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Abstract: In computer vision, estimating geometric relations between two different views of the
same scene has great importance due to its applications in 3D reconstruction, object recognition
and digitization, image registration, pose retrieval, visual tracking and more. The Random Sample
Consensus (RANSAC) is the most popular heuristic technique to tackle this problem. However,
RANSAC-like algorithms present a drawback regarding either the tuning of the number of samples
and the threshold error or the computational burden. To relief this problem, we propose an estimator
based on a metaheuristic, the Teaching–Learning-Based Optimization algorithm (TLBO) that is
motivated by the teaching–learning process. We use the TLBO algorithm in the problem of computing
multiple view relations given by the homography and the fundamental matrix. To improve the
method, candidate models are better evaluated with a more precise objective function. To validate
the efficacy of the proposed approach, several tests, and comparisons with two RANSAC-based
algorithms and other metaheuristic-based estimators were executed.

Keywords: epipolar geometry; fundamental matrix; homography; RANSAC; metaheuristics; TLBO

1. Introduction

Estimating geometric relations between images is to find a transformation to associate images of
the same scene but taken at different viewpoints [1]. The estimation of the epipolar geometry, which is
the intrinsic projective geometry between two views, can be found from different experimental setups.
For instance, when a moving camera captures a static scene, or when a static camera views a moving
object, or even in the case when multiple cameras capture the same scene from different viewpoints.

The importance of finding geometric relations becomes evident considering that it is a necessary
task for many computer vision applications. For instance, geometric relations are needed for stitching
together a series of images to generate a panorama image [2–4]. Other applications that require the
estimation of geometric relations are associated to camera calibration, where each camera pose and
focal length are computed with their associated correspondences [5–8]; to 3D reconstruction systems,
where incremental structure from motion is applied using geometric entities given by the epipolar
geometry [9,10]; to the removal of camera movements, when the motion of an object is studied in a
video [11,12]; to the process of digitizing the appearance and geometry of objects in 3D, when textures
are used [13]; to the control of robots, where homographies are used [14,15]; to topological mapping,
where visual information is used [16]; to the reconstruction of 3D flame with color temperature,
where they perform an epipolar plane matching and epipolar line equalization [17]; to the reality
augmentation of buildings, where accurate homographies are needed [18], among others [19–22].

Most of the approaches for computing geometrical relations encoded in the fundamental matrix
and the homography are very complex and sometimes inefficient. The reason is that classical
optimization techniques are used. For instance, different conventional methods to geometrical solutions
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have been proposed in the literature [23–27]. However, despite their popularity, these conventional
methods present a great weakness. The methods are very sensitive to the initial solution. If the
initialization is far from the optimum, it is difficult for those approaches to converge to an optimal
solution. Therefore, those classical optimization methods also have more chance of being entrapped in
a local minimum.

To avoid the drawbacks of the aforementioned methods, yet preserving accuracy, heuristic
approaches have been proposed. The most popular of such approaches is the Random Sample
Consensus (RANSAC) [28]. In the RANSAC algorithm, a minimum number of samples of experimental
data are randomly taken. Then, for each sample, a model is proposed and evaluated according to
a distance error to determine how well each model fits the data. This process is repeated until a
number of iterations are completed. Finally, the model with the lower error (maximum number
of inliers) is taken. Even considering that RANSAC is a robust and simple algorithm, it has some
disadvantages [29].

The RANSAC algorithm experiences troubles with a noisy dataset for a high multi-modality
problem. For a better estimation under such circumstances, the RANSAC algorithm needs to be set
appropriately. Two different parameters should be tuned: The threshold error Therror, and the number
of samples NRANSAC. However, tuning these parameters is not an easy task. The tuning should be
done by taking into account the relationships between the model and the number of outliers. Usually,
this error relationship is assumed to be Gaussian [1]. If the assumptions fail, the RANSAC algorithm
performs poorly, and two problems arises. A low Therror value may increase the accuracy of the model
but it makes the algorithm sensitive to noisy data; while a high Therror value can improve the noise
tolerance, but at the cost of false detections. On the other hand, a small sample set (NRANSAC) can lead
to a faster search, but to more inaccuracies; while a larger NRANSAC may enhance accuracy, but at a
higher computational cost.

