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Abstract: Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays
a dominant role in the railway industry. Therefore, this paper examines the importance and
applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70
research publications, which are either in practice or under investigation describing RAS developments
in the railway maintenance, are analysed. It has been found that the majority of RAS developed
are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been
found that there is growing interest and demand for robotics and autonomous systems in the
railway maintenance sector, which is largely due to the increased competition, rapid expansion and
ever-increasing expenses.
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1. Introduction

Maintenance can be defined as a task or series of tasks that protect or reinstate the anticipated
condition of a system, and these tasks include technical, administrative, and managerial actions
taken [1,2]. In railway industry, proper maintenance of infrastructure, rolling-stock, and other resources
are vital in providing a safer, reliable, efficient, and resilient output. In Swedish railway, about 30%
of all rail and track related incidents and accidents that took place between 1988 to 2000 were due to
maintenance related causes [3]. Additionally, it has been revealed that among 700 accidents reported
over 23 countries, 37% were due to rolling-stock faults and 36% were due to failures in infrastructure [4].
Further, by referring to Pareto graph in Figure 1a, it can be realized that maintenance contributes to
most 80% of the rail and track related accidents in Sweden. In addition, by referring to the Pareto
graph in Figure 1b, it is evident that rolling-stock and infrastructure faults contributed almost 80% of
accidents summarized by the D-RAIL FP7 project.

Computers 2019, 8, 56; doi:10.3390/computers8030056 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-1023-2564
http://www.mdpi.com/2073-431X/8/3/56?type=check_update&version=1
http://dx.doi.org/10.3390/computers8030056
http://www.mdpi.com/journal/computers


Computers 2019, 8, 56 2 of 16
Computers 2019, 8, x FOR PEER REVIEW 2 of 16 

 
 

(a) (b) 

Figure 1. (a) Rail and track related incidents and accidents in Swedish railway [3] and (b) Railway 32 
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In addition, railway maintenance tasks are costly, and poor maintenance or failure to conduct 34 
preventive maintenance will lead to expensive consequences [5,6]. According to the joint report that 35 
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3% of the total railway expenditures in 2009–2010 and a typical rolling-stock maintenance would 38 
cost about 44% of its whole life costs [7]. Based on the report that was published by National Audit 39 
Office, UK in 2015, the annual maintenance expenditures of UK’s rail infrastructure exceeds £1 bn 40 
and in 2013–2014 and more than two-thirds of 25,531 employees in Network Rail, UK were placed 41 
on maintenance related jobs [8]. 42 

Further, the maintenance cost in Europe railway ranges from € 30,000 to 100,000 km/year [9]. In 43 
the UK, it has been suggested that about 20%–30% of the service life maintenance cost of a passenger 44 
rolling-stock is associated with wheelset maintenance [10]. On the other hand, inadequate 45 
maintenance will reduce the reliability of services, and this leads to delays, train cancellations, and 46 
customer dissatisfactions [9]. Based on past data, about 23%, 17%, and 10% of the UK wide train 47 
delays were taken place due to rolling-stock faults, track faults, and power/signal faults, 48 
respectively—which could have been reduced or avoided by preventive maintenance [11]. 49 
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Railway companies drive towards continuous improvements of existing infrastructure, fleets, 51 
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In addition, railway maintenance tasks are costly, and poor maintenance or failure to conduct
preventive maintenance will lead to expensive consequences [5,6]. According to the joint report that
was published by the United Kingdom’s (UK’s) Department for Transport and the Office of Rail
Regulation Network, rolling stock maintenance in the country accounted £0.4 bn, which is around
3% of the total railway expenditures in 2009–2010 and a typical rolling-stock maintenance would
cost about 44% of its whole life costs [7]. Based on the report that was published by National Audit
Office, UK in 2015, the annual maintenance expenditures of UK’s rail infrastructure exceeds £1 bn
and in 2013–2014 and more than two-thirds of 25,531 employees in Network Rail, UK were placed on
maintenance related jobs [8].

Further, the maintenance cost in Europe railway ranges from € 30,000 to 100,000 km/year [9]. In
the UK, it has been suggested that about 20%–30% of the service life maintenance cost of a passenger
rolling-stock is associated with wheelset maintenance [10]. On the other hand, inadequate maintenance
will reduce the reliability of services, and this leads to delays, train cancellations, and customer
dissatisfactions [9]. Based on past data, about 23%, 17%, and 10% of the UK wide train delays were
taken place due to rolling-stock faults, track faults, and power/signal faults, respectively—which could
have been reduced or avoided by preventive maintenance [11].

