
computers

Article

Network Intrusion Detection with a Hashing Based
Apriori Algorithm Using Hadoop MapReduce

Nureni Ayofe Azeez 1, Tolulope Jide Ayemobola 1, Sanjay Misra 2,3 , Rytis Maskeliūnas 4 and
Robertas Damaševičius 4,*

1 Department of Computer Sciences, University of Lagos, Lagos 100213, Nigeria;
nazeez@unilag.edu.ng (N.A.A.); ayemobolatolulope@gmail.com (T.J.A.)

2 Department of Electrical & Information Engineering, Covenant University, Ota 112233, Nigeria;
sanjay.misra@covenantuniversity.edu.ng

3 Department of Computer Engineering, Atilim University, Ankara 06830, Turkey
4 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland;

rytis.maskeliunas@polsl.pl
* Correspondence: robertas.damasevicius@polsl.pl

Received: 23 October 2019; Accepted: 29 November 2019; Published: 2 December 2019
����������
�������

Abstract: Ubiquitous nature of Internet services across the globe has undoubtedly expanded the
strategies and operational mode being used by cybercriminals to perpetrate their unlawful activities
through intrusion on various networks. Network intrusion has led to many global financial loses and
privacy problems for Internet users across the globe. In order to safeguard the network and to prevent
Internet users from being the regular victims of cyber-criminal activities, new solutions are needed.
This research proposes solution for intrusion detection by using the improved hashing-based Apriori
algorithm implemented on Hadoop MapReduce framework; capable of using association rules in
mining algorithm for identifying and detecting network intrusions. We used the KDD dataset to
evaluate the effectiveness and reliability of the solution. Our results obtained show that this approach
provides a reliable and effective means of detecting network intrusion.

Keywords: association rule mining; intrusion detection; cyberattack; network security;
apriori; MapReduce

1. Introduction

The survival of any business organization depends upon the security mechanisms that adequately
protect and prevent from illegal entrance into confidential data of the organization. However, it
might appear impossible to entirely control the breaches in security at present. On the back of this,
researchers can attempt to detect intrusions and act accordingly to counter actions that brought about
them. Intrusion detection scrutinizes computer activities for the purpose of uncovering violations [1].
The activity is especially relevant for new technologies such as smartphones [2], cloud computing [3],
fog computing [4], and edge computing [5], where private and business data is shared across computer
or wireless sensor networks, thus increasing the likelihood of attacks [6].

The intrusion detection system (IDS) provides insight into tracking and analysis of system and
user activity, looking out for vulnerability, statistical anomalies, and performing behavioral analysis
of user activities. The IDS can add expertise to the remaining part of critical network infrastructure
and can follow activities of users from entry to action points. Being active, they can report alterations
to administrators; when the system is under attack or when it detects errors in system configuration,
guide the administrator in establishing necessarily important policies best for the organization’s safety
and even give permission to non-expert staff to carry out security management on the system. Even

Computers 2019, 8, 86; doi:10.3390/computers8040086 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-3556-9331
https://orcid.org/0000-0001-9990-1084
http://dx.doi.org/10.3390/computers8040086
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/8/4/86?type=check_update&version=2

Computers 2019, 8, 86 2 of 15

though they may not be the all-in-all solution to all penetration threats and vulnerabilities, regular IDS
can serve the purpose of ensuring that our system is secure to an appreciable level [7]. While the IDS
are a sophisticated tool for enhancing protection, they do not compensate for weak mechanisms in user
identification and authentication, in network protocols used and in integrity of information provided
by the system. Further to this, they cannot investigate into issues of penetration without involvement
of a network administrator; cannot examine all traffic on busy networks; cannot perpetually handle
problems having to do with packet-level data and certainly cannot work with some of the modern
network hardware and features. Recently, the researchers have grown more interest in the topics of
detection of an intrusion in order to safeguard networks and their components [8–10]. IDS can be
grouped into network-based (responsible for checking network structures and look out for attack
signatures), host-based (function on host systems and function to defend systems from traces of
intrusion), or application-based (aimed at monitoring specific applications and programs).

The signature-based IDS [11] use prior knowledge from a database of former attack signatures
and recognized threats. The term signature implies a pool, where a set of stored proof of an attack are
availed, since each passing leaves an image behind its attack. These left-back prints can be used in
identifying and preventing same attacks later. The major demerit of the signature-based IDS is that
regular updating and maintenance is required, so unique attacks can be recognized.

The anomaly-based IDS [12] refer to a baseline or learned model of system’s normal activity, a
significant deviation from this baseline is used to recognize the active intrusion attempts and trigger
the alarm. These IDS are usually associated with higher rate of false alarms.

The network IDS [13] (NIDS) are made up of a network sensor, a network interface card (NIC)
and an interface for management. The NIDS is fitted within a network segment and observes all
traffic within that segment. NIDS recognizes intrusions by tracking network traffic and monitoring
many hosts. With NIDS, sensors are put at stifle locations in the network to be checked, e.g., in the
demilitarized zone (DMZ) or at network borders. The sensors function to capture all network traffic and
inspect network packets for anything suspicious. NIDS can supervise an entire, large network using a
small number of well-placed nodes or devices and subject the network to a little overhead. They act
passively by not adding notable overhead or disrupting network processes, but just monitor network
activities. The ease to secure a NIDS makes them mostly unrecognizable to potential attackers and they
are easy to deploy and use on computer networks. While NIDS function extensively in supervising
a large network, they are not able to track and analyze all network traffic and may not take note of
attacks carried out at busiest periods and may not be able to safeguard high-load networks adequately.
NIDS cannot analyze encrypted data neither do they report the outcome of attacks. Therefore, they
may require active human involvement to minimize the effects of identified attacks.

The host intrusion detection systems (HIDS) [14] and several applications (agents) run on
workstations to be mounted is the focal point. They mainly consist of an agent on a host system that
recognizes system calls, application logs, system modifications, and other activities engaged in on the
host system. The agents take note of the operating system and transfer data to log files and/or trigger
alarms (if it is either active or passive IDS). The HIDS can only monitor on individual workstations,
which have the agents running on them; it cannot function for the entire network. Consequently,
they are used in capturing any intrusion attempts on crucial servers. However, the HIDS suffer a
few demerits: difficulty in analyzing intrusion attempts on many systems, the presence of different
operating systems might pose a challenge in maintenance in large networks, as the HIDS can be
disabled by attackers on compromised systems.

As network topology and network traffic can change over time, the ability of these intrusion
detection techniques to accommodate these changes decreases. Therefore, developing the IDS that can
learn all network traffic patterns is nearly impossible. Several forms of the IDS have been brought
forward to lighten the issues that they endure like accuracy, large volumes of data, distribution of
these datasets, unease in recognizing the borders between the normal and abnormal behaviors in data
sequences and adjusting to the regular changes in the environment [15].

