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Abstract: Nowadays, Cloud Computing (CC) has emerged as a new paradigm for hosting and
delivering services over the Internet. However, the wider deployment of Cloud and the rapid increase
in the capacity, as well as the size of data centers, induces a tremendous rise in electricity consumption,
escalating data center ownership costs and increasing carbon footprints. This expanding scale of data
centers has made energy consumption an imperative issue. Besides, users’ requirements regarding
execution time, deadline, QoS have become more sophisticated and demanding. These requirements
often conflict with the objectives of cloud providers, especially in a high-stress environment in which
the tasks have very critical deadlines. To address these issues, this paper proposes an efficient
Energy-Aware Tasks Scheduling with Deadline-constrained in Cloud Computing (EATSD). The main
goal of the proposed solution is to reduce the energy consumption of the cloud resources, consider
different users’ priorities and optimize the makespan under the deadlines constraints. Further, the
proposed algorithm has been simulated using the CloudSim simulator. The experimental results
validate that the proposed approach can effectively achieve good performance by minimizing
the makespan, reducing energy consumption and improving resource utilization while meeting
deadline constraints.

Keywords: Cloud Computing; priority; energy consumption; deadline; task scheduling; dynamic
queues

1. Introduction

Cloud Computing (CC) has recently emerged as a new paradigm for hosting and delivering
services over the Internet. The CC environment has appeared with the rapid development of processing
as well as storage technologies and the success of the Internet. In this model, the infrastructure and
software applications are provided as general utilities that can be managed, leased and released
by users through the internet from anywhere and anytime. Cloud Computing offers customized,
scalable and QoS guaranteed computing environments for users with easy and pervasive access [1].
The users have only to use the cloud without making an investment in computing resources or the
cost of maintaining or administering the network, systems and databases. Therefore, the cloud users
pay only for the computing resources and services they have used. These advantages make Cloud
Computing a compelling paradigm for servicing computing needs for users [2]. Moreover, the massive
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resources offered and the flexibility associated with the size variability of the Cloud brings great
benefits. However, it brings new challenges, in which tasks scheduling and resources allocation are
major problems.

The wider deployment and use of cloud and virtualization technologies have led to the
establishment of large scale data centers that provide cloud services. This can result in a huge
increase in the amount of energy consumed. Minimizing energy consumption is an increasingly
important challenge for data centers in the Cloud [3]. Therefore, many techniques have been proposed
in order to reduce energy consumption such as load balancing [4]. This technique aims at dispensing
the load between all available resources (Virtual Machines (VMs)). This can effectively help improve
the utilization of resources and minimize energy consumption [5]. Besides, the virtualization concept
and consolidation (VM consolidation; server consolidation) contribute also to energy awareness. VM
consolidation saves energy using the live migration which aims at packing VMs into the minimum
number of Hosts and switching the idle Hosts to a power-saving mode [6]. On the other hand, server
consolidation is considered also as an efficient method towards energy conservation in data centers
by consolidating many VMs residing on multiple under-utilized servers onto a single server [7].
In addition, energy consumption and resource utilization are strongly coupled [8]. This means that the
resources with a low utilization rate still consume an unacceptable amount of energy compared to the
energy consumption of fully utilized or sufficiently loaded Cloud Computing. Moreover, deadline
guarantee is an important QoS requirement for tasks especially the critical one, because Cloud users
often want to finish their applications within a certain deadline with minimum cost [9]. This creates a
huge pressure for Cloud providers to design an efficient deadline guarantee service for the execution of
deadline sensitive tasks while taking into consideration other issues such as the energy consumption,
variety of resources, profits, etc. Thus, providing an efficient deadline and energy-aware service
requires carefully determining an optimal schedule of the received tasks to the available resources
taking into account various tasks’ requirements and resources’ properties.

The open and dynamic characteristics of a Cloud Computing environment are easy to cause
some issues like availability and allocation of physical resources, low utilization of resources, user
priority management, excessive energy consumption, etc. Thus, we have designed our approach
not only to tackle the problems at hand, but also to take into account the dynamic characteristics of
Cloud Computing which makes our solution more robust, flexible and more practical in real-world
deployments. Hence, the main objective of this study is to propose a new optimization algorithm
that is energy-efficient and deadline-aware. Therefore, the solution should be generic enough in
order to significantly improve the system’s performance and make it aware of the key optimization
factors such as dynamic/flexible scheduling, the requirements between Cloud service components, the
perspectives of Cloud users and providers. Thus, our solution aims at minimizing the makespan and
energy consumption while meeting users’ deadline and achieving efficient resource utilization with
maximum profit and high-performance computing.