2. Importance of Robotic and Autonomous Systems (RAS) in Maintenance

Railway companies drive towards continuous improvements of existing infrastructure, fleets,
resources, and processes due to increased competition and rapid expansion. For example, it is projected
to increase the UK’s national rail traffic in passenger miles by 100% over the next 30 years, resulting in
an increase of 11,566 rolling-stock fleets in 2046 when compared to 2017 [12]. Therefore, optimizing
inspection and repair of the rail network, facilities, and rolling-stocks in a cost-effective manner, whilst
preserving or enhancing the safety, quality, and reliability of the service remains a key challenge [13].
For instance, Office of Rail and Road, UK expects Network Rail to carry out its maintenance 17% more
efficiently by the end of 2019. Further, to reach efficiency targets, the Network Rail plans to reduce its
maintenance staff by 8% over the 2014–2019 control period [8].
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On the other hand, the RAS are becoming economical and feasible with recent manufacturing and
technological advancements. For example, over the period of 15 years from 1990, the mean quality
adjust price of industrial robots in the UK, United States (US), and European Union (EU) has dropped
down by nearly 80% [14]—shown in Figure 2a. According to the World Robotics 2014 data, annual
shipments of industrial robots have increased over time, despite the drastic drop in 2009, which was
due to world’s economic recession, see Figure 2b. Further, as shown in Figure 2b, it can be seen that the
same trend exists within the UK [2]. Therefore, the introduction of RAS in railway maintenance would
be an ideal solution for achieving expected cost benefits. Atherton et al. have conducted an in-depth
financial and technical study to evaluate the feasibility of introducing RAS into rolling stock fluid
service tasks. Here, they have concluded that an autonomous approach will double the throughput of
fluid service task for only about 15% of the cost of an equivalent manual servicing facility [15].
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and annual shipments of industrial robots from 1995 to 2011 [2].

In addition, railway maintenance technicians risk own safety to assure the safety of passengers and
to keep trains operating. In most occasions, these railway employees perform their jobs in unfavourable
and unergonomic environments. For instance, railway track maintenance technicians and engineers
that are constantly exposed to severe weather conditions and encounter risks while working on active
railway tracks with live power transmission lines/rails in the vicinity, trains travelling at high speeds
from adjacent tracks, working at heights, or in unergonomic postures for prolonged periods [16,17]. In
addition, the workers in rolling-stock maintenance and service within depots face a similar amount of
risks. For example, in the UK, the cab front cleaning is manually conducted, which exposes workers to
highly dampened environments close to high voltage overhead power lines or electrified third rails [18].
Another hazardous rolling stock maintenance task is transmission fluid changing process, where
technicians need to execute the bulk of work beneath rolling-stock in unergonomic environments,
while getting exposed to hazards, such as oil spill slip/trip risks or working too close to electrified third
rails [14]. Therefore, the introduction of RAS to such dull, dirty, and dangerous maintenance tasks
could potentially minimize the health and safety risks on technicians.

The majority of railway maintenance tasks are monotonous and possibly depend on attitude
and self-discipline of technician towards the job [19]. When considering Japanese high-speed railway
track maintenance—which involves a train driver and a supervisor who perform well defined simple
series of tasks over a prolonged period, where it is easy to lose focus and motivation to accomplish
an immaculate job [19]. Besides, human errors are inevitable. Such human errors in the railway
include disassembly errors, inspection errors, assembly errors, decision-making errors, and installation
errors. Human errors can cause disastrous failures, and subsequently the loss of lives [20]. In
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contrast, present-day robots and autonomous systems are renowned for their high accuracy and path
repeatability. Therefore, railway companies should consider such capabilities and utilize RAS to handle
monotonous or non-value-added maintenance tasks and utilize railway technicians to do advanced,
challenging, and value-added tasks.

Further, it has been revealed that rolling stock maintenance could be clustered and distributed
over local contractors. This will encourage them to be specialists in the field, and apply techniques
to achieve increased productivity through automation [21]. Additionally, it has been identified that
increased automation is a key objective in the Rail Technical Strategy 2012, and it is expected to obtain
operational cost benefits by intelligent maintenance techniques [22,23]. Therefore, the introduction of
autonomous systems in order to eliminate or minimize human intervention in maintenance processes
would be an ideal technique, and it can be viewed that the railway industry in the UK, including many
other countries, is in the right stage to invest in automation [24,25].