Computers 2019, 8, 86 3 of 15

Lately, new threats related with cloud computing, fog computing, and edge computing have
emerged as these computing technologies are still vulnerable to security deficiencies and vulnerabilities
for intrusion and other malicious activities affecting the integrity and availability of resources on cloud.
For example, Abadeh and Habibi [16] proposed using evolutionary fuzzy rules and optimized GA for
intrusion detection. Al Haddad et al. [17] introduced a collaborative network intrusion detection system
(C-NIDS) to find network attacks, while addressing intrusion detection in virtual network, and other
security challenges. Das et al. [18] used principal component analysis (PCA) to lower the complexity
of the network data and detect network intrusions. Huang et al. [19] demonstrated the use of rough
sets and support vector machines (SVM) for intrusion detection, while Khamphakdee et al. [20] used
the association rules for identifying probe attacks. Kola Sujatha et al. [21] used a combination of SVM,
fuzzy logic and genetic network programming (GNP) to create rules to detect the network intrusions.
Hashem et al. [22] used the Bee Ranker (BR) algorithm based on the foraging behavior of honeybees for
selection of features useful for detection of network intrusions. Gao et al. [23] combined an adaptive
principal component (A-PCA) for adaptive selection of network traffic features, and incremental
extreme learning machine (I-ELM) for intrusion detection. Abdulhammed [24] used auto-encoder (AE)
and principle component analysis (PCA) to lower feature dimensionality before building Bayesian
network, random forest (RF), linear discriminant analysis (LDA), and quadratic discriminant analysis
(QDA) classifiers for an IDS. Al Tobi and Duncan [25] explored threshold adaptation for C5.0, random
forest and SVM in improving the accuracy of the network intrusion detection models.

The Apriori algorithm was used in the context of network security before. Prasenna et al. [26]
used fuzzy Weighted Association rule (WAR) based on the Apriori algorithm and genetic network
programming (GNP) and for generation of rules to evaluate network misuse and anomaly detection.
Lalli et al. [27] used GA to reduce network traffic features, then Apriori Association is used to generate
a rule schema, and artificial neural network (ANN) filters the rules to increase the detection accuracy.
An et al. [4] proposed using a hypergraph clustering model based on the Apriori algorithm to find
the association between fog computing nodes with a higher risk of threat of the distributed denial of
service (DDoS) attack. Jie et al. [28] proposed a similarity factor for quantifying the similarity between
current and past frequent itemsets in real time. The factor is used as a reliability parameter to identify
the abnormal system state.

For network IDSs, different frequent itemset mining algorithms, including the modifications of
the Apriori algorithm, have been widely used. Yan et al. [29] employed the PrefixSpan-based sequence
mining algorithm for network log analysis and intrusion discovery. Ohrui et al. [30] combined Apriori
with Prefixspan, the sequential pattern mining approach, to detect and predict future botnet attacks.
Zeng et al. [31] used sparse matrices to optimize Apriori for big data computing. The improved
algorithm can save the runtime of data mining in intrusion detection, and save storage space for the
analyzed network data. Khalili et al. [32] used Apriori to reduce the number of candidate states of
industrial systems evaluated as critical. Zheng et al. [33] utilized the relational algebra theory to obtain
the optimization relation association rule (ORAR) based on the relationship matrix and correlation
operation, which reduces the number of dataset scanning operations to one, and thus overcomes the
disadvantage of Apriori, which requires multiple scans.

Artificial intelligence (AI), machine learning (ML), and ANNs have become key research topics in
the domain of anomaly-based intrusion detection. Chiba et al. [34] used the signature-based detection
to find known attacks, and back-propagation neural network (BPN) classifier to identify unknown
attacks. Odusami et al. [35] employed long short term memory (LSTM) for protecting against layer
seven distributed denial of service (L7DDoS) intrusion attack. Yang et al. [36] employed modified
density peak clustering algorithm (MDPCA) to lower the size of the training set and to deal with the
class imbalance problem. Each cluster was used to train its own deep belief network (DBN) classifier.
Finally, the decisions of the DBN classifiers is combined based on fuzzy membership weights, which
are calculated using the nearest neighbor criterion. Le et al. [37] used the hybrid sequence forward
selection and decision tree (SFSDT) model to generate the optimal feature subset for training recurrent

Computers 2019, 8, 86 4 of 15

neural network (RNN) models. The latter are used to deal with user-to-root (U2R) and remote-to-local
(R2L) attacks.

Summarizing, despite the plethora of methods used, including the advanced deep learning
models, which have been proven successful in multiple other domains of application, they often fail
for the real-world network intrusion detection task despite showing excellent results on benchmark
network intrusion datasets. The reason is that the need of adaptation to pattern variability has often
been neglected. Certain classes of attack such as denial of service (DoS) attacks are formed of abrupt
patterns, which bring a high level of variability into network traffic patterns. For machine learning
models, adaptation is performed only once using the validation data for cross-validation such as
k-folds. However, in the real-world scenarios, validation data changes continuously, which makes
such approaches inefficient [26].

Our novelty and contribution are the proposed improved hashing-based Apriori algorithm and
its implementation on the MapReduce framework. The hashing-based modification allows too find the
frequency of the k-itemsets without the use of computationally expensive candidate sets, which makes
it usable for detecting network attacks in near real-time, whereas the MapReduce framework allows to
handle network traffic on large networks. We demonstrate the applicability of the proposed method to
identify and detect network intrusions using the KDD dataset as a benchmark.

2. Methodology

2.1. Apriori Algorithm

The Apriori algorithm is used for mining frequent itemsets based on the Boolean rules. The Apriori
algorithm is considered as the most recognized algorithm to mine association rules. Developed by
Agrawal and Sriknat [38], the algorithm finds association rules issues on a large scale, giving room to
implicative outcomes that possess more than one element. Association rules seek frequent itemsets that
have occurrences that go beyond a pre-defined least threshold and obtaining association rules from
those frequency itemsets. These two sub-issues are solved repeatedly until no new rules appear. The
least support threshold must be set by the user. The algorithm of Apriori is summarized in Algorithm 1.
The algorithm has two stages: a training phase and a testing phase. In the training Stage, the algorithm
can observe specs of behavior and the makes a generalization from it. Several algorithms organized
learning stage, whereby samples of known attacks are supplied. In the testing stage, the algorithm is
provided with a situation and it decides on the possibility of having an attack.

Algorithm 1: Apriori algorithm

Variables:
Ck is a candidate itemset of size k
Lk is a frequent itemset of size k
BEGIN

Find frequent set Lk−1
Generate Ck by using Cartesian product of Lk-1, i.e. Lk−1 x Lk−1
Perform pruning: remove any k−1 size itemsets that are not frequent
Return frequent set Lk

END

The algorithm utilizes a breadth-first search mechanism and a hash tree configuration to make
candidate itemsets counted efficiently to determine the frequency of occurrence for each itemsets.
The pseudocode of the algorithm is summarized in Algorithm 2.