The rest of this paper is organized as follows. First, we present related works. Next, the proposed
work is described. Then, we present the experimental setup and simulation results of our solution.
Finally, the conclusion is given at the end.

2. Related Work

Energy consumption aware tasks scheduling is an important issue in Cloud Computing and has
attracted great attention. Many studies have been proposed to solve this issue and achieve maximum
utilization of resources on the basis of users’ requirements and the Cloud provider. Therefore, some
single objective can influence the tasks scheduling process such as cost, QoS, energy consumption,
waiting time, deadline and makespan.

The authors in paper [10], introduce an energy-efficient task scheduling in a cloud environment.
The proposed solution uses the Clonal Selection Algorithm (CSA) to optimize energy consumption
and makespan. The proposed work introduces a multi-objective CSA based optimization algorithm
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which aims at solving the problem of task scheduling under the computing environment, where the
number of tasks and the datacenter changes dynamically. The results illustrate that the proposed work
achieves good performances and outperforms the maximum applications scheduling algorithm and
random scheduling in terms of processing time, energy and the failed tasks.

In Reference [11], Shojafar et al. have proposed a genetic-based scheduler to decrease energy and
makespan. The proposed work has two phases for scheduling. The first phase is task prioritization
and the second is processor assignment. Authors use three prioritization methods for prioritizing the
tasks and produce optimized initial chromosomes and assign the tasks to processors which are an
energy-aware model.

Similarly, the authors in Reference [12] proposed an energy-efficient tasks scheduling algorithm
in a heterogeneous environment to address the demerits associated with task consolidation and
scheduling. The proposed algorithm considers the completion time and total utilization of resources.
Additionally, it follows a normalization procedure to make a scheduling decision.

Yousri et al. [13] proposed a mechanism which addresses both load-balancing and temperature-
awareness. The proposed algorithm selects a physical machine to host a virtual machine based on
the user requirements, the load on the hosts and the temperature of the hosts while maintaining the
quality of the service. Therefore, VMs are allocated to physical hosts with respect to the temperature
and CPU utilization of processors in a way that the target host will not be overloaded or over-heated.

Authors in Reference [14] went further in this direction by formulating an energy efficiency
problem to improve the resource utilization for high system throughput. The proposed work refers
to multiple-procedure heuristic workflow scheduling and consolidation strategy which aims at
maximizing the resource utilization and minimizing the power consumption. Thus, various techniques
have been utilized such as dynamic voltage and frequency scaling DVFS with task module migration
for workload balance and task consolidation for VM overhead reduction.

In Reference [15], Zhao et al. proposed an energy and deadline aware tasks scheduling. Firstly,
the modeling of tasks and datasets as a binary tree based on a data correlation clustering algorithm is
introduced. The aim is to reduce the amount of global data transmission, and as a consequence, reduce
of SLA violation rate. Secondly, another method called the Tree-to-Tree tasks scheduling approach
based on the calculation of Task Requirement Degree (TRD) is proposed. The goal is to improve energy
efficiency by minimizing the number of active machines, decreasing the global time consumption on
data transmission, and optimizing the utilization of its computing resources and network bandwidth.

Most of the works discussed above deal with energy consumption, but there are still some limits.
Some researchers improved tasks scheduling by taking energy consumption and profit as objectives
function while others address the problem in hand without considering other important performance
metrics such as the makespan and load balancing. Indeed, a resources allocation strategy that takes
into account resource utilization should lead to better energy efficiency. However, without a flexible
and optimal resources allocation policy, scheduling the task with the focus on only one objective such
as energy consumption can lead to degrading the overall performance. Although the deadline is very
important, very few works have considered this constraint. Another important aspect which was not
always considered when moving VMs is the energy cost of migration. This cost should be taken into
account before making decisions as migration brings additional power consumption and its cost in
terms of energy is not negligible. Hence, in this paper, we propose an efficient solution to address the
energy consumption challenge and the above-mentioned issues in Cloud data centers.