3. RAS in Railway Maintenance

For decades, researchers have conducted extensive studies to introduce RAS into railway
maintenance tasks. For example, in 1987, Martland analysed how robotics could affect the locomotive
rebuilding at Conrail’s Juniata locomotive rebuilding shop, where he has taken more than two dozen of
processes into consideration. Through this study, he has concluded that there is only limited potential
for improving the productivity of the rail workshop through RAS and it will remain modest until
equipment and technology become economical [26]. In contrast, another feasibility study that was
conducted by Wiercienski and Leek two years later has concluded that the use of robots to clean the
undersides of Toronto subway cars is viable, both technically and economically. They have proposed a
system that includes three industrial robots and an industrial vision system to wash undersides of two
subway cars simultaneously [27].

In this paper, more than 65 authentic research articles that were related to distinct research and
developments of RAS in railway maintenance domain have been summarized and analysed. It has
been identified that majority of examined developments are related to rolling-stock maintenance and
inspection, which is about 56%. About 28% developments are related to rail-track maintenance and
inspection tasks, followed by power transmission maintenance, which is around 5%. RAS in the
railway bridge and tunnel maintenance accounted 4% and 3% of total developments, while other
maintenance applications, such as automated condition monitoring of grade crossings and cleaning of
stations and platforms accounted for 4% of the total developments—see Figure 3. Further, it has been
found that the majority of RAS implemented are limited to inspection and monitoring tasks, which are
about 62%. The remaining 38% of RAS perform physical manipulation—see Figure 4 for a detailed
breakdown by area of application.
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3.1. RAS in Rolling-Stock Maintenance

As summarized in Figure 5, 36.8% RAS developed for rolling-stock maintenance intends to execute
physical jobs, while the other 63.2% does not perform any physical manipulation. Further, RAS, which
are under study or fully developed for rolling-stock inspection and monitoring accounts for about
60% of all RAS developed for rolling-stock maintenance tasks, followed by systems for rolling-stock
cleaning, which is 16%. RAS applications in rolling-stock fluid servicing tasks account for 11% of all
rolling-stock related RAS developments, and the remaining 13% of the applications consists of rolling
stock rebuilding and other applications, such as augmented and virtual reality, to assist and train
maintenance workers—see Figure 5.
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3.1.1. RAS in Rolling-Stock Cleaning

Hiroshi Yaguchi [28] has successfully introduced two robots to clean rolling-stock in East Japan
Railway company, one to clean commuter rail car floors and another to clean the bonnet of Shinkansen,
high-speed Japanese trains. A mobile robot is developed to clean the commuter rail car floors in
conjunction with Toshiba Co. Ltd. The developed robot weighs approximately 93 kg, which consists
of ultrasonic sensors and encoders for navigation, and optical and touch sensor for safety. This
robot can be operated in both automatic and manual modes, and its capabilities include sweeping
the floor, collecting dirt, sprinkling water, mopping the floor, pulling dirty water, and polishing the
floor. The robot takes about 15 min. to clean a single car. The navigation of robot is done by dead
reckoning—tracking the desired path and its position by encoder data, while any positional error is
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corrected using distance sensors [28]. The second robot is developed to clean the Shinkansen train
bonnet with the collaboration of Uchida Oil Hydraulics Mfg Co. Ltd. and ShinMaywa Industries Ltd.
Previously, the cleaning process of Shinkansen bonnet was carried out by six maintenance workers.
The design challenges of the robotic system included demand for a large work envelope, compact rest
position, and ability to move along and lateral directions to the train. Therefore, researchers have
designed an eight-axis articulated robot mounted on a mobile platform that was capable of moving
along the full-length of a Shinkansen train and across three service bays in the lateral direction. The
main control method of the robot was point-to-point teaching and playback. Hiroshi has concluded
the main challenges in both RAS applications to be cost and ability to sense environment/target
effectively [28].

A self-traction-model to clean urban mass transit vehicles was proposed by Xu et al. The
washing apparatus is mounted on a mobile vehicle platform, which is driven by a variable speed and
voltage inverter. The motion and path planning of the manipulator is achieved by the neutral cell
self-adaptive and Cross-Coupling Control algorithm. Further, a novel variable water control algorithm
is incorporated into the system to make it energy and water efficient. The researchers claim that
the system has gone through years of testing in various depots and was proven to work efficiently
and robustly [29]. Further, there are some conceptual designs and ongoing research to introduce
RAS in rolling-stock cleaning tasks. For example, Tomiyama et al. [30] have presented a systematic
analysis of the train cab front cleaning task and generated subclasses that will enable researchers to
efficiently and effectively find solutions to each sub-task. Further, this study presents several conceptual
designs of cab front cleaning robots and two illustrations of robotic arms are provided. In contrast to
Hiroshi Yaguchi’s bonnet cleaning robot, Tomiyama et al. have divided the work envelope into two
along the vertical symmetric line of the train and positioned two identical robots in each side [28,30].
Furthermore, Moura and Erden [18] presented a theoretical control and path planning methodology
for a train cab front cleaning robot by exploiting the operational space formulation and simultaneous
force and position control introduced by Khatib [31,32].