Given the two main problems with RANSAC described above, explorations with recent
approaches utilized to solve engineering problems that usually are ill-posed and complex can be
done. These approaches applied modern optimization methods such as swarm and evolutionary
algorithms, which have delivered better solutions in comparison with classical methods. The use of
metaheuristics for estimating multiple view relations has been reported using the Harmony Search
algorithm (HS) [30,31], and the Clonal Selection Algorithm (CSA) [29]. Unfortunately, many parameters
still need to be tuned using these metaheuristics. For instance, the CSA needs the tuning of the
clonal size and the mutation rate along with the length of the antibody and others. HS, on the other
hand, requires the pitch adjusting and harmony memory consideration rates, along with the number
of improvisations.

Differently from previous metaheuristic approaches, in this work we propose the utilization of a
metaheuristic called the Teaching and Learning Based Optimization algorithm (TLBO). By using the
TLBO algorithm, we provide the method with a better-guided search while keeping the parameter
tuning to a minimum. The TLBO algorithm only needs the number of iterations and the size of
the population. Thus, the proposed TLBO-based estimator does not require the tunning of other
algorithm-specific parameters. Further, since the proposed method accumulates information of the
problem at each iteration it achieves better results than the purely random selection performed by the
RANSAC algorithm. Experimental results validate the efficiency of the resultant method in terms of
accuracy, and robustness.

The order of the remainder of the paper is as follows. The next section, Section 2, describes the
epipolar-geometry elements that the proposed algorithm estimates. Then, Section 3, describes the
TLBO algorithm as implemented in this work. Section 4 depicts the proposed method. Section 5
exposes the results; and finally, Section 6 states the conclusions and future work.
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2. Epipolar Geometry

In this work, we tackle the problem of estimating geometric relations from point correspondences.
These relations are given by the fundamental matrix, F, and the homography, H. In this section,
we first describe the operations to compute point matching, and then we show how to compute the
fundamental matrix and the homography using the Teaching Learning-Based Optimization algorithm.

2.1. Feature Matching

The feature correspondence task aims to find the pixel coordinates in two different images I and
I′ that refer eventually to the same point in the world. The image-matching process consists of three
main operations: (i) feature detection; (ii) feature description; and (iii) feature matching.

In the detection operation, we must find stable matching primitives. Choosing special points
when matching images and performing a local analysis on these ones instead of looking at the image as
a whole has the advantage of reducing the computational cost. There are many feature points detectors,
some of these are: Harris Corners [32], Scale Invariant Feature Transform (SIFT) [33], Speeded Up
Robust Features (SURF) [34], Features from Accelerated Segment Test (FAST) [35], Binary Robust
Independent Elementary Features (BRIEF) [36], Oriented FAST and Rotated BRIEF (ORB) [37] and
others. In this work, the SURF method has been employed, since its complexity is O(log(N)), and the
method is invariant to illumination, scale, and rotation. The SURF detector has been demonstrated to
be effective for both, high- and low-resolution images [38].

In the second operation, feature description, the previously detected features in I and I′ are
described with a compress structure. The descriptors of the image features can be computed
with some algorithms including SIFT, SURF, BRIEF along with others. In this work, the SURF
descriptor is employed. The SURF algorithm computes a 64-element descriptor vector to characterize
each feature point. When the SURF detector and descriptor are applied to the images I and I′,
two sets of feature points described by its own vector are obtained, E = {e1, e2, · · · , eM} and
E′ = {e′1, e′2, · · · , e′M′}, respectively.

In the final operation, feature matching, the descriptor of each feature within the first set is
compared with all other descriptors in the second set using some distance calculation. In this work,
the Euclidean distance is used to compare descriptor vectors from the first image with descriptors
from the second image to build pairs of corresponding points; the match is selected as the one with
the shortest distance. After these three operations, N point matches xi ↔ x′i are found, and a set
U = {x1 ↔ x′1, · · · , xN ↔ x′N} with matches is generated. For this process, an erroneous estimation of
matched points may emerge on different sections of the images. This is because the process does not
discriminate with complete certainty one point from another.

The noisy dataset U obtained with the above process is the input of the algorithm to compute
either the fundamental matrix or the homography. We now describe these geometric relations to later
explain how the TLBO-based method computes them considering the epipolar geometry.

2.2. Geometric Entities of the Epipolar Geometry

Given a set of matched projected points, geometric relations can be estimated. In this work,
we estimate the fundamental matrix and homography that encapsulate the intrinsic projective geometry
between two views.

