluation measure in the
wrapper method.

The proposed new redundancy and relevance measures are tailored to datasets that have
continuous values. This means that they are not suitable for datasets that have categorical values.
The mutual information measure in the original mRMR method is more suitable for categorical datasets.
Nevertheless, AmRMR is useful, because there exist many high-dimensional continuous datasets such
as microarray data, diagnosed diseases data, image analysis data, and so on.

Table 7. Improved classification accuracy by AmRMR.

Classifier
Number of features Average

5 10 15 20 25

KNN 0.100 0.116 0.108 0.108 0.102 0.107
SVM 0.056 0.063 0.071 0.058 0.044 0.058
C50 0.048 0.057 0.050 0.034 0.030 0.044
RF 0.046 0.043 0.045 0.044 0.036 0.043

To show the effect of AmRMR, we compare it with three filter feature selection methods such as
mutual information (MI), linear correlation (Linear), and rank correlation (Rank.Corr). The condition
of comparison is the same as for the case of mRMR. For simplicity, we test KNN and SVM. Figures 4
and 5 are the results of comparison. We can see AmRMR produces the highest performance of all
the methods.
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In this study, we proposed new redundancy and relevance measures to improve mRMR feature
selection. The proposed method provides powerful performance for specific target dataset than
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