3.1.2. RAS in Rolling-Stock Fluid Servicing

Thus far, the authors were unable to locate a RAS, which is successfully implemented in a
rolling-stock fluid changing task. However, there are several ongoing studies to introduce RAS in
rolling-stock fluid changing tasks. Atherton et al [15] have conducted a technical feasibility study in
introducing RAS to passenger train fluids, such as fresh water, coolant, screen wash, fuel, effluent, and
wheel sand servicing tasks. One of the challenges identified in this research is the different sizes and the
positioning of fluid ports in fleets. Through this study, it has been concluded that the implementation
of RAS in passenger train fluid servicing task is viable. Further, two preliminary conceptual designs,
which consist of a Cartesian robot and an articulated robot, are proposed.

Further, Farnsworth and Tomiyama [33] looked into automated transmission fluid changing task
of rolling stock with an industrial engineering aspect. They have introduced a novel methodology to
capture, classify, and design automated platforms for industrial maintenance based on a case study
that was conducted on Bombardier Class 222 diesel train transmission fluid changing process. In
contrast, work that was carried out by Vithanage et al. [14] emphasizes the technical aspect of the
gear fluid changing tasks as compared to other high-level investigations conducted. Through this
research, they have successfully adopted Aggregated Channel Feature, an advanced machine learning
algorithm to detect the drain and filler plugs of Siemens Class 380 rolling-stock main gearbox and
curved coupler. Further, they have fused multiple sensors and introduced an Artificial Neural Network,
which consists Levenberg–Marquardt learning algorithm to localize relatively smaller components in
partially organised worlds, such as railway maintenance depots with ±1 mm accuracy [34].
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3.1.3. RAS in Rolling-Stock Inspection

Rolling-stock inspection is expensive, labor-intensive, and critical for safe operation. Therefore,
certain inspection tasks have been automated over the past several decades. For example, the
implementation of wayside detectors, cameras mounted to the rolling-stock undercarriage, and
automated inspection tasks in maintenance depots [35]. In most cases, rolling-stock wheels and
bearings are responsible for derailments [36]. Therefore, a number of automated wayside detectors
are designed and developed to overcome this issue. In Conrail, the derailments due to defects in the
wheels were reduced almost 50% by introducing wayside detectors [36]. Papaelias et al. have proposed
a rolling-stock wheel and axle bearing monitoring system that is based on high-frequency acoustic
emission and vibration analysis mounted to a train. The study has found that it is viable to detect
and classify axle bearing defects by integrating high-frequency acoustic emission data with vibration
data based on their severity [4]. However, these wayside monitoring systems need to be robust and
withstand harsh weather conditions. Therefore, Asplund et al. have tested an automatic laser-based
wheel profile monitoring system (WPMS) for accuracy and performance in extreme weather conditions.
The study shows that laser-based WPMS indicates a deviation of less than 0.2 mm for the flange height,
0.3 mm for the flange thickness, and 0.32 mm for the flange slope as compared to measurements
collected through handheld MiniProf measurement equipment [37].

Hart et al. have proposed a multi-spectral rolling-stock undercarriage inspection technique that
combines visible and infrared images, which allow for recording both physical and thermal conditions,
and the correlation between two. The scope of this study includes the monitoring and inspection
of disc brake condition, bearing performance, and detection of any anomalies in electrical systems,
such as induction motor and air-condition unit [38]. A similar thermal imagery approach is used by
Deilamsalehy et al. to detect sliding wheels and hot bearings. The proposed methodology consists of a
wheel and bearing detection module, hot bearing detection module using thresholding, and a Support
Vector Machine (SVM) classifier, which uses a Histogram Oriented Gradient (HOG) of thermal images
as input to detect flat wheels. The developed system is capable of detecting simulated and real-world
defective wheels, with 98% accuracy [39]. Furthermore, a study has been conducted to determine the
feasibility of inspecting rail underframe components of freight cars, such as center sill, side-sills, and
cross-bearers. The study has proposed both a hardware and software to collect the required visual data
and detect and assess rail undercarriage components for any deformation or buckling and presence of
breaks or cracks. The study concludes that presented image acquisition and machine vision algorithms
demonstrated the feasibility of automating the inspection of structural components [40].