Computers 2019, 8, 86 5 of 15

Algorithm 2: Find frequent itemsets

BEGIN
L1 ←

{
large 1− itemsets that appear in more than ε transactions

}
k← 2

while Lk−1 , �

Ck ← Generate(Lk−1)

f or transactions t ∈ T
Ct ← Subset(Ck, t)

f or candidates c ∈ Ct

count[c]← count[c] + 1
Lk ←

{
c ∈ Ck

∣∣∣ count[c] ≥ ε
}

k← k + 1
return

⋃
k

Lk

END

The disadvantage of the classical Apriori algorithm is rapid performance degradation when
working with very large datasets because of recurring scanning of the dataset and the creation of
many candidate sets. To improve the efficiency of the Apriori algorithm, we have adopted the idea of
hashing first presented by Tribhuvan et al. [39]. The Modified Apriori algorithm employs hash tables
to generate large itemsets efficiently. It runs over the entire dataset and stores previous results in the
hash tables. This allows to void repeating scan as the results stored in hash tables are used. We also
employ the double hashing techniques by Jayalakshmi et al. [40]. First, the data is represented using
the Transaction id format. The hashing is used to store the data values. To resolve hashing collisions,
an independent second hashing function is used. Following the suggestion of [41], for hashing we
adopt Hamming projections, which are described as follows:

HA{x→ x∧ a|a ∈ A}, A ⊆ {0, 1}(1+Smax)n, (1)

here Smax is maximum support, and n is the count of transactions.
The hash table construction procedure has two parts: generation of hash value and update of the

hash table. Similarly to Reference [42], to increase the speed of hash table construction, we employ
parallel hash value generators to allow for the simultaneous generation of hash values. However,
instead of hardware parallelization, we use MapReduce [43]. The MapReduce model is based on the
division of the large dataset into smaller data subset. Then the Map function is used to parallelize the
processing of each data subset. The Reduce function performs the combining of the results. In case of
the Apriori algorithm, we follow the suggestion of Zhou et al. [44] and start from the frequent 2-itemset.
As a key value, we use the first (k − 2) term of the frequent (k − 1)-itemset, whereas the value is the last
term. The Reduce function combines the results into previous (k − 2) items. Thus, our method has
two stages. First, MapReduce is applied to calculate frequent itemsets in parallel. Then the frequent
itemsets are subjected to MapReduce again to find the association rules. The pruning is performed
based on support and confidence threshold criteria. The algorithm is summarized as a flow diagram in
Figure 1.

Computers 2019, 8, 86 6 of 15

Computers 2019, 8, 86 6 of 14

Figure 1. Flow diagram of the improved Apriori algorithm.

2.2. Dataset

The KDDcup99 intrusion dataset (available from the UCI KDD repository) was used for the
testing of the algorithm. The dataset has many intrusion attacks simulated in a military-grade
network. The KDDcup99 dataset is considered as the benchmark tagged dataset [45] that is
commonly used for assessing the network intrusion detection methods. Here we use the 10% KDD
training data subset. The dataset has some important features, which support the purpose of its usage
for intrusion detection. TCP packets are used to describe the connections from the initial stage to the
end at important acceptable intervals. Each connection is tagged and labeled as normal or abnormal.
There are 494,021 connection attempts at the LAN. The dataset covers four main attack types (see
Table 1) and has 41 features separated into both continuous and discrete sets. The 41 features (see
Table 2) include the characteristics of TCP connections, content and network traffic features, which
are calculated with a 2 sec time window [46].

Table 1. Attack types in the KDDcup99 intrusion dataset.

Class Description Number of
Records

Attack Types

DOS denial of services (DoS), 391,458 Teardrop, smurf, pod, Neptune, Land,
Back

U2R unauthorized access to local
supervisor privileges

52 Rootkit, perl, loadmodule,
Buffer_overflow,

R2L
unauthorized access from a

remote machine 1126
Warezmaster, warezlient, spy, phf,

multihop, imap, guess_passwd, ftp_write

Probe surveillance and other
probing

4107 satan, portsweep, nmap, IPsweep

Figure 1. Flow diagram of the improved Apriori algorithm.

2.2. Dataset

The KDDcup99 intrusion dataset (available from the UCI KDD repository) was used for the
testing of the algorithm. The dataset has many intrusion attacks simulated in a military-grade network.
The KDDcup99 dataset is considered as the benchmark tagged dataset [45] that is commonly used
for assessing the network intrusion detection methods. Here we use the 10% KDD training data
subset. The dataset has some important features, which support the purpose of its usage for intrusion
detection. TCP packets are used to describe the connections from the initial stage to the end at important
acceptable intervals. Each connection is tagged and labeled as normal or abnormal. There are 494,021
connection attempts at the LAN. The dataset covers four main attack types (see Table 1) and has 41
features separated into both continuous and discrete sets. The 41 features (see Table 2) include the
characteristics of TCP connections, content and network traffic features, which are calculated with a 2
sec time window [46].

Computers 2019, 8, 86 7 of 15

Table 1. Attack types in the KDDcup99 intrusion dataset.

Class Description Number of
Records Attack Types

DOS denial of services (DoS), 391,458 Teardrop, smurf, pod, Neptune, Land, Back

U2R unauthorized access to local
supervisor privileges

52 Rootkit, perl, loadmodule, Buffer_overflow,

R2L unauthorized access from a
remote machine

1126 Warezmaster, warezlient, spy, phf,
multihop, imap, guess_passwd, ftp_write

Probe surveillance and other probing 4107 satan, portsweep, nmap, IPsweep

Table 2. Features used for constructing Apriori rules.

Class Selected Features

DoS count, dst_bytes, dst_host_count, dst_host_serror_rate, dst_host_srv_count,
dst_host_srv_serror_rate, flag, protocol type, serror_rate, service, src_bytes, srv_count,

srv_serror_rate.

Probe count, diff_srv_rate, dst_bytes, dst_host_count, dst_host_diff_srv_rate, dst_host_rerror_rate,
dst_host_same_src_port_rate, dst_host_same_srv_rate, dst_host_srv_count,

dst_host_srv_diff_host_rate, dst_host_srv_rerror_rate, dst_host_srv_serror_rate, duration, flag,
protocol_type, rerror_rate, same_srv_rate, service, src_bytes, srv_count, srv_diff_host_rate,

srv_rerror_rate, srv_serror_rate.

R2L count, dst_host_count, dst_host_diff_srv_rate, dst_host_same_src_port_rate,
dst_host_same_srv_rate, dst_host_srv_count, dst_host_srv_diff_host_rate, flag, hot,

is_guest_login, logged_in, same_srv_rate, services.

U2R count, dst_bytes, dst_host_count, dst_host_same_src_port_rate, dst_host_same_srv_rate,
dst_host_srv_count, duration, flag, hot, logged_in, num_compromised, num_file_creations,

num_root, num_shells, protocol_type, root_shell, same_srv_rate, service, src_bytes, srv_count.

2.3. Evaluation

We evaluate the results using the strength measures of association rules, i.e., support and
confidence. Support defines how often a rule can be applied to a dataset, whereas confidence defines
how often items in consequent of the rules appear in the rules that contain the antecedent:

s(X→ Y) =
σ(X∪Y)

N
, (2)

c(X→ Y) =
σ(X ∪Y)
σ(X)

, (3)

here S is the support, C is the confidence, X is the antecedent, Y is the consequent, and σ is the frequency
of the itemset.

A rule that has a low level of support may be occurring by chance. Confidence measures reliability
of the rule and provides an estimate of the conditional probability of consequent upon the antecedent.