3. Proposed Work

3.1. Problem Formulation

The dynamic and uncertain nature of the Cloud Computing environment makes the tasks
scheduling problem hard to solve. Therefore, a good tasks scheduling approach should be designed
and implemented in the Cloud broker to not only satisfy the QoS constraints imposed by Cloud



Computers 2019, 8, 46 4 of 15

users, but also perform good load balancing among virtual machines in order to improve the resource
utilization and maximize the profit earned by the Cloud provider. However, an efficient scheduling
algorithm does not depend only on the tasks set received from users, but on the resources reserved
by providers for processing these tasks as well. In this situation, many issues arise regarding the
variety of the tasks which require a different Quality of Service (QoS) and various resource types which
may exist either in homogeneous or in heterogeneous environments. Moreover, although the cloud is
usually said to offer unlimited resources and can be practically huge, the available resources still have
a limit, especially in private Clouds and free Cloud services. Therefore, due to a large number of users,
which increases every day and the huge amount of requests sent at the same time to the cloud, the
management and execution of all these tasks at the same time require a large number of resources.
Therefore, with the growing demand for Cloud Computing, energy consumption has drawn enormous
attention in the research community. This is due to the number of carbon footprints generated from
the information and communication technology resources such as servers, network and storage [16].
Therefore, the foremost goal is to minimize energy consumption without compromising users’ requests.
The energy consumed by these requests strongly depends on CPU utilization and resource utilization.
This means that the energy consumption will be high when CPUs are not properly utilized because
idle power is not effectively used. Sometimes, the energy consumption becomes high due to the heavy
demand of the resources, and this may reduce the performance especially if the rented resources are
not used efficiently [17].

The objective function used in our work intends to minimize the makespan and energy
consumption. Moreover, other metrics can be considered as measures of effectiveness such as
load balancing, resource utilization and scalability. Therefore, our goal is to find a compromise between
better execution time, lower energy, better resources utilization and good load balancing, because
solving the problem in hand by only minimizing the energy consumption does not necessarily means
that it can provide optimum scheduling in terms of other metrics such as the execution time, makespan
or the resources utilization, etc. Therefore, based on these key performance parameters, the main
objectives of the present work is

• To identify intelligently and proactively the best VMs for allocating the tasks with the consideration
of energy and deadline constraints.

• To guarantee that the tasks received from the users are handled with a high quality of service
(QoS) and without Service Level Agreement (SLA) violation (e.g., improve users satisfaction by
meeting their requirements).

• To ensure that the resources available are used to have better effects in order to improve the overall
performance in terms of energy and resource utilization.

• To balance a load of all resources using a dynamic priority scheduling based on the tasks features
and resources capabilities while taking care of the fact that no PM/VM will get overloaded.

• To maximize resource utilization and minimize the number of PMs used to host the VMs.

Our contribution in this dimension aims at achieving energy reduction for cloud providers and
payment saving for cloud users, and at the same time, without introducing VM migration overhead and
without compromising deadline guarantees for user tasks. Thus, the goal of our technique is to define
a multi-objective function for optimal scheduling and allocation of resources by not only reducing the
two-dimensional aspects such as makespan and energy under deadline constraints, but also achieving a
good load balancing and high utilization optimization without overloading VMs/Hosts and degrading
the performance. In order to design our model, we consider that N tasks (i.e., T1, T2, . . . , TN) are
received from cloud users to be scheduled to M VMs (i.e., VM1, VM2, . . . , VMM). We assume that the
tasks are non-preemptive in nature, which means that will be executed only once in a particular VM.
We assume also that the VMs are heterogeneous (i.e., VMs have different computing capabilities) [18].
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The main objective of tasks scheduling is to search the schedule x (mapping of tasks to resources)
that minimizes the makespan and energy consumption. A mathematical model for the multi-objective
tasks scheduling problem can be expressed as follows:

Minimize y = F (x) =Min {Makespan, Energy} (1)

3.1.1. Makespan Model

Minimize Makespan =

Min
{
max

{
ϕvm1 ,ϕvm2 , . . . ,ϕvm j , . . . . . . . . . ,ϕvmm

}} (2)

ϕvm j =
n∑

i=0

δ j(taski) (3)

δ j(taski) =
L(taski)

npe j ×Vmips j
(4)

∀i = {1, 2, . . . , n}, j = {1, 2, . . . , m}

where ϕvm j is the total execution time of a set of tasks running on vm j, δ j(taski) is the execution time of
the task i on vm j, n is the number of tasks and m is the number of VM, L(taski) is the length of a task in
Million Instruction (MI), npe j is the number of processing elements and Vmips j is the VM speeds in
Million Instructions Per Second (MIPS).