2.2.1. Fundamental Matrix

Let there be a set of N matched points xi ↔ x′i between two images I and I′. The 2D image
positions of these points are denoted in homogeneous coordinates as xi = (xi, yi, 1)T in the I image,
and x′i = (x′i , y′i, 1)T in the I′ image. These positions are related by the epipolar geometry as follows:

x′i
T Fxi = 0, (1)
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where F is the fundamental matrix, and can be computed with a set of eight good matches as described
in [1,39]. The epipolar geometry represents the intrinsic geometry between two-views. It is independent
of the scene structure and only depends on the camera’s internal parameters and relative localization
between the cameras (R, t). The fundamental matrix F ∈ IR3×3 is the algebraic representation of this
intrinsic geometry, called epipolar geometry.

The epipolar geometry can be used to validate the match xi ↔ x′i , since it constrains the position
of the points xi and x′i . As shown in Figure 1, the epipolar line at the point x′i , in the second image,
is the intersection of the epipolar plane passing through the optical centers C1 and C2 and the point Xi

within the plane of the second image. If the matrix F and the point xi in the first image are known,
the epipolar line in the second image where the point x′i is restricted to be, is given by Fxi. Similarly,
FTx′i specifies the epipolar line in the first image that corresponds to the point x′i in the second image.
This epipolar constraint that restrict the positions of xi and x′i is used in the proposed method to
evaluate candidate solutions by their mapping accuracy.

x

C
1

C
2

(R,t)

Figure 1. Epipolar geometry depiction: the fundamental matrix case. Two cameras, C1 and C2,
are viewing the same scene. Both cameras are represented by their centres, and image plane. As shown
in the figure, the centres, C1 and C2 lie in the same plane as the 3D point X and its images x and x′.
The point correspondence geometry is constrained as follows. The image point x back-projects to a ray
in 3D space defined by the first camera centre, C1, and x. As can be seen, the 3D point X which projects
to x must lie on this ray. Since the image of this ray, is the line l′ in the second view, the image of X in
the second view must lie on l′

Given a matrix F computed from noisy point correspondences, the quality of the estimated
fundamental matrix is evaluated using the epipolar lines. This is done by considering the distance
between the points and the epipolar lines to which they must belong. Considering the notation
Fxi = (β1, β2, β3)

T , the distance d(x′i , Fxi) between the point x′i and the line Fxi can be computed
as follows:

d(x′i , Fxi) =
x′i

T Fxi√
β2

1 + β2
2

. (2)

Likewise, denoting FTx′i = (β′1, β′2, β′3)
T , the other corresponding distance can be calculated as:

d(xi, FTx′i) =
xi

T FTx′i√
(β′1)

2 + (β′2)
2

. (3)

To evaluate F, a mismatch error EF2
i produced by the i-correspondence xi ↔ x′i is defined by the

sum of squared distances from the points to their corresponding epipolar lines as follows:

EF2
i = [d(x′i , Fxi)]

2 + [d(xi, FTx′i)]
2. (4)
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2.2.2. Homography

If the match points are said to be in a plane π, a homography can be computed. As shown in
Figure 2, two perspective images can be geometrically linked through a plane π of the scene by a
homography H ∈ IR3×3. The homography H is a projective transformation, and it relates matching
or corresponding points belonging to the plane π that is projected into two images by x′i = Hxi or
xi = H−1x′i . To find the homography given by two different views, a linear equation system can be
generated from a set of four different corresponding points (matches). Then the system can be solved
analytically [1].

π

C
1

C
2

(R,t)

x

Figure 2. Epipolar geometry depiction: The Homography case. A point x in one image is transferred,
differently from the fundamental-matrix case, via the plane π to a matching point x′ in the second
image. The epipolar line through x′ is obtained by joining x′ to the epipole e′

The computed homography can be evaluated to obtain an accuracy measure. This quality measure
can be computed by considering the distance (usually the Euclidean distance) between the position of
the point found with the H matrix and the actual position of the projection of the observed 3D point.
Thereby, the i-correspondence xi ↔ x′i will produce a mismatch error EH2

i . This error is computed
using the sum of squared distances from the estimated point positions to their actual location as stated
in following equation

EH2
i = [d(x′i , Hxi)]

2 + [d(xi, H−1x′i)]
2. (5)

Having described the epipolar geometry, and how a candidate fundamental matrix F and
homography H can be evaluated, we now depict the TLBO algorithm as implemented in the
proposed approach.