3. Results

We adopted Tanagra 1.4.50 (Lumière University Lyon 2, Lyon, France) on a Windows 10 OS, Inter
Core i7 2.7 GHZ, 16GB RAM as the main software platform for the implementation of this research.
The tool is used for evaluating both multivariate and univariate parametric and nonparametric tests,
and for the extraction of results, in the form of rules, for the Apriori algorithm. We employed
the tool to perform operations on the KDDcup99 dataset to get results from the various network
cyberattack attempts.

Computers 2019, 8, 86 8 of 15

Validation has been performed using 10-fold cross-validation. The technique allows to obtain
the accuracy results that are less sensitive with regard to different training subsets. In 10-fold cross
validation, traffic profiles are split into ten sets and a training set is made by joining nine randomly
selected sets. The remaining subset is utilized as testing set for assessing the classification performance.
The entire process is replicated ten times by joining the subsets in ten different ways, and the mean
accuracy rate is computed.

The results (the rules with largest confidence) are presented in Table 3 below with the following
parameters of the Apriori algorithm (Max rule length 4, Support min 0.33, Lift filtering 1.1, Confidence
min 0.75). The algorithm generates 146 rules (based on 494,020 transactions).

Figure 2 explains relationship between the parameters and how they served to detect strange
signatures in the database for attack types given in Table 1. Note that R2L attacks have been identified
with a higher level of support than other types of attack (DOS, U2R, Probe, see Table 1), while DOS
attacks had the lowest level of support.

Computers 2019, 8, 86 8 of 14

Table 3. Sample of Apriori Results

Antecedent Consequent Support
(%)

Confidence
(%)

"same_srv_rate = true" -
"dst_host_same_src_port_rate = true"

"src_bytes = true" 69.646 97.988

"srv_count = true" - "same_srv_rate = true"
- "dst_host_same_src_port_rate = true"

"src_bytes = true" 69.646 97.988

"same_srv_rate = true" - "src_bytes = true"
"srv_count = true" -

"dst_host_same_src_port_rate = true"
69.646 90.860

"count = true" -
"dst_host_same_src_port_rate = true"

"same_srv_rate = true" - "src_bytes =
true"

69.646 97.979

"same_srv_rate = true" - "src_bytes = true"
"count = true" -

"dst_host_same_src_port_rate = true"
69.646 90.860

"srv_count = true" -
"dst_host_same_src_port_rate = true"

"same_srv_rate = true" - "src_bytes =
true"

69.646 97.979

"dst_host_same_src_port_rate = true"
"dst_host_count = true" -

"same_srv_rate = true" - "src_bytes =
true"

69.646 97.979

"dst_host_srv_count = true" -
"same_srv_rate = true" - "src_bytes = true"

"dst_host_same_src_port_rate = true" 69.646 90.861

"dst_host_count=true" - "same_srv_rate =
true" - "src_bytes = true"

"dst_host_same_src_port_rate = true" 69.646 90.861

"dst_host_same_src_port_rate = true"
"dst_host_srv_count = true" -

"same_srv_rate = true" - "src_bytes =
true"

69.646 97.979

"same_srv_rate = true" - "src_bytes = true"
"dst_host_count = true" -

"dst_host_same_src_port_rate = true"
69.646 90.86

"dst_host_count = true" -
"dst_host_same_src_port_rate = true"

"same_srv_rate = true" - "src_bytes =
true"

69.646 97.979

Figure 2 explains relationship between the parameters and how they served to detect strange
signatures in the database for attack types given in Table 1. Note that R2L attacks have been identified
with a higher level of support than other types of attack (DOS, U2R, Probe, see Table 1), while DOS
attacks had the lowest level of support.

Figure 2. Confidence vs sum of support for different types of network attack.

For different attack types, the detection rate is provided as radar diagram in Figure 3.

Figure 2. Confidence vs. sum of support for different types of network attack.

For different attack types, the detection rate is provided as radar diagram in Figure 3.Computers 2019, 8, 86 9 of 14

Figure 3. Accuracy of attack type detection.

4. Evaluation

4.1. Accuracy

We evaluate our results against state-of-the-art of other authors achieved using a variety of
different methods on KDDcup99 dataset (see Table 4). Note that the perfect result achieved by some
of the other methods does not mean that the corresponding method will behave well in a real-world
situation, where network traffic patterns constantly change.

Table 4. Comparison of intrusion detection rate.

Authors Method DOS U2R R2L PRB
Hadri et al. [47] Robust fuzzy PCA 74.2 16.1 4.55 92.1

Papamartzivanos et al.
[48]

Genetic trees 99.12 52.63 79.54 82.63

Elhag et al. [49] Evolutionary fuzzy 90.28 42.31 92.77 67.15
Le et al. [37] Recurrent Neural Networks (RNN) 88 85 81 100

Zhao et al. [45] SVM+RBF kernel 99.77 96.19 91.07 n/a
This method Apriori 98.2 98.1 96.9 96.9

Finally, we present the confusion matrices for DOS, U2R, R2L, and PRB attack classification in
Figure 4. The accuracy for recognition of different types of attack is similar, with the DOS attacks
recognized with a highest accuracy of 98.2%, and the PRB attacks recognized at a lowest accuracy of
96.91%.

(a)

(b)

Figure 3. Accuracy of attack type detection.

Computers 2019, 8, 86 9 of 15

Table 3. Sample of Apriori Results

Antecedent Consequent Support (%) Confidence (%)

"same_srv_rate = true" - "dst_host_same_src_port_rate = true" "src_bytes = true" 69.646 97.988

"srv_count = true" - "same_srv_rate = true" -
"dst_host_same_src_port_rate = true" "src_bytes = true" 69.646 97.988

"same_srv_rate = true" - "src_bytes = true" "srv_count = true" - "dst_host_same_src_port_rate = true" 69.646 90.860

"count = true" - "dst_host_same_src_port_rate = true" "same_srv_rate = true" - "src_bytes = true" 69.646 97.979

"same_srv_rate = true" - "src_bytes = true" "count = true" - "dst_host_same_src_port_rate = true" 69.646 90.860

"srv_count = true" - "dst_host_same_src_port_rate = true" "same_srv_rate = true" - "src_bytes = true" 69.646 97.979

"dst_host_same_src_port_rate = true" "dst_host_count = true" - "same_srv_rate = true" - "src_bytes = true" 69.646 97.979

"dst_host_srv_count = true" - "same_srv_rate = true" - "src_bytes = true" "dst_host_same_src_port_rate = true" 69.646 90.861

"dst_host_count=true" - "same_srv_rate = true" - "src_bytes = true" "dst_host_same_src_port_rate = true" 69.646 90.861

"dst_host_same_src_port_rate = true" "dst_host_srv_count = true" - "same_srv_rate = true" - "src_bytes = true" 69.646 97.979

"same_srv_rate = true" - "src_bytes = true" "dst_host_count = true" - "dst_host_same_src_port_rate = true" 69.646 90.86

"dst_host_count = true" - "dst_host_same_src_port_rate = true" "same_srv_rate = true" - "src_bytes = true" 69.646 97.979

Computers 2019, 8, 86 10 of 15

4. Evaluation

4.1. Accuracy

We evaluate our results against state-of-the-art of other authors achieved using a variety of
different methods on KDDcup99 dataset (see Table 4). Note that the perfect result achieved by some
of the other methods does not mean that the corresponding method will behave well in a real-world
situation, where network traffic patterns constantly change.