3.1.2. Energy Model

Minimize Energy = Min E(x) (5)

where E(x) is the total energy consumption which can be calculated by

E(x) =
∑

ENi j + E0

subject to: δ j(taski) < Tdeadline
(6)

ENi j = R j × δ j(taski) (7)

where ENi j is the energy consumption produced by the task Ti running on the virtual machine Vj,
E0 is the power needed to operate a data center, R j represents the energy consumption rate of the
virtual machine, Tdeadline represents the maximal latency that cloud users can tolerate (e.g., users’
time constraint).

From the user perspective, our method performs efficient tasks execution within the specified
deadlines. These tasks are prioritized and classified in order to reduce the number of tasks violating
their deadline and also to increase the performance of the system. From the provider perspective,
energy efficiency is attained by reducing energy consumption. Additionally, a good load balancing
strategy can ensure maximum utilization of resources. As a result, this helps to minimize energy-related
costs and prevent system performance degradation. Therefore, the proposed work tackles the energy
and deadline dimension based on our previous work [9] in which we have introduced a novel hybrid
MCDM method called DEEL based on the Differential Evolution (DE) algorithm and the Multiple
Criteria Decision Making (MCDM) method namely ELECTRE III. We propose a new method which
intends to prioritize dynamically the tasks and schedule them to the best suitable resource selected
using a hybrid meta-heuristic algorithm based on Fuzzy Logic and Particle Swarm Optimization
algorithms (FLPSO) [19]. Therefore, the priority of each task is defined based on different parameters
and different levels. The parameters considered for the priority assignment are the task length (size),
waiting time, burst time and deadline. These metrics are arguably the most important metrics that can
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meet the user’s requirements and improve overall system performances. The ELECTRE III method
aims to generate a priority score for each task. After calculating all the scores, the tasks ranking is made
and the tasks are sorted based on the score values in descending order. In our model, we consider
different levels of priorities (Very High, High, Medium and Low) to address the task priority, the queue
priority and the VM priority.

In Figure 1, independent tasks are submitted from n users. Next, these tasks are stored in the
global waiting queue according to their arrival time. Then, to manage the tasks received, we apply
a Dynamic classifier algorithm. This algorithm in general aims at managing the global queue by
using the DE algorithm and ELECTRE III model in order to rank and prioritize the tasks. Next, tasks
classification and deadline controller are applied to dispatch and classify the ranked tasks. Based on
the DEEL model, the proposed algorithm seeks to find an optimal compromise between the defined
parameters such as length, deadline, waiting time and burst time. These ranked tasks are dispatched
into three level priorities (Low, Medium, and High). However, some tasks have a very critical deadline
and they could miss their deadline. To solve this issue, the tasks which miss their deadline should
be firstly and immediately scheduled. As a result, this strategy helps to not only prioritize the tasks
dynamically, but also to guarantee no deadline violation when the worst-case scenario really happens.
For this, all the tasks which have a critical deadline after the classification process are considered
as the most urgent tasks and are assigned as a very high priority. Therefore, this group of tasks
should be immediately scheduled to VMs group with a very high priority, and then dispatched among
dynamic priority-queues into four levels, such as the very high, high, medium and low priority queues
respectively. The tasks can be dispatched in priority levels using static or dynamic strategy. We define
three thresholds α, β, δ for the tasks, queues and VMs prioritization. In this paper, these thresholds are
determined by simulation. Therefore, after ranking the tasks, they are dispatched among four priority
levels as follows:

• Low priority level task (Lpt) = Task (i) ≤ αT

• Medium priority level task (Mpt) = αT ≺ Task (i) ≤ βT

• High priority level task (Hpt) = βT ≺ Task (i) ≤ δT

• Very High priority level task (VHpt) = Task (i) � δT and EFT Task (i) > DL Task (i), where EFT is the
expected finish time if the task i and DL is its deadline.
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Next, to prioritize the queues, we consider four different queue priority levels, described as follows:

• Low priority level queue (Lpq): each queue contains the tasks with Lpt.
• Medium priority level queue (Mpq): = each queue contains the tasks with Mpt.
• High priority level of queue (Hpq): = each queue contains the tasks with Hpt.
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• Very High priority level of queue (VHpq): = each queue contains the tasks with VHpt.