3. Teaching and Learning Based Optimization Algorithm

The procedure of the TLBO algorithm is based on the metaphor of the teaching and learning
processes. First, a population of M students or solutions, S is randomly initialized within the search
space. Thus, the initial population is Si i ∈ {1, · · · , M}. Each individual Si, is a real-valued vector with
D elements. In the metaphor, D represents the number of assigned subjects a student has, therefore D
is the dimension of the problem.

Once the population is initialized the algorithm proceeds to execute the teaching and learning
stages. The aim of these two consecutive stages is to enhance the population by modifying individuals.
Within the teaching stage, the TLBO algorithm attempts to increase the knowledge (quality) of the
population by helping students individually. In the learning stage, on the other hand, the interaction
between students is promoted to enhance the quality of the students. The algorithm is carried out until
a certain number of iterations.
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In the teaching stage, the knowledge transfer is performed by the teacher. Hence within this stage,
the individual with the highest fitness value is appointed as the teacher Steacher. The TLBO algorithm
aims to enhance every other student by moving its position in the teacher direction.

This is done by using the mean value of current population. The locus of student Si is updated by:

Snew = Si + r× (Steacher − TF × Smean). (6)

In the above equation, r ∈ [0, 1] is a real random number, and the teaching factor, TF ∈ {1, 2} is
also randomly decided. If Snew has a better quality, i.e., a better fitness value, Si is replaced by Snew in
the population.

As stated by Equation (6), the improvement of the student is affected by both the comparison with
the teacher knowledge and the mean quality of all students. The TLBO capabilities of exploration and
exploitation are granted by the factors r and TF. For instance, for the settings of TF = 1 and r near to
1, individuals tend to approximate the teacher. This contributes to the exploitation of the search space
surrounding the teacher. Conversely, more exploration in proportion with the r value is performed
when TF = 2.

Finally, during the learner stage, a student Si tries to improve its fitness value (knowledge) by
interacting with an arbitrary student Sj. If Sj is better than Si, Si is moved towards Sj accordant with:

Snew = Si + r× (Sj − Si) (7)

If Sj is not better than Si, Si is moved away from Sj accordant with:

Snew = Si + r× (Si − Sj) (8)

Similar to the teacher stage, if Snew has a better fitness value, Si is replaced by Snew in the population.
The TLBO algorithm is a powerful metaheuristic. It solves complex optimization problems yet

remaining simple and easy to implement. Therefore, several engineering and scientific applications
using this metaheuristic have been published [40–43]. Differently from the previous work in [44–46],
this paper proposes a novel application for the TLBO algorithm. Instead of searching for image
patterns like the work in [44,45] or detecting vanishing points [46], in this work the TLBO algorithm is
implemented for the novel task of estimating the fundamental matrix and homography. The work
in [46] deals with the problem of vanishing points detection. While this work tackles the problem of
geometric relations encoded in homographies or the fundamental matrix. Although these two problems
are different, they can be solved by sampling-based methods such as RANSAC. RANSAC-like methods
find models by randomly sampling the search space. Vanishing points can be found by modeling
Manhattan frame rotations using sampled image lines. Quite different, the homograpy or fundamental
matrix is modeled using RANSAC by sampling candidate matched points. Metaheuristics like the
TLBO algorithm also sample the search space, although this sample is not blind but guided by the
objective function. In this paper we demonstrate the benefits of metaheuristics over pure random
procedures such as RANSAC.

Algorithm 1 depicts the simplest procedure for the process described in this section, which is
used in this work for the optimization task of estimating the fundamental matrix and homography as
now explained.
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Algorithm 1: Simplest form of the Teaching–Learning-Based Optimization (TLBO) algorithm.