Liu et al. have proposed an automated status inspection of fastening bolts on freight trains while
using machine vision. The developed algorithm delivered the best performance by combining gradient
orientation co-occurrence matrix and SVM classifier. The system is able to detect the existence or
nonexistence of a bolt in a complex environment with 99.96% accuracy and it is expected to evaluate
the performance of the system in adverse weather conditions [41]. In addition, Li et al. have proposed
another automatic bolt defect recognition system—which focuses on freight train wheels. Similar to
the method that was proposed by Liu et al., they have utilized the SVM classifier to distinguish the
presence or absence of a bolt. In contrast, Li et al. have used a binary pattern descriptor as input to the
classifier and their system consists of a self-updating scheme, which automatically captures various
real-life scenarios. The system, as presented by Li et al., has demonstrated 100% bolt defect detection
rate with 8.1% false alarm rate [42].

Additionally, Kim and Kim have proposed an automatic system that accurately measures brake
shoe thickness with an accuracy of 0.654 mm. They have successfully exploited the shadow regions
between the brake shoe and wheels that look similar in all images to localize the brake shoes by
modeling the boundaries as inverse polynomials [43]. Furthermore, Zhou et al. have presented
a real-time automated visual inspection system of angle cocks, which is a critical component of a
rolling-stock brake system. The developed system incorporates a gradient encoding histogram and
SVM in the processing module. It has been claimed that the system achieves 99.8% accuracy in fault
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detection [44]. In addition, the Bombardier team at Midrand, South Africa has commissioned an
Automatic Vehicle Inspection System (AVS), together with expertise in MRX technologies and IBM,
which is proven to be extremely successful. The system is capable of monitoring multiple aspects, such
as brake pad and disc conditions, axle temperature, wheel profile, wheel damage, pantograph wear,
and any abnormalities on train exterior profile while using cutting-edge three-dimensional (3D) image
acquisition and processing tools [45].

Edwards at al. and Liu et al. have presented online visual inspection systems that capable
inspecting rail car safety appliances and bogie block keys of freight trains respective. Both systems
utilize machine vision, advanced image processing algorithms, and state of the art machine learning
algorithms to identify the defects [46,47]. Besides, Vithanage et al. have presented an image processing
system to identify and localize the connector pins of Scharfenberg type automatic couplers mounted
on Siemens Class 380 trains. The system claims to have high detection rate and robustness to
environmental noises. The proposed system expects containing an off the shelf industrial robot to
execute the inspection process [14]. This is system was further developed to have a unified 3D vision
and a force-position controller. The prototyped work cell is validated while using an industrial grade
6-DoF articulated robot. It has been estimated to improve the standard operating time by approximately
34% [48].

3.2. RAS in Rolling-Stock Rebuilding

Kent and Ward have carried out some early development work to introduce robotics into the
additive repair of rolling-stock wheels, which is supported by the Rail Safety and Standards Board
(RSSB) via Rail Research UK Association (RRUKA) [10]. However, as an intermediate output, they
have proposed a rolling-stock wheelset inspection robotic cell that consists of a 6 DoF articulated
Kuka robot mounted on a rail, ToF sensor, RGB sensor, and a train wheel rotating mechanism. In
addition, the mining company Vale, Brazil has invested on a robotic rail car rebuilding cell. According
to the manager, operational improvements at Vale, maintenance cycle time was reduced from 48
hours per car to 11 hours per car on average. Further, they have managed to remove technicians from
labour intensive and dangerous work, and assign them to safer and more value-added tasks [49].
A commercial rolling-stock wheel set maintenance shop at “SIMMONS Machine Tool Corporation”
utilizes reprogrammable robots and overhead gantry system to automate the movement of the wheel
sets and their components between various workstations and machines. The system claims to decrease
human contact with wheel set components and machines, improve personal health and safety, reduce
opportunities for error, and eliminate the requirement of forklift operation on the shop floor [50].