Then, for the prioritization of the virtual machines, all available VMs are sorted in ascending
order based on their processing power. The same method as the prioritization of tasks is used to divide
all VMs into four priority levels based on three thresholds αV, βV, δV. Thus, we create four priority
levels such as Low priority level VM (Lpv), Medium priority level VM (Mpv), High priority level VM
(Hpv) and Very High priority level VM (VHpv). The pseudo-code of the proposed work is described
in Algorithm 1.

Algorithm 1. pseudo-code of the proposed work

Create the list of tasks
Create the list of Hosts
Create the list of VMs
Put the tasks in the global queue
Calculate the priority for each task in {Ltask} using DE and ELECTRE III method
Get the final ranking score Pr(t)
Classification of tasks (tasks classifier)
Control the tasks’ deadline constraint (Deadline Controller)
Define the group of the tasks (Low, Medium, High, Very High)
Calculate the capacity of VMs
Calculate the priority for each VM
Get the final ranking score Pr(v)
Classification of VMs
Define the group of VMs (Low, Medium, High, Very High)
Get List of all queues {LQueue} by DPQ Algorithm
Sort the LQueue in descending order according to Pr(q)
For lv_pr in level_priority

Create {Lvms’} = {Lvms(lv_pr)}
For queue Q(lv_pr) inLQueue do

Call FLPSO algorithm
Keep track of thebest solution of scheduling tasks among VMs

End for
End for

Subsequently, the DPQ algorithm is applied in order to dispatch the tasks among dynamic queues
taking into consideration the ranking order and the priority group of tasks. This algorithm starts to
calculate the sum of the tasks length under the same priority level, until a threshold is reached, then
makes the decision to create a new queue with the same priority level as tasks under dispatching,
then dispatch the appropriate tasks to the corresponding queue, and restart the calculus again until it
dispatches all the tasks stored in the global priority queue. Applying the DPQ will create dynamic
queues with different priority levels on the basis of a decision threshold and dispatched task priority.
Moreover, in order to achieve a good load balancing among different available resources, we need to
classify and prioritize the VMs in the next step, taking into consideration the computing capabilities of
each VM. Therefore, a priority order is assigned for each VM based on the obtained order (e.g., the
higher the order number, the higher the priority). Next, VMs are classified into different priority group
in a way to have the same number of tasks group. This classification uses the obtained thresholds in
the tasks grouping step to determine all VMs which can be classified and grouped in the same group
priority. Then for each group priority, all queues Q1, . . . , Qn are selected to search for the optimal
mapping of tasks to the VMs. Next, a scheduling algorithm is applied based on the queue Q and
VMGroup which refers to the VMs corresponding to the same group of selected queue. This process
is repeated for the same queue by adding the next VMGroup i+1 to the initial VMGroup in order
to increase the number of VMs. In this stage, the algorithm calculates the execution time of tasks
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and returns the maximum execution time among VMGroup. Then, it keeps track of the best solution
for mapping the tasks to VMs. The pseudo-code of the VMs classification algorithm is presented in
Algorithm 2.

Algorithm 2. pseudo-code of VMs classification algorithm

Initialize Best_solution, I, j;
Create the list of VMs and determine all required parameters
Calculate the capacity of all VM.
Sort the list of VMs in descending order.
Define the priority order of each VM
Group VMs based on the thresholds into the Priority Group PG (high, medium, low)/(Group 1,.., Group n)
For each PG do

For each Qin LQueue(PG)
VMGroup = VM_ PG
BestSolution = CallScheduling_Algorithm (Q, VMGroup)
Fori = 0 to k do

VMGroup += VM_PCi
NewSolution = CallScheduling_Algorithm (Q, VMGroup)
If (NewSolution > Best_Solution) then

Best_Solution = NewSolution
End if

End for
End for

End for

4. Experimental Set-Up and Results

To evaluate our algorithms, the experimental simulation is carried out based on Cloudsim
simulator [20]. This simulator supports both modeling and simulation for single and inter-networked
clouds. CloudSim enables seamless modeling, experiments and simulation of the cloud computing
systems and application provisioning environments. Moreover, many Cloud system components
can be modeled such as VMs, provisioning of resource and data centers which can be designed with
different configurations in order to handle the service tasks. These requests refer to the tasks which need
to be allocated to VMs. CloudSim gives several functionalities such as generate a different workload,
with different scenarios and perform strong and robust tests based on the custom configurations.