1 Algorithm TLBO
2 Initialize randomly the population of M students Si.
3 Calculate the objective function or the fitness F(S) of each student within the population.
4 for each iteration do
5 Compute the mean of each student within the population: (Smean).
6 Look up for the solution with the highest fitness value: (Steacher).
7 r ← rand(0,1)
8 TF ← round(1+rand(0,1))
9 for each Si in population do

10 Start teacher stage:
11 Snew ← Si + r · (Steacher − TF · Smean)

12 if (F(Snew) > F(Si)) then
13 Si ← Xnew

14 Start learner stage:
15 Select randomly another student Sj with i 6= j
16 if (F(Si) > F(Sj)) then
17 Snew ← Si + r · (Si − Sj)

18 else
19 Snew ← Si + r · (Sj − Si)

20 if (F(Snew) > F(Si)) then
21 Si ← Snew

22 Look up for the solution with the highest fitness value: (Steacher).
23 Select Steacher as the final solution.

4. Epipolar Geometry Estimation Using Tlbo

In this section, we depict the utilization of the TLBO algorithm to find multiple view relations,
which is a novel task for this metaheuristic. For a metaheuristic to work properly, three different
components must be defined: The search space organization, the individual representation, and the
objective-function definition. We now describe these elements.

4.1. Search Space

To generate the search space where the TLBO algorithm optimizes, two gray-scale images are
processed to find key-features with its corresponding descriptors as described in Section 2. Then,
the descriptors are matched using the Euclidean distance in order to find matching pair points xi ↔ x′i .
Finally, every pair is added in a set U = {x1 ↔ x′1, · · · , xM ↔ x′M}, where M is the number of matches
found. For the proposed algorithm to work, it is assumed that the tentative matches in U are consistent
with at least one geometric relation model, i.e., a fundamental matrix or a homography. In other words,
the two input images are supposed to view the same scene from different viewpoints.

4.2. Individual Representation

In the TLBO-based estimation process, each candidate student S encodes either a homography H,
or a fundamental matrix F. In order to construct a candidate solution or individual Si that encodes a
homography, four indexes are selected from the set of correspondences U. Likewise, in the case of the
fundamental matrix, eight indexes are selected from U. A transformation from indexes to either H or
F is done according to Ref. [1].
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4.3. Objective Function

In this work, the problem to solve consists in finding the parameters of F or H through a set of M
different noisy correspondences. To find a solution using the TLBO algorithm, this problem is treated
as an optimization procedure.

The proposed method implements the TLBO to generate samples or candidate solutions based on
information about their quality, rather than randomness as in the case of RANSAC-like algorithms.
In the traditional RANSAC method, the classical objective function evaluates only to the number of
inliers. Distinctively, we improve results by using a different objective function to accurately evaluate
the quality of a candidate model.

The objective function proposed for the TLBO-based estimator uses not only the number of inliers,
but also the residual error. Both values are combined into a simple quotient by the following expression:

F(S) =
∑N

j=1 θ
(
e2

j (hi)
)

∑N
j=1 e2

j (hi)
, (9)

where e2
j (hi) represents the quadratic errors EF2

j or EH2
j (see Section 2) produced by the jth

correspondence considering the candidate transformation Fi or Hi, whereas θ
(
e2

j (hi)
)

is defined
as follows:

θ
(
e2

j (hi)
)
=

0 e2
j (hi) > ε

1 e2
j (hi) ≤ ε

. (10)

Therefore, the maximization of F(·) implies to obtain the candidate solution S having both the
highest number of inliers and the lowest residual error, simultaneously. The threshold ε allows us to
assign a number of inliers to a particular candidate solution. When a candidate solution does not map
points correctly, the overall quadratic error increases, and the number of outliers must increase as well.
Within this work, we have chosen ε empirically.

The objective function F(·) evaluates the quality of a candidate transformation. Guided by the
values of this objective function, the set of encoded candidate solutions are modified by using the
TLBO process so that they can improve their quality as the optimization process evolves. We now
describe the whole process proposed in this work.

4.4. Tlbo for Epipolar Geometry Estimation

The presented approach can be summarized as shown in Figure 3. First, a preprocessing step
is carried out to construct the search space. Then, within the initialization procedure of the TLBO
algorithm, candidate solutions are randomly generated. After that, the teaching and learning processes
of the TLBO algorithm are iteratively executed to improve the quality of the population. Finally, at the
end of the predefined number of iterations, the best individual (Steacher) is selected as the final solution.
This solution is used to filter out false matches, i.e., matches not respecting the epipolar restriction.
Then, the fundamental-matrix or homography is estimated using all the points in the subset of inliers.
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Preprocessing

2

Input images

Key-point detection

Key-point description

Key-point matching

Generation of matching set

2

3
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Construct randomly a student
with indexes taken from

Add to
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no yes
Population
completed

3

no

yes

3

TLBO Optimization
Procedure

Teacher stage

Learner stage

Final population

Final
iteration

Select teacher
as final solution

Figure 3. Teaching–Learning-Based Optimization (TLBO)-based process for estimating geometric
relations. Three main steps are followed in order to compute the geometric relations given by either the
fundamental matrix or the homography. First, a preprocessing step is carried out to compute the search
space. Then, the TLBO population is initialized according to the constrains of the problem. Finally,
the TLBO learning process is iteratively executed to find the final solution, i.e., a fundamental matrix or
a homography.