3.3. RAS in Power Transmission Line Maintenance

A power transmission wire inspection system was developed for Netherlands railway company,
which perceives the thickness of wires and detects any appearance of holes that are caused by local
sparks [51]. In this system, the under surface of the overhead wire is illuminated with a laser beam and
reflected radiation is then detected by a fast CCD detector. The processing algorithm determines the
thickness of wire and any of occurrence of holes. According to Smorenburg and Valkenburg, the system
is capable of mounting on a train, which travels 90km/h and inspects four wires simultaneously for
every centimetre. Hence, the system is able to efficiently execute inspection process without disrupting
normal services [51]. In addition, Sawada et al. have developed a fully autonomous robot to inspect
power transmission lines—which is capable of negotiating obstacles, such as towers, ground wires,
etc. The robot consists of curved arm—which helps to negotiate obstacles, a vehicle assembly that
carries the inspection unit, and a balancer with a built-in controller. The robot measures eddy current
and the processing algorithm determines the condition of the power transmission wire based on the
input data [52]. Besides, Peungsungwal et al. have developed an autonomous power transmission line
inspection robots to examine the power cables and insulators [53]. The robot uses image-processing
techniques, such as edge detection and pattern recognition algorithms to detect insulators. The most
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interesting feature of this robot is that it does not depend on a battery pack or any other sources of fuel,
but harvest the required energy from power line through induction [53].

3.4. RAS in Track Maintenance

Railway track maintenance plays a major role in the railway industry. Trivedi et al. have proposed
a fully autonomous robotic system to detect and remove sleeper bolts, feed new fastener, and assemble
them in Shinkansen high-speed train lines. Instead of creating one massive robot to perform all
tasks, researchers have taken a different approach and created a multi-robotic system, where the
individual robot will focus on a simplified task. According to Trivedi et al., the system is technically and
economically viable [54]. Further, Rowshandel et al have proposed an integrated robotic system for the
detection and characterization of rolling contact fatigue cracks in rails. The suggested system consists
of a mechanized trolley, a robot, a commercially available alternating current field measurement
(ACFM) system, and a laser distance sensor. The trolley, which contains the articulated robot, will
travel at a controlled speed scanning for surface cracks on the rail and the robot will take over the
scanning process while using the ACFM system once a crack is detected. Further, it has been concluded
that the system manages to autonomously detect and characterize surface-breaking defects with high
precision [55].

Furthermore, researchers have successfully exploited the recent developments of machine vision
and classification algorithms to develop RAS in rail track maintenance tasks, especially for inspection
and monitoring [56,57]. Santur et al. have proposed a robust rail condition monitoring methodology
while using a laser scanner mounted on a moving rail car, which detects fractures, scorings, and
excessive wear of the track. Random Forest classification learning algorithm is used in their system by
considering the Eigenvalues of rail profiles as input. According to the authors, the system demonstrates
98% accuracy [58]. A similar track geometry diagnostic system has been developed by Madejski, which
alerts the weak locations of tracks and helps to save about 90%–95% labour consumption [59].

In addition, there are few dozens of RAS that have been developed to detect the missing or worn
out track components, such as bolts, clips, ties, tie plates, anchors, and turnout components [60–62].
For example, an autonomous clip detection and classification system was introduced by Gibert et al.,
where HOG of target images was analyzed to detect clips and classify their condition as good, missing,
or broken by taking advantage of Linear Support Vector Machine (LSVM) learning algorithm. The
described system is capable of achieving a probability of detection of 98% and a false alarm rate of
1.23% [63]. Another application is developed to detect missing railway clips and recently replaces clips
that are different in color by employing basic image processing techniques, such as Gaussian filtering,
Canny edge detection, suppressing smaller edges from a binary image, analyzing edge pixels density
of binary images, and histogram of colors. According to Singh et al., the system is accurate up to 95.3%,
86.5%, and 84.7% in finding clips, blue clips, and missing clips, respectively [64]. In addition, Li et al
present a real-time automatic vision-based rail inspection system, which performs inspections at 16
km/h with a frame rate of 20 fps to detect and inspect tie plate, tie, and anchor. The proposed system
that is composed with an image and video analysis methodology, which is combined with multiple
cameras, Global Position System (GPS) and a distance measurement instrument. The system consists
of an acquisition module, rail component detection, optimization module, and an exception detection
module to detect damaged or missing components. Further, the systems acquired following detection
results, Tie plate: 100% recall rate and 99.3% precision, Tie: 82.3% recall rate and 88.2% precision, and
Anchor: more than 96% recall rate and precision [65].

A higher technology readiness level robotic solution for rail track inspection is developed
by “Autoscan”, which uses electromagnetic acoustic transducers (EMATs) that are mounted to a
self-powered autonomous inspection cart with a robotic arm. The system is at TRL 6 and it has the
ability to reduce track inspection costs by at least 15%. It is expected to record different defects with an
accuracy of +/- 0.5 mm [66]. In addition, a commercially available automated rail inspection robotic
platform has been introduced by “RailPod”. The platform is composed of a vehicle that can be remotely
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controlled or drive autonomously and it contains the ability to configure based on individual customer
need [67].