The simulation is done under the following conditions described in Table 1.

Table 1. The Resources Parameters.

Parameters Values

Number of Datacenter 10
Number of hosts 2–6
Number of VMs 10

MIPS 1000–20,000
VM memory (RAM) 256–2048

Bandwidth 500–1000
Tasks size 100–300,000 MIPS

In the simulation experiments, we compare the proposed EATSD algorithm with the
DEELDPQ-SAPSO [21], the Earliest Deadline First (EDF) and the First Come First Served (FCFS)
algorithms. DEELDPQ-SAPSO algorithm is an algorithm based on the priority model and dynamic
priority queues combined with a hybrid algorithm based on Simulated Annealing with Particle Swarm
Optimization. EDF algorithm is a dynamic priority algorithm; the priorities are assigned based on the
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value of the relative deadline of the tasks. FCFS is the basic policy in the CloudSim Simulator. In this
simulation, 100 independent experiments with independent tasks and different parameters settings
were performed to evaluate the efficiency of the proposed algorithm. The performance evaluation is
compared in terms of average makespan, energy consumption, resources utilization, Execution time
and scalability performance.

4.1. Makespan, Energy Consumption and Resource Utilization Analysis

Figure 2 shows the comparative analysis of the makespan of both the algorithms. The makespan
of EATSD is better when compared with the DEELDPQ-SAPSO, FCFS, EDF algorithms because the
tasks and resources are prioritized into different levels. Thus, these tasks are submitted according to
their priorities. When the number of tasks increases, the EATSD makespan becomes very slower than
the other algorithm because our algorithm selects the resource on the basis of the task priority. This
model has the potential to improve the convergence speed and optimization efficiency of the EATSD
algorithm. The proposed algorithm shows a good ability to evaluate the obtained results and to find
the best fitness value and come up with the best decision even if the number of tasks increases.
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Figure 3 shows the energy consumption comparison between the proposed EATSD algorithm,
DEELDPQ-SAPSO, EDF and FCFS algorithms. The energy consumed by EATSD algorithm is
considerably less than the DEELDPQ-SAPSO, EDF and FCFS algorithms. It can be observed that there
is a significant difference among the compared algorithms and our proposed EATSD algorithm consumes
less energy in different scenarios with different workloads. EDF and FCFS energy consumption increase
rapidly when the number of tasks increases, while in the case of our algorithm it increases very slowly.
The results also show the difference between EATSD and DEELDPQ-SAPSO algorithm, which do
not take into account the energy consumption as an objective function. The performance of our
EATSD algorithm can be explained by the priority mechanism incorporated in our model and the
faster searching of our algorithm for an optimal solution which not only optimizes the processing time
and the energy consumption, but also takes into account the resources utilization and the number of
resources which can give a good result to the user’s tasks.

Figure 4 shows the average resource utilization of the EATSD, DEELDPQ-SAPSO, EDF and FCFS
algorithms. The resource utilization is an important metric in the scheduling task process and is
beneficial to the cloud provider. The objective is to maximize and achieve a high utilization of resources.
Additionally, it is used to keep the resources as busy as possible in order to maximize profit. From the
results, it can be shown that the resource utilization of our EATSD algorithm is maintained at a high
level, which means that it has the best resource utilization compared with the two other algorithms.
An important improvement of resources utilization can be observed with the increase of the tasks
number. This result means that EATSD algorithm can maintain a high occupancy rate of resources
during the process of scheduling tasks.
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Finally, we calculate the Performance Improvement Rate (PIR) percentage. PIR represents the
percentage of performance improvement in performance metric (Makespan, Resources Utilization and
Energy Consumption) for our proposed EATSD algorithm in comparison with other algorithms. It can
be calculated using the following equation (Equation (8)):

PIR(%) =

(
metric(other algorithm) −metric(EATSD)

metric(other algorithm)

)
× 100 (8)