Table 4. Comparison of intrusion detection rate.

Authors Method DOS U2R R2L PRB

Hadri et al. [47] Robust fuzzy PCA 74.2 16.1 4.55 92.1
Papamartzivanos et al. [48] Genetic trees 99.12 52.63 79.54 82.63

Elhag et al. [49] Evolutionary fuzzy 90.28 42.31 92.77 67.15
Le et al. [37] Recurrent Neural Networks (RNN) 88 85 81 100

Zhao et al. [45] SVM+RBF kernel 99.77 96.19 91.07 n/a
This method Apriori 98.2 98.1 96.9 96.9

Finally, we present the confusion matrices for DOS, U2R, R2L, and PRB attack classification in
Figure 4. The accuracy for recognition of different types of attack is similar, with the DOS attacks
recognized with a highest accuracy of 98.2%, and the PRB attacks recognized at a lowest accuracy
of 96.91%.

Computers 2019, 8, 86 9 of 14

Figure 3. Accuracy of attack type detection.

4. Evaluation

4.1. Accuracy

We evaluate our results against state-of-the-art of other authors achieved using a variety of
different methods on KDDcup99 dataset (see Table 4). Note that the perfect result achieved by some
of the other methods does not mean that the corresponding method will behave well in a real-world
situation, where network traffic patterns constantly change.

Table 4. Comparison of intrusion detection rate.

Authors Method DOS U2R R2L PRB
Hadri et al. [47] Robust fuzzy PCA 74.2 16.1 4.55 92.1

Papamartzivanos et al.
[48]

Genetic trees 99.12 52.63 79.54 82.63

Elhag et al. [49] Evolutionary fuzzy 90.28 42.31 92.77 67.15
Le et al. [37] Recurrent Neural Networks (RNN) 88 85 81 100

Zhao et al. [45] SVM+RBF kernel 99.77 96.19 91.07 n/a
This method Apriori 98.2 98.1 96.9 96.9

Finally, we present the confusion matrices for DOS, U2R, R2L, and PRB attack classification in
Figure 4. The accuracy for recognition of different types of attack is similar, with the DOS attacks
recognized with a highest accuracy of 98.2%, and the PRB attacks recognized at a lowest accuracy of
96.91%.

(a)

(b)

Computers 2019, 8, 86 10 of 14

(c)

(d)

Figure 4. Confusion matrices for (a) DOS, (b) U2R, (c) R2L, and (d) PRB attack classification.

Following the recommendation of Demšar [50], we used a series of statistical tests to compare
the methods. The Friedman Test ranks the algorithms by assigning a rank for performance of each
method for each dataset. The Nemenyi post-hoc test was applied to compute an average ranking
difference threshold as critical distance (CD). The hypothesis that “the accuracy of two methods is
the same” is rejected, if their mean rank difference is larger than CD. The results are summarized as
the Demšar significance diagram in Figure 5. Considering different types of attack, on average, we
proposed method performs better than other considered methods. However, statistically the ranking
of the proposed method is statistically undistinguishable from the methods of Zhao et al. [45], Le et
al. [37], and Papamartzivanos et al. [48].

Figure 5. Demšar significance diagram for comparison of methods using Nemenyi test.

4.2. Scalability

To analyze and evaluate the performance and scalability of the proposed solution, we have set-
up a cluster of eight PC nodes. Each node runs Microsoft Windows 10 Home operating system on
Intel i5-8265U CPU, 1.60GHz (4 cores, 8 logical processors) with 8GB RAM and 15.6 GB virtual
memory available. All algorithms were implemented using Python version 3.7.4. For implementation
of MapReduce, we used Apache Hadoop 1.2.1 framework. To test the solution, we used the full
KDDcup99 dataset, which has about five mln. records in the training part, and around two mln.
records in the testing part. To evaluate scalability, we used the Speedup measure [51], which is the
ratio of performance on a single-node system with respect to performance on an n-node system.
Speedup is measured by evaluating the performance of the framework on the dataset by the number
of nodes.

In Figure 6, we report the running time results for a different number of computing nodes. The
impact of using MapReduce on the running time can be seen. The running time on 2 nodes takes 1875
s, while the running time on 8 nodes takes 420 s for the same dataset. The speedup factor of the

Figure 4. Confusion matrices for (a) DOS, (b) U2R, (c) R2L, and (d) PRB attack classification.

Following the recommendation of Demšar [50], we used a series of statistical tests to compare the
methods. The Friedman Test ranks the algorithms by assigning a rank for performance of each method

Computers 2019, 8, 86 11 of 15

for each dataset. The Nemenyi post-hoc test was applied to compute an average ranking difference
threshold as critical distance (CD). The hypothesis that “the accuracy of two methods is the same” is
rejected, if their mean rank difference is larger than CD. The results are summarized as the Demšar
significance diagram in Figure 5. Considering different types of attack, on average, we proposed
method performs better than other considered methods. However, statistically the ranking of the
proposed method is statistically undistinguishable from the methods of Zhao et al. [45], Le et al. [37],
and Papamartzivanos et al. [48].

Computers 2019, 8, 86 10 of 14

(c)

(d)

Figure 4. Confusion matrices for (a) DOS, (b) U2R, (c) R2L, and (d) PRB attack classification.

Following the recommendation of Demšar [50], we used a series of statistical tests to compare
the methods. The Friedman Test ranks the algorithms by assigning a rank for performance of each
method for each dataset. The Nemenyi post-hoc test was applied to compute an average ranking
difference threshold as critical distance (CD). The hypothesis that “the accuracy of two methods is
the same” is rejected, if their mean rank difference is larger than CD. The results are summarized as
the Demšar significance diagram in Figure 5. Considering different types of attack, on average, we
proposed method performs better than other considered methods. However, statistically the ranking
of the proposed method is statistically undistinguishable from the methods of Zhao et al. [45], Le et
al. [37], and Papamartzivanos et al. [48].

Figure 5. Demšar significance diagram for comparison of methods using Nemenyi test.

4.2. Scalability

To analyze and evaluate the performance and scalability of the proposed solution, we have set-
up a cluster of eight PC nodes. Each node runs Microsoft Windows 10 Home operating system on
Intel i5-8265U CPU, 1.60GHz (4 cores, 8 logical processors) with 8GB RAM and 15.6 GB virtual
memory available. All algorithms were implemented using Python version 3.7.4. For implementation
of MapReduce, we used Apache Hadoop 1.2.1 framework. To test the solution, we used the full
KDDcup99 dataset, which has about five mln. records in the training part, and around two mln.
records in the testing part. To evaluate scalability, we used the Speedup measure [51], which is the
ratio of performance on a single-node system with respect to performance on an n-node system.
Speedup is measured by evaluating the performance of the framework on the dataset by the number
of nodes.

In Figure 6, we report the running time results for a different number of computing nodes. The
impact of using MapReduce on the running time can be seen. The running time on 2 nodes takes 1875
s, while the running time on 8 nodes takes 420 s for the same dataset. The speedup factor of the

Figure 5. Demšar significance diagram for comparison of methods using Nemenyi test.