3.5. RAS in Bridge Maintenance

Railway bridge maintenance is labor-intensive and, in most circumstances, technicians need to
execute the bulk of tasks in dull, dirty and dangerous environments. Therefore, to relieve human
workers from such labour intensive and dangerous tasks, Liu et al. have introduced a robotic system
for stripping paint and rust from steel bridges. The proposed system consists of a 6-DOF industrial
robot, a moving platform, a sensor package that is equipped with a laser range finder, cameras, and a
capacitive sensor network, and a high-performance computer [68]. In addition, Wang and Kawamura
have designed and developed a semi-autonomous magnetic climbing robot for steel bridge inspection,
which can be freely moved without disrupting the traffic. The magnetic wheels of this design not only
provide necessary adhesion, but the required magnetic field for inspection. The system is yet to be
completed and tested on real bridge inspection task [69]. Furthermore, Oh et al. have prototyped a
bridge inspection robot, which consists of a specially designed car, a guide rail, and an inspection robot.
The proposed system is capable of fully autonomous operation or teleoperation by distant user, which
has been successfully tested in laboratory conditions. It is expected to develop the robot to operate in
real environments [70].

3.6. RAS in Tunnel Maintenance

The majority of railway tunnels are inspected by human technicians and that suffers from human
errors, costs, and high inspection time [71]. Further, atmospheric conditions within tunnels are
characterized as dusty, humid, and dark, which acts as hazardous and hostile environments for
human workers [72]. IRIS Hyrail by Penetradar is a commercially available semi-autonomous tunnel
inspection system, which consists of a Ground-penetrating radar (GPR). The inspection module is
fixed to a motorized boom, which is mounted on a vehicle that can be driven on the rail tracks. The
manufacturer provides specialized software to manage, collect, and display GPR data [73]. In addition,
Aoshima et al. have proposed an automatic tunnel inner wall deterioration monitoring system. The
suggested scheme consists of sensors that are fused to regular train (velocity more than 100 km/h)
which is then used capture data on daily basis. The system is capable of scheduling the necessary
maintenance upon the detection of any deterioration being discovered by analysing the relationship
between the train velocity and the cross-correlation coefficient of the interpolated crack images [71].

3.7. RAS in other Railway Maintenance Tasks

RAS in other railway maintenance tasks include automated cleaning robots in train stations,
monitoring of railway infrastructure using drones, monitoring and inspection of grade crossing at
etc. Hiroshi has introduced two mobile cleaning robots, to clean stations in the East Japan Railway
Company [28]. One robot is designed to sweep the and collect the dust that accumulated in the
corners of station floor and another robot is designed to scrub the station floor. The sweeper type
robot has three operational modes, namely ‘magnetic guide method’, where the robot follows the
path of a magnetic tape, ‘direct teaching method’, where the robot memorizes the path taught by an
operator, and a ‘wall surface copy system’, where the robot follows the wall while using ultrasonic
distance sensors.

The second robot, by Hiroshi, is capable of sprinkling water, scrubbing the floor, and removing
consumed water by suction. The robot is fixed with a self-propelled system that includes a gyroscope
in order to cope with wider station concourse. This robot consists of two operating modes, ‘area set up
mode’, where the robot cleans the input length and width of the area and ‘route map mode’ where the
robot cleans according to a built-in map. The area clean mode has the obstacle avoidance capability,
while the built-in map mode does not. Furthermore, it is possible to upload up to nine built-in maps.
Both of these robots consist of safety features, such as optical sensors to detect the presence of humans,
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melody chime, alarm lamp, emergency stop switches, and soft bumpers. A similar commercially
available cleaning robot for various industrial applications, including railway platforms, is available
at “Robotics Inventions” under original equipment manufacturer license. The system claims to have
military grade autonomy and mapping capabilities, automated recognition of dirt type to be cleaned,
and auto-service station with recycled water tank [74].

Besides, Flammini et al. have evaluated the drone capabilities in a railway-monitoring framework,
which include structural health monitoring, such as bridge, tunnel, and other infrastructure inspection,
track monitoring, and inspection to detect any faults or disturbances. Authors have presented several
potential control and communication frameworks for the drones and claim that drones could represent
a promising technology to efficiently monitor railway and mass transit infrastructures [75]. In addition,
Ranganathan and Olson have proposed an automated grade crossing condition monitoring system.
The required sensors are mounted to a vehicle and the developed algorithm is capable of processing
data on the go. The presented system is able to identify a grade crossing with 90% accuracy while
using SVM and identify any dangerous traffic flow lines/regions based on the surface profile of the
grade crossing [76,77].