The PIR results are tabulated in the table as follows:
Table 2 shows the percentage improvement rate achieved by EATSD algorithm over three other

algorithms. Firstly, it shows that the proposed EATSD achieves 32.88%, 20.59% and 8,76% of makespan
reduction over the FCFS, EDF and DEELDPQ-SAPSO algorithms respectively. Thus, we can see that
EATSD has an obviously higher execution time than three other algorithms. Secondly, the results
obtained in terms of resources utilization show that the proposed EATSD algorithm is better than the
other algorithms and keeps the resources as busy as possible by using all possible resources capabilities.
The results illustrated for resources utilization improvement indicate that our algorithm EATSD was
able to produce 36.23%, 25.06% and 6.20% resources utilization improvement over the FCFS, EDF
and DEELDPQ-SAPSO algorithms respectively. The main reason for the superiority of the proposed
algorithm is that our solution takes into consideration the tasks and resources features. Moreover,
the priority model incorporated into the prioritization and classification of the tasks, as well as the
resources selection, result in a good scheduling decision. Finally, Table 2 indicates the percentage
improvement rate on energy consumption of EATSD over the other algorithms. Our algorithm was
able to accomplish 65.88%, 47.56% and 33.92% over the FCFS, EDF and DEELDPQ-SAPSO algorithms.
The proposed algorithm shows great superiority in the performance improvement rate in terms of
energy consumption.
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Table 2. The Performance Improvement Rate (PIR) in terms of makespan, resources utilization and
energy consumption.

FCFS EDF DEELDPQ-SAPSO EATSD

Makespan

Total average makespan 24,320.72 20,557.83 17,891.72 16,324.88
PIR % over FCFS 15.47% 26.43% 32.88%
PIR % over EDF 12.97% 20.59%

PIR % over DEELDPQ-SAPSO 8.76%

Resources
Utilization

Total average resources utilization 0.93 1.09 1.36 1.45
PIR % over FCFS 14.91% 32.01% 36.23%
PIR % over EDF 25.16% 25.06%

PIR % over DEELDPQ-SAPSO 6.20%

Energy
consumption

Total average Energy Consumption 13,881 9032 7167 4736
PIR % over FCFS 34.93% 48.37% 65.88%
PIR % over EDF 20.65% 47.56%

PIR % over DEELDPQ-SAPSO 33.92%

In this simulation, 100 independent experiments were carried out in order to compare the different
algorithms. The results and the table of performance improvement rate show that the computational
cost of our EATSD Algorithm is lower than other algorithms especially for a larger number of tasks.

4.2. Execution Time and Scalability Analysis

The scalability is an important factor in the performance evaluation which helps to assess the
influence of system size and problem size on the performance of an algorithm. Therefore, we have
performed the scalability testing and analysis by using a parallel workload called DAS2 5-Cluster
Grid to log from a Parallel Workloads Archive (PWA) [22]. This log contains 225,711 jobs from which
100–20,000 tasks are used in this simulation. To calculate the scalability value, we use the Isospeed-e
scalability function as follows [23]:

ψ(C, C′) =
C′ ∗W
C ∗W′

(9)

We assume that C is the initial execution time of the workload on VMs. C’ is the scaled execution
time. W and W’ are the initial and increased workload size respectively. In this scenario, we compare
our algorithm EATSD with DEELDPQ-SAPSO, EDF, FCFS and a hybrid algorithm called SA-PSO based
on PSO and SA algorithms. SA-PSO is similar to DEELDPQ-SAPSO without the priority model and
the dynamic priority queues. The simulation is carried out 20 times in a highly stressful environment
and then the average performance is analyzed. Processing Element (PE) from 10–30 are allocated in
each VM. The average execution time comparison of the four algorithms is shown in Tables 3 and 4
for Scenario 1 and 2 respectively. Moreover, based on the execution time comparison, the scalability
performance is calculated as shown in Tables 5 and 6.

Table 3. The Average Execution Time Comparison (Scenario 1).

Workload Number of PE SA-PSO FCFS EDF DEELDPQ-SAPSO EATSD

1000 10 56 93 68 44 37
5000 15 150 270 192 114 88
8000 20 198 390 250 140 103
12000 25 260 511 322 173 121
20000 30 403 840 521 250 172
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Table 4. The Average Execution Time Comparison (Scenario 2).

Workload Number of PE SA-PSO FCFS EDF DEELDPQ-SAPSO EATSD

1000 15 44.8 74.4 54.4 33 25.9
5000 20 120 216 153.6 85.5 61.6
8000 25 158.4 312 200 105 72.1
12000 30 208 408.8 257.6 129.75 84.7
20000 35 322.4 672 416.8 187.5 120.4

Table 5. The Computed Scalability of the Compared Algorithms (Scenario 1).