4.2. Scalability

To analyze and evaluate the performance and scalability of the proposed solution, we have
set-up a cluster of eight PC nodes. Each node runs Microsoft Windows 10 Home operating system
on Intel i5-8265U CPU, 1.60GHz (4 cores, 8 logical processors) with 8GB RAM and 15.6 GB virtual
memory available. All algorithms were implemented using Python version 3.7.4. For implementation
of MapReduce, we used Apache Hadoop 1.2.1 framework. To test the solution, we used the full
KDDcup99 dataset, which has about five mln. records in the training part, and around two mln.
records in the testing part. To evaluate scalability, we used the Speedup measure [51], which is the ratio
of performance on a single-node system with respect to performance on an n-node system. Speedup is
measured by evaluating the performance of the framework on the dataset by the number of nodes.

In Figure 6, we report the running time results for a different number of computing nodes.
The impact of using MapReduce on the running time can be seen. The running time on 2 nodes takes
1875 s, while the running time on 8 nodes takes 420 s for the same dataset. The speedup factor of
the running times for 4 nodes as compared to the runtime with a single node is 3.78, and for 8 nodes,
the improvement is 7.59. As we can observe from Figure 6, the speedup is very close to the linear
one when using from 2 to 8 nodes. The results demonstrate reasonable scalability for the suggested
network intrusion detection system.

Computers 2019, 8, 86 12 of 15

Computers 2019, 8, 86 11 of 14

running times for 4 nodes as compared to the runtime with a single node is 3.78, and for 8 nodes, the
improvement is 7.59. As we can observe from Figure 6, the speedup is very close to the linear one
when using from 2 to 8 nodes. The results demonstrate reasonable scalability for the suggested
network intrusion detection system.

Figure 6. Runtime and speedup results on the full KDDCup99 dataset.

5. Discussion and Conclusion

One of the main shortcomings of the classical Apriori algorithm is inefficient performance when
working with big datasets, because of repeated scanning of the database and the creation of many
candidate sets. In this paper we tackled this problem by adopting a hashing approach, which allows
to find the frequency of the k-itemsets without the use of computationally expensive candidate sets.
The hashing-based approach also has an advantage in its high-computation speed, which has already
been noted by other researchers [52–54]. The latter makes it usable for detecting network attacks in
near real-time, while the adoption of MapReduce allows for scalability with big data [55,56].

We have described the intrusion detection framework for identification of network intrusions.
The framework uses the Apriori algorithm for intrusion detection, to find attacks and develop rules,
and has an appreciable level of accuracy and efficiency in finding out new cyberattacks using the
pieces of information provided about known and recognized attacks. The framework was applied on
the KDDcup99 dataset and provided successful recognition of four types of network attacks with
high confidence and level of support.

The proposed method can produce solutions that address the shortcomings of other approaches,
specifically, the lack of adaptability demonstrated by the neural network based methods. The
proposed methodology based on double hashing is promising and can be used for detecting cyber-
attacks. However, the association rules do not imply causality, but rather the co-occurrence of events.
Moreover, the researchers need better and more standard datasets that are presently prevalent and
indicative of today’s web servers. Researchers and business organizations need to look through
network defense mechanisms with a view to identifying loopholes and improving the system to
provide a more reliable protection from cyber-attacks.

In future works, we will perform a more in-depth research on the recognition of cyber-attacks
in edge and fog computing environments.

Author Contributions: Conceptualization, N.A.A. and S.M.; methodology, S.M.; software, N.A.A. and T.J.A.;
validation, N.A.A, S.M., R.M., and R.D.; formal analysis, N.A.A. and S.M.; investigation, N.A.A, T.J.A., S.M., and

Figure 6. Runtime and speedup results on the full KDDCup99 dataset.

5. Discussion and Conclusions

One of the main shortcomings of the classical Apriori algorithm is inefficient performance when
working with big datasets, because of repeated scanning of the database and the creation of many
candidate sets. In this paper we tackled this problem by adopting a hashing approach, which allows
to find the frequency of the k-itemsets without the use of computationally expensive candidate sets.
The hashing-based approach also has an advantage in its high-computation speed, which has already
been noted by other researchers [52–54]. The latter makes it usable for detecting network attacks in
near real-time, while the adoption of MapReduce allows for scalability with big data [55,56].

We have described the intrusion detection framework for identification of network intrusions.
The framework uses the Apriori algorithm for intrusion detection, to find attacks and develop rules,
and has an appreciable level of accuracy and efficiency in finding out new cyberattacks using the pieces
of information provided about known and recognized attacks. The framework was applied on the
KDDcup99 dataset and provided successful recognition of four types of network attacks with high
confidence and level of support.

The proposed method can produce solutions that address the shortcomings of other approaches,
specifically, the lack of adaptability demonstrated by the neural network based methods. The proposed
methodology based on double hashing is promising and can be used for detecting cyber-attacks.
However, the association rules do not imply causality, but rather the co-occurrence of events. Moreover,
the researchers need better and more standard datasets that are presently prevalent and indicative of
today’s web servers. Researchers and business organizations need to look through network defense
mechanisms with a view to identifying loopholes and improving the system to provide a more reliable
protection from cyber-attacks.

In future works, we will perform a more in-depth research on the recognition of cyber-attacks in
edge and fog computing environments.

Author Contributions: Conceptualization, N.A.A. and S.M.; methodology, S.M.; software, N.A.A. and T.J.A.;
validation, N.A.A., S.M., R.M., and R.D.; formal analysis, N.A.A. and S.M.; investigation, N.A.A., T.J.A., S.M., and
R.D.; resources, N.A.A., and S.M.; writing—original draft preparation, N.A.A. and S.M.; writing—review and
editing, R.M. and R.D.; visualization, R.D.; supervision, S.M.

Funding: This research was funded by H2020 LEIT Information and Communication Technologies, grant
number 830892.

Computers 2019, 8, 86 13 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amor, N.; Benferhat, S.; Elouedi, Z. Naïve Bayes vs. decision trees in intrusion detection systems.
In Proceedings of the 2004 ACM Symposium on Applied Computing, New York, NY, USA, 14–17 March
2004; pp. 420–424.

2. Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android malware
detection: A survey. In Communications in Computer and Information Science; Springer International Publishing:
Cham, Switzerland, 2018; pp. 255–266. [CrossRef]

3. Odun-Ayo, I.; Geteloma, V.; Misra, S.; Ahuja, R.; Damasevicius, R. Systematic Mapping Study of Utility-Driven
Platforms for Clouds. In Proceedings of ICETIT 2019; Springer International Publishing: Cham, Switzerland,
2019; pp. 762–774. [CrossRef]

4. An, X.; Su, J.; Lü, X.; Lin, F. Hypergraph clustering model-based association analysis of DDOS attacks in fog
computing intrusion detection system. Eurasip J. Wirel. Commun. Netw. 2018, 1. [CrossRef]

5. Venčkauskas, A.; Morkevicius, N.; Jukavičius, V.; Damaševičius, R.; Toldinas, J.; Grigaliūnas, Š. An Edge-Fog
Secure Self-Authenticable Data Transfer Protocol. Sensors 2019, 19, 3612. [CrossRef] [PubMed]

6. Wei, W.; Woźniak, M.; Damaševičius, R.; Fan, X.; Li, Y. Algorithm research of known-plaintext attack on
double random phase mask based on WSNs. J. Internet Technol. 2019, 201, 39–48. [CrossRef]

7. Bai, Y.; Kobayashi, H. Intrusion detection system: Technology and developments. In Proceedings of the 17th
International Conference on Advanced Information Networking and Application, 2003. AINA 2003, Xi’an,
China, 29 March 2003; p. 710.

8. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network intrusion detection for IoT
security based on learning techniques. IEEE Commun. Surv. Tutor. 2019, 213, 2671–2701. [CrossRef]

9. da Costa, K.A.P.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of things: A survey on
machine learning-based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]

10. Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep learning-based network anomaly
detection. Clust. Comput. 2019, 22, 949–961. [CrossRef]

11. Uddin, M.; Rehman, A.A.; Uddin, N.; Memon, J.; Alsaqour, R.; Kazi, S. Signature-based multi-layer distributed
intrusion detection system using mobile agents. Int. J. Netw. Secur. 2013, 15, 97–105.

12. Patcha, A.; Park, J. An overview of anomaly detection techniques: Existing solutions and latest technological
trends. Comput. Netw. 2007, 51, 3448–3470. [CrossRef]

13. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network anomaly detection: Methods, systems and tools.
IEEE Commun. Surv. Tutor. 2014, 16, 303–336. [CrossRef]

14. Liu, M.; Xue, Z.; Xu, X.; Zhong, C.; Chen, J. Host-based intrusion detection system with system calls: Review
and future trends. ACM Comput. Surv. 2019, 51. [CrossRef]

15. Debar, H.; Dacier, M.; Wespi, A. A Revised Taxonomy for Intrusion Detection Systems; Springer International
Publishing: Cham, Switzerland, 2000; pp. 361–378.

16. Abadeh, M.; Habibi, J. A Hybridization of Evolutionary Fuzzy Systems and Ant Colony Optimization for Intrusion
Detection; Sharif University of Technology: Tehran, Iran, 2010.

17. Al Haddad, Z.; Hanoune, M.; Mamouni, A. A collaborative network intrusion detection system (C-NIDS) in
cloud computing. Int. J. Commun. Netw. Inf. Secur. 2016, 8, 130–135.

18. Das, A.; Nguyen, D.; Zambreno, J.; Memik, G.; Choudhary, A. An FPGA-based network intrusion detection
architecture. IEEE Trans. Inf. Forensics Secur. 2008, 3, 118–132. [CrossRef]

19. Huang, J.; Chen, C. Integration of rough sets and support vector machines for network intrusion detection. J.
Ind. Prod. Eng. 2014, 31, 425–432. [CrossRef]

20. Khamphakdee, N.; Benjamas, N.; Saiyod, S. Improving intrusion detection system based on snort rules for
network probe attacks detection with association rules technique of data mining. J. ICT Res. Appl. 2015, 8,
234–250. [CrossRef]

21. Kola Sujatha, P.; Suba Priya, C.; Kannan, A. Network intrusion detection system using genetic network
programming with support vector machine. In Proceedings of the International Conference on Advances in
Computing, Communications and Informatics, ACM International Conference Proceeding Series, New York,
NY, USA, 3–5 August 2012; pp. 645–649. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-01535-0_19
http://dx.doi.org/10.1007/978-3-030-30577-2_68
http://dx.doi.org/10.1186/s13638-018-1267-2
http://dx.doi.org/10.3390/s19163612
http://www.ncbi.nlm.nih.gov/pubmed/31431005
http://dx.doi.org/10.3966/160792642019012001004
http://dx.doi.org/10.1109/COMST.2019.2896380
http://dx.doi.org/10.1016/j.comnet.2019.01.023
http://dx.doi.org/10.1007/s10586-017-1117-8
http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.1109/SURV.2013.052213.00046
http://dx.doi.org/10.1145/3214304
http://dx.doi.org/10.1109/TIFS.2007.916288
http://dx.doi.org/10.1080/21681015.2014.975163
http://dx.doi.org/10.5614/itbj.ict.res.appl.2015.8.3.4
http://dx.doi.org/10.1145/2345396.2345501

Computers 2019, 8, 86 14 of 15

22. Hashem, S.H. Enhance network intrusion detection system by exploiting br algorithm as an optimal feature
selection. In Handbook of Research on Threat Detection and Countermeasures in Network Security; Information
Science Reference: Hershey, PA, USA, 2014; pp. 17–32. [CrossRef]

23. Gao, J.; Chai, S.; Zhang, B.; Xia, Y. Research on Network Intrusion Detection Based on Incremental Extreme
Learning Machine and Adaptive Principal Component Analysis. Energies 2019, 12, 1223. [CrossRef]

24. Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features Dimensionality Reduction
Approaches for Machine Learning Based Network Intrusion Detection. Electronics 2019, 8, 322. [CrossRef]

25. Al Tobi, A.M.; Duncan, I. Improving Intrusion Detection Model Prediction by Threshold Adaptation.
Information 2019, 10, 159. [CrossRef]

26. Prasenna, P.; Kumar, R.K.; Ramana, A.V.T.; Devanbu, A. Network programming and mining classifier for
intrusion detection using probability classification. In Proceedings of the International Conference on Pattern
Recognition, Informatics and Medical Engineering (PRIME-2012), Salem, Tamilnadu, India, 21–23 March
2012; pp. 204–209.

27. Lalli, M.; Palanisamy, V. Filtering framework for intrusion detection rule schema in mobile ad hoc networks.
Int. J. Control Theory Appl. 2016, 9, 195–201.

28. Jie, X.; Wang, H.; Fei, M.; Du, D.; Sun, Q.; Yang, T.C. Anomaly behavior detection and reliability assessment
of control systems based on association rules. Int. J. Crit. Infrastruct. Prot. 2018, 22, 90–99. [CrossRef]

29. Yan, S.; Chen, Y.; Song, Y.; Zhu, M. Frequent attack sequences-based network log mining. J. Phys. Conf. Ser.
2019, 1176. [CrossRef]

30. Ohrui, M.; Kikuchi, H.; Rosyid, N.R.; Terada, M. Mining botnet coordinated attacks using apriori-prefixspan
hybrid algorithm. J. Inf. Process. 2013, 21, 607–616. [CrossRef]

31. Zeng, X.; Lv, J.; Li, J.; Luo, W. An optimized apriori algorithm based on sparse matrix for intrusion detection.
Open Cybern. Syst. J. 2014, 8, 8–11.