A robotized, semi-automated platform is introduced in [78,79] to collect different safety parameter
measurements that are linked to railway track circuits (TC). A system architecture, together with a
virtual instrumentation and mathematical model, is presented. It has been concluded that the proposed
system can become a viable solution for TC maintenance. Authors claim that this system would be an
efficient solution for current manual maintenance practice and aim to improve the operator safety and
reduce human errors.

Railway maintenance as a whole is typically a large and complex system. Therefore, these tasks
needs to be scheduled in an effective way to improve safety, reduce downtimes, eliminate corrective
maintenance jobs, optimize asset/equipment life cycle, and reduce costs. One approach to overcome
this challenge is to exploit a data rich environment of railway and introduce autonomous scheduling
for maintenance jobs. In [80], an automated task scheduling scheme is introducing by fusing data on
railway’s condition, planning, and costs. Here, a proof of concept is developed to validate the system
and test algorithm functionality. Its authors conclude that the demonstrator found to be viable fit for
the purpose. It is expected to conduct further research and evaluate commercial exploitation of the
system. A similar system is introduced in [81]. Here, a genetic algorithm is used to optimize railway
track maintenance and renewal job scheduling. The system was demonstrated to perform well and
illustrated the ability to instead use corrective maintenance activities.

4. Discussion

The study reveals a strong case for the necessity of RAS in railway maintenance to improve
the safety of passengers and railway workers, quality and reliability of the service, and to mitigate
unpredicted expenses through preventive maintenance. It has been revealed that the majority of
RAS developments focus on rolling-stock and rail track maintenance tasks, which are justifiable, as
said constituents play a major role in the railway industry. Further, it has been realized that the
majority of RAS developments in the subject area focus on inspection and monitoring, which are
maintain the advantage of computer vision and supervised machine learning algorithms. Therefore, it
would be advantageous if more research were conducted on applied robotics to elevate the mechanical
engineering aspect of such systems. For instance, introduce collaborative robots to support maintenance
technicians in railway depots [82], develop a robotic system to conduct scheduled maintenance tasks,
such as front end inspection and service of rolling-stocks or to service rolling-stock brake system,
equip railway workers who handle heavy tasks with load carrying exoskeletons to minimize muscular
fatigues [83], or adopt humanoid robots from service robotic sector to handle complex railway
maintenance tasks [77,84,85].

On the other hand, the majority of inspection tasks tend to exploit SVM, which is a supervised
machine algorithm to detect the presence of components or to classify the condition of a component
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as good or damaged. For example, there are several applications for detecting missing bolts and
screws, but it emerges that there is not enough research to detect a loose screw or bolt. Further, more
examinations are required to exploit different classification algorithms other than SVM in the railway
maintenance field. In addition, the detection of smaller railway components in unstructured and
dynamic environments is non-trivial. For instance, the detection and localization of connectors of the
automatic train coupler electric head pins or detection of wire-locks used to secure drain/filler plugs in
certain rolling-stock gearboxes, such as Siemens Class 380 [14].

Furthermore, it is required to make robotic systems as flexible as possible while using off the
shelf robots than introducing fully customized designs that yield higher costs, deficit in flexibility, and
longer development periods [79]. Flexible and easily reconfigurable RAS developments will provide
the ability to deploy the RAS in multiple tasks to attain benefits, such as shorter financial recovery
periods and space saving. Further, such systems are viable through the proper design of layout, path
planning, and development of intelligent and reconfigurable end of arm tooling. For instance, deploy
a robot mounted on a rail or a scissor lift to clean train cab front and inspect automatic train coupler or
utilize a robot that is mounted on a moveable platform to perform both transmission fluid and brake
service tasks.

5. Conclusions

Not to overlook the rapid progress made by RAS in railway maintenance sector, there are still
ample areas to be investigated. Authors of the paper believe that, in the near future there will be
collaborative robots working together with human workers in railway maintenance. Lastly, the
introduction of RAS for railway maintenance cannot be a viewed as a sole responsibility of academic
researchers, operations, maintenance, or industrial engineers. For instance, rolling-stock designers
and manufacturers should consider promising areas to introduce RAS in rolling-stock maintenance
and incorporate strategies to their future designs—which will enable the realization autonomous
maintenance systems. In other words, designed and manufactured for automated maintenance.
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