Scalability Number of PE SA-PSO FCFS EDF DEELDPQ-SAPSO EATSD

ψ (C10, C15) (10,15) 0.536 0.581 0.565 0.518 0.476
ψ (C15, C20) (15,20) 0.825 0.903 0.814 0.768 0.732
ψ (C20, C25) (20,25) 0.875 0.874 0.859 0.824 0.783
ψ (C25, C30) (25,30) 0.930 0.986 0.971 0.867 0.853

Table 6. The Computed Scalability of the Compared Algorithms (Scenario 2).

Scalability Number of PE SA-PSO FCFS EDF DEELDPQ-SAPSO EATSD

ψ (C15, C20) (15,20) 0.544 0.602 0.568 0.530 0.528
ψ (C20, C25) (20,25) 0.822 0.903 0.765 0.761 0.729
ψ (C25, C30) (25,30) 0.858 0.920 0.874 0.775 0.762
ψ (C30, C35) (30,35) 0.895 0.964 0.941 0.800 0.784

From the results tabulated in Tables 3 and 4, Figures 5 and 6, it can be observed that when the
number of workloads increases, the average execution time increases. However, the EATSD algorithm
has good performance in terms of average execution time compared with other algorithms. We have
evaluated the compared algorithms with a different number of Processing Elements (PEs) (10–35) in
order to assess the execution time performance and to satisfy a desired SLA execution time (say 100ms).
From the results, it can be observed that with 1000 until 5000 workloads, our algorithm stills have
a good satisfaction of the desired SLA while other algorithms violate the SLA. However, with 8000,
12,000 and 20,000 workloads, we see that our algorithm can reduce the violation of SLA compared
with others which have higher violation rate.
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In scenario 2, we evaluate our EATSD algorithm compared with others algorithms using the
same workloads number but with different processing elements in order to show the impact of an
increasing number of PEs with the same number of resources. The results show clearly the great impact
of increasing the number of PEs on mean execution time when the workloads are varied. The proposed
algorithm EATSD can effectively satisfy the desired SLA until 16,000 workloads, while other algorithms
violate the SLA before processing 5000 workloads. Moreover, based on this result, we have evaluated
the scalability performance of our algorithm in order to not only study its ability to support parallel
processing at different problem sizes, but also predict its performance in large-scale heterogeneous
computing environments. The results tabulated in Tables 5 and 6, and Figures 7 and 8, show the
computed scalability of the four algorithms. The workloads and processing elements allocated in VMs
are increased in each test case in order to design a heterogeneous system. From the results, it can be
observed that our algorithm EATSD can achieve better performance and return a better scalability
value with an acceptable range of 0 <ψ < 1. Thus, the results demonstrate the great ability of our
algorithm to perform excellent scalability compared to other algorithms.

Through the above experimental results, it can be observed that EATSD algorithm can effectively
meet the users and the providers’ requirements in terms of makespan, energy consumption and
resources utilization compared to the other algorithms. Moreover, the proposed algorithm achieves
a good performance in different scenarios. Additionally, EATSD algorithm is well balanced on
exploration and exploitation and has better stability and scalability. Thus, EATSD algorithm shows its
effectiveness to decrease the makespan under the deadline constraint, improve the energy efficiency
and achieve a good utilization of resources.
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5. Conclusions

This paper presents an efficient algorithm to deal with the Energy Aware for Tasks Scheduling
with Deadline constraint (EATSD). The proposed solution aims at minimizing the makespan and
reducing energy consumption while meeting the deadline constraint. We consider the problem at
hand by allocating the resources on the basis of their class as well as the class of received tasks. Next,
each task is mapped to the appropriate VM so that the energy consumed to execute the task is reduced
without overloading VMs /Hosts and degrading the performance. This novel EATSD algorithm yields
a better schedule with minimum makespan and energy consumption compared to Earliest Deadline
First (EDF), First Come First Served (FCFS) and DEELDPQ-SAPSO algorithms. The experimental
results demonstrate that our EATSD algorithm outperforms other algorithms in terms of makespan,
resources utilization and energy consumption. Further, it shows an excellent ability to execute a variety
of tasks and performs very close to the optimum. Additionally, it can scale well with the problem
size and achieve fast convergence times. Hence, the proposed algorithm can not only achieve good
performances and satisfy the cloud providers, but also improve users’ comprehensive QoS significantly.
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