5. Experimental Results

In this section, results of the proposed TLBO-based estimator are reported. A comparison
with other approaches is also carried out. The experiments are performed on real images, and the
comparisons with the following five different methods: RANSAC as the most recent implementation
in OpenCV, MLESAC as implemented in the last version of the Matlab vision toolbox, CSA-RANSAC
as implemented in [29] with the same proposed parameters, and an implementation using a Genetic
Algorithm (GA), and the Differential Evolution approach (DE) with the same search space and objective
function as the TLBO-based estimator.

Images for experimentation are shown in Figures 4–7 and 12. Room_1 (640 × 480) and Room_2
(640 × 480) belong to the CIMAT-NAO-A dataset, which was acquired with a NAO humanoid robot.
The dataset contains 399 different images with blur effects and low textures. Street_1 (1241 × 376)
belongs to the Kitty dataset which is usually used for autonomous driving experiments [47]. Street_2
(1348 × 374), on its part, is taken from the work in [48]. Calibration_rig (690 × 470), Park (720 × 450),
and Corridor (370 × 490) are taken from a repository of free images. Finally, Book_1 (671 × 503) and
Book_2 (671 × 503) were capture by a generic cellphone camera. The whole set of experiments were
carried out on a 2.80 GHz Intel Core i7-7700HQ CPU. The TLBO-based estimator was implemented in
C++. Image preparation tasks such as Key-point detection and description were performed by the
OpenCV library.

The parameter setup for the metaheuristic approaches, i.e., the TLBO, GA and DE were chosen
empirically as usual for metaheuristic methods. The setups are shown in Tables 1–3. To perform
a fair comparison all metaheuristics were set to execute the same number of objective function
evaluations. This particular setting forces the metaheuristics to sample the search space to the same
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extent. This allows a fair comparison. On the contrary, if a metaheuristic executes more objective
function evaluations it gathers more information about the problem, thus having more chances to find
a better solution. To compute the objective function, the ε parameter was empirically determined to 5.
All parameters were fixed for the whole set of experiments.

Table 1. Parameter setup for the TLBO-based estimator.

Parameter Value

Iterations 100
Population size 50

Table 2. Parameter setup for the Genetic Algorithm (GA)-based estimator.

Parameter Value

Number of generations 201
Population size 50
Crossover rate 0.85
Mutation rate 0.10
Selection method Roulette with sigma scaling
Crossover method 1-point crossover

Table 3. Parameter setup for the Differential Evolution (DE)-based estimator.

Parameter Value

Number of epochs 200
Population size 50
Differential weight 0.25
Crossover probability 0.80

The parameters for the non-metaheuristic methods, i.e., RANSAC and MLESAC were set as
follows. Both algorithms need a maximum distance from a point to an epipolar line, and the number
of sampling attempts. For the two approaches, the maximum distance was set to 5 pixels similarly to
the objective function proposed in Equation (10), and the number of samples equal to the number of
objective function evaluations for the metaheuristics estimators.

View 1 View 2 Correspondence points

a)

Inliers

b)

Figure 4. Results for the fundamental-matrix estimation from test images (a) Room_1 and (b) Room_2.
The first and second columns show the first and second view, respectively. The third column shows
the correspondence points along with outliers contained in the dataset. The fourth column depicts a
blended image of the two views with inliers found by the proposed method.
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a)

Views

Correspondence

points

Inliers

b)

Inliers

Views

Correspondence

points

Figure 5. Results for the fundamental-matrix estimation from test images (a) Street_1 and (b) Street_2.
The first row shows the first and second view. The second row shows the correspondence points along
with outliers contained in the dataset. The third row depicts a blended image of the two views with
inliers found by the proposed method.