32. Khalili, A.; Sami, A. SysDetect: A systematic approach to critical state determination for industrial intrusion
detection systems using apriori algorithm. J. Process Control 2015, 32, 154–160. [CrossRef]

33. Zheng, J.; Yang, L. Research on the improvement of apriori algorithm and its application in intrusion detection
system. In Proceedings of the 2015 IEEE International Conference on Computer and Communications
(ICCC), Chengdu, China, 10–11 October 2015; pp. 105–108. [CrossRef]

34. Chiba, Z.; Abghour, N.; Moussaid, K.; El Omri, A.; Rida, M. A cooperative and hybrid network intrusion
detection framework in cloud computing based on snort and optimized back propagation neural network.
Procedia Comput. Sci. 2016, 83, 1200–1206. [CrossRef]

35. Odusami, M.; Misra, S.; Adetiba, E.; Abayomi-Alli, O.; Damasevicius, R.; Ahuja, R. An improved model for
alleviating layer seven distributed denial of service intrusion on webserver. J. Phys. Conf. Ser. 2019, 1235.
[CrossRef]

36. Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an Effective Intrusion Detection System Using the
Modified Density Peak Clustering Algorithm and Deep Belief Networks. Appl. Sci. 2019, 9, 238. [CrossRef]

37. Le, T.-T.-H.; Kim, Y.; Kim, H. Network Intrusion Detection Based on Novel Feature Selection Model and
Various Recurrent Neural Networks. Appl. Sci. 2019, 9, 1392. [CrossRef]

38. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules in Large Databases. In Proceedings
of the 20th International Conference on Very Large Data Bases, VLDB, San Francisco, CA, USA,
12–15 September 1994; pp. 487–499.

39. Tribhuvan, S.A.; Gavai, N.R.; Vasgi, B.P. Frequent Itemset Mining Using Improved Apriori Algorithm with
MapReduce. In Proceedings of the 2017 International Conference on Computing, Communication, Control
and Automation (ICCUBEA), Pune, India, 17–18 August 2017; pp. 1–6. [CrossRef]

40. Jayalakshmi, N.; Vidhya, V.; Krishnamurthy, M.; Kannan, A. Frequent Itemset Generation using Double
Hashing Technique. Procedia Eng. 2012, 38, 1467–1478. [CrossRef]

41. Bera, D.; Pratap, R. Frequent-Itemset Mining Using Locality-Sensitive Hashing. In Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 143–155. [CrossRef]

42. Wen, Y.; Huang, J.; Chen, M. Hardware-enhanced association rule mining with hashing and pipelining. IEEE
Trans. Knowl. Data Eng. 2008, 20, 784–795. [CrossRef]

43. Dean, J. Experiences with MapReduce, an abstraction for large-scale computation. In Proceedings of the 15th
International Conference on Parallel Architectures and Compilation Techniques, Seattle, Washington, DC,
USA, 16–20 September 2006; p. 1. [CrossRef]

http://dx.doi.org/10.4018/978-1-4666-6583-5.ch002
http://dx.doi.org/10.3390/en12071223
http://dx.doi.org/10.3390/electronics8030322
http://dx.doi.org/10.3390/info10050159
http://dx.doi.org/10.1016/j.ijcip.2018.06.001
http://dx.doi.org/10.1088/1742-6596/1176/3/032052
http://dx.doi.org/10.2197/ipsjjip.21.607
http://dx.doi.org/10.1016/j.jprocont.2015.04.005
http://dx.doi.org/10.1109/CompComm.2015.7387549
http://dx.doi.org/10.1016/j.procs.2016.04.249
http://dx.doi.org/10.1088/1742-6596/1235/1/012020
http://dx.doi.org/10.3390/app9020238
http://dx.doi.org/10.3390/app9071392
http://dx.doi.org/10.1109/ICCUBEA.2017.8463915
http://dx.doi.org/10.1016/j.proeng.2012.06.181
http://dx.doi.org/10.1007/978-3-319-42634-1_12
http://dx.doi.org/10.1109/TKDE.2008.39
http://dx.doi.org/10.1145/1152154.1152155

Computers 2019, 8, 86 15 of 15

44. Zhou, H.; Zhang, D.; Wang, X. Improvement of Apriori-Pro Algorithm Based on MapReduce. In Advances in
Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; pp. 1257–1265.
[CrossRef]

45. Zhao, F.; Zhao, J.; Niu, X.; Luo, S.; Xin, Y. A Filter Feature Selection Algorithm Based on Mutual Information
for Intrusion Detection. Appl. Sci. 2018, 8, 1535. [CrossRef]

46. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set.
In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense
Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6.

47. Hadri, A.; Chougdali, K.; Touahni, R. Identifying intrusions in computer networks using robust fuzzy PCA.
In Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications
(AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 1261–1268.

48. Papamartzivanos, D.; Gómez Mármol, F.; Kambourakis, G. Dendron: Genetic trees driven rule induction for
network intrusion detection systems. Future Gener. Comput. Syst. 2018, 79, 558–574. [CrossRef]

49. Elhag, S.; Fernández, A.; Altalhi, A.; Alshomrani, S.; Herrera, F. A multi-objective evolutionary fuzzy system
to obtain a broad and accurate set of solutions in intrusion detection systems. Soft Comput. 2017, 1–16.
[CrossRef]

50. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 2006, 7, 1–30.
51. Aljarah, I.; Ludwig, S.A. MapReduce intrusion detection system based on a particle swarm optimization

clustering algorithm. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun,
Mexico, 20–23 June 2013; pp. 955–962. [CrossRef]

52. Rathinasabapathy, R.; Bhaskaran, R. Performance Comparison of Hashing Algorithm with Apriori.
In Proceedings of the 2009 International Conference on Advances in Computing, Control, and
Telecommunication Technologies (ACT 2009), Trivandrum, Kerala, India, 28–29 December 2009. [CrossRef]

53. Shakya, S.; Singh, A.; Singh, D. A Survey on Hash based A-priori Algorithm for Web Log Analysis. Int. J.
Comput. Appl. 2013, 76, 47–50. [CrossRef]

54. Lin, C.-C.; Li, W.-C.; Chen, J.-C.; Chung, W.-Y.; Chung, S.-H.; Lin, K.W. A Distributed Algorithm for Fast
Mining Frequent Patterns in Limited and Varying Network Bandwidth Environments. Appl. Sci. 2019, 9,
1859. [CrossRef]

55. Maitrey, S.; Jha, C.K. MapReduce: Simplified Data Analysis of Big Data. Procedia Comput. Sci. 2015, 57,
563–571. [CrossRef]

56. Veiga, J.; Exposito, R.R.; Pardo, X.C.; Taboada, G.L.; Tourifio, J. Performance evaluation of big data frameworks
for large-scale data analytics. In Proceedings of the 2016 IEEE International Conference on Big Data (Big
Data), Washington, DC, USA, 5–8 December 2016; pp. 424–431. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-030-25128-4_157
http://dx.doi.org/10.3390/app8091535
http://dx.doi.org/10.1016/j.future.2017.09.056
http://dx.doi.org/10.1007/s00500-017-2856-4
http://dx.doi.org/10.1109/CEC.2013.6557670
http://dx.doi.org/10.1109/act.2009.185
http://dx.doi.org/10.5120/13311-0892
http://dx.doi.org/10.3390/app9091859
http://dx.doi.org/10.1016/j.procs.2015.07.392
http://dx.doi.org/10.1109/bigdata.2016.7840633
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Apriori Algorithm
	Dataset
	Evaluation

	Results
	Evaluation
	Accuracy
	Scalability

	Discussion and Conclusions
	References