View 1 View 2 Correspondence points

a)

Inliers

b)

Figure 6. Results for the homography estimation from the test images (a) Book_1 and (b) Book_2.
The first and second columns show the first and second view, respectively. The third column shows
the correspondence points along with outliers contained in the dataset. The fourth column depicts a
blended image of the two views with inliers found by the proposed method.

To show the capabilities of the proposed method for the task of estimating the fundamental matrix
F, we present Figures 4 and 5. The proposed method also estimates the homography H, as shown by
the results of Figure 6.

To quantitatively test all methods and compare results, three values are studied: the inlier number
IN, the error Er, and the residual error, Eres. We first describe the IN number and the Er error. Then,
results for the residual error are presented.

5.1. Number of Inliers and Er error

As described in [29,31], the inlier number IN is used to express the number of detected inliers
that are stored in the set Is. The Er error, on the other hand, is used to provide a quantitative measure
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for the quality of the candidate geometric relation. Er is assessed from the standard deviation of only
the inliers. Thus, the error Er is computed as follows:

Er =

(
∑

i

e2
i

IN

)1/2

, i ∈ Is, (11)

where e2
i is the quadratic error produced by the i-th inlier. The term e2

i corresponds to EF2
i or EH2

i
as described in Section 2, and represent the errors produced by the ith inlier considering the final
fundamental matrix F or homography H, respectively.

Quantitative results are shown in Tables 4 and 5. Table 4 exposes the number of inliers and the
error Er for all methods used in Figures 4 and 5. Table 5, on the other hand, shows the results given by
the homography for the images in Figure 6.

Table 4. Number of inliers IN and error Er for all approaches using images in Figures 4 and 5. The best
result is highlighted in bold.

Image
TLBO-Based GA-Based DE-Based CSA-Based RANSAC MLESAC

IN Er Error IN Er Error IN Er Error IN Er Error IN Er Error IN Er Error

Room_1 47 0.86 42 0.85 45 1.12 47 0.78 46 2.80 43 2.36
Room_2 42 0.75 45 1.24 45 1.03 45 1.29 43 2.45 39 1.76
Street_1 64 0.61 59 0.91 58 0.83 62 1.03 62 1.75 67 1.85
Street_2 127 0.91 115 1.01 110 1.24 110 1.52 98 2.54 95 2.67

Table 5. Number of inliers IN and error Er for all approaches, considering the test images in Figure 6.
The best result is highlighted in bold.

Image
TLBO-Based GA-Based DE-Based CSA-Based RANSAC MLESAC

IN Er Error IN Er Error IN Er Error IN Er Error IN Er Error IN Er Error

Book_1 8 0.25 8 0.78 8 0.85 8 0.64 8 1.068 8 1.84
Book_2 71 0.42 73 0.63 71 0.51 71 0.73 68 1.07 63 1.36

In three out of four experiments, the TLBO algorithm achieved the smallest error in comparison
to the other methods. It was only in the case of the Room_1 image that the GA-based estimator
outperformed slightly the TLBO algorithm in terms of the Er error by 0.01. However, The TLBO
algorithm found a greater number of inliers, i.e., matched points within 5 pixels distant from its
corresponding epipolar line.

The different performance of each method is linked with its approach to solve the problem.
The RANSAC and MLESAC perform a random sampling within the search space, while the
metaheuristic-based estimators carried out a guided search. RANSAC-like methods try many different
random subsets of the corresponding point matches, and estimate the model using this subset to
solve the system. Finally, the best subset is then used to produce the final model that will filter
out wrong matches. To achieve this, RANSAC-based methods perform a model computation from
point correspondences, and compute an error to rank and compare subsets. The TLBO algorithm,
on the other hand, leverages of this error computation to guide the search in order to perform a better
space search.

In the experiments, all the methods start with the same set of point correspondences. This set
contains both good and bad matches. The non-metaheuristic methods are constrained to sample the
search space an equal number of times as the metaheuristic approaches. Given that the former methods
are purely random, the less they sample the space, the greater the probability of giving a wrong model.
In the case of the metaheuristic approaches, the capability of finding an accurate model resides in the
exploration and exploitation capacities of the method. Each metaheuristic can be tuned to modify the
exploration and exploitation of the search space. The advantage of the TLBO algorithm resides in that
it has fewer parameters to tune, still keeping its accurate performance.
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To further show the performance of the proposed method as compared to other approaches,
the residual error is computed for the fundamental matrix estimation, and a comparison of correct
matched points using the homography is perform.

5.2. Residual Error

Accurate estimation of epipolar entities is important for multiple applications. For instance,
camera calibration and 3D reconstruction rely on a nonlinear cost function defined from the relationship
between the projection matrices and fundamental matrices. Vision-based control of robots and
global motion compensation depend on homography transformations between consecutive frames.
Since epipolar correlations are determined from the matched points, these applications strive when
only a few points are available. Lack of data is present when there are appearance ambiguities,
multi-plane scenes, and dominant dynamic features instead of static features. To show the capabilities
of the proposed approach to accurately estimate epipolar entities with few data, we compute the
residual error, Eres:

Eres =
1
N

N

∑
i

(
d(x′i, Fxi)

2 + d(xi, FTx′i)
2
)

, (12)

where d(x, l) is the distance in pixels between point x and line l. The error is the squared distance
between an epipolar line and the matching point in the other image, average over all N matches.
This particular error is not minimized directly by any of the algorithms.

For the experimental procedure, each pair of images is preprocessed as in Section 4 to found a
set of noisy matched points U. Then, a number n of matched points are chosen randomly from U.
Finally, the fundamental matrix is estimated, and the residual error computed. The residual error is
evaluated over all N matched points, and not just the n matches used to compute F. The set of images
for experimentation is shown in Figure 7.

The aforementioned procedure was repeated 100 times for each value of n and each pair of images.
The average residual error is plotted against n in Figures 8–11. Likewise, this values are shown in
Tables 6–9. This gives an idea of how the different algorithms behave as the number of points increases.

a)

Calibration rig Park Corridor

b)

c)

d)

Book

Figure 7. Image pairs for algorithm comparison. With and estimated fundamental matrix, epipole
lines can be computed. The whole set of accurate matched points should be close to its corresponding
epipole line. (a) The pair of original images. (b) The Euclidian-based matches. (c) The inlier points
consistent with the epipolar restriction as found by the proposed method. (d) The epipolar lines (25%
of the lines are depicted in the image).

As shown in Figure 8, the error for the Calibration rig is the smallest over the whole set of
experiments. This is because the matched points were known precisely. As indicated in Table 6,
however, the TLBO algorithm attained a better error in more cases than the rest of the methods.
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From these results, it can be said that for this experiment a metaheuristic approach guided by the
objective function performs better than a purely random procedure.

Figure 8. Results of the experimental evaluation of the methods for computing the fundamental
matrix for the Calibration rig image in Figure 7. In each case, six different approaches are compared.
For the experiment, n number of points are used to search for a fundamental matrix. For each n,
100 experiments were carried out and the residual error averaged.

When images get more complicated, the TLBO algorithm outstands from the rest of the methods.
For the Park image shown in Figure 9, for instance, the proposed method excels with a smaller error
for each value of n. The same is the case for the Corridor image as shown in Figure 10.

Results from the Book image are depicted in Figure 11. In this case, the TLBO algorithm attained a
better error overall. Only for n = 15 it was outperformed slightly by the GA-based estimator by 0.007.
The cause for the different performance is the searching procedure each algorithm performs. RANSAC,
and its variation MLESAC, sample the data randomly to choose the model with the most votes.
The TLBO algorithm, on the other hand, guides the search by minimizing an objective function and
performing particular operations in the candidate solutions to move them towards the best solution.
This permits the TLBO algorithm to achieve a smaller error with less sampling executions.

Figure 9. Results of the experimental evaluation of the methods for computing the fundamental matrix
for the Park image in Figure 7. In each case, six different approaches are compared. For the experiment,
n number of points are used to search for a fundamental matrix. For each n, 100 experiments were
carried out and the residual error averaged.
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Figure 10. Results of the experimental evaluation of the methods for computing the fundamental
matrix for the Corridor image in Figure 7. In each case, six different approaches are compared.
For the experiment, n number of points are used to search for a fundamental matrix. For each n,
100 experiments were carried out and the residual error averaged.

Figure 11. Results of the experimental evaluation of the methods for computing the fundamental matrix
for the Book image in Figure 7. In each case, six different approaches are compared. For the experiment,
n number of points are used to search for a fundamental matrix. For each n, 100 experiments were
carried out and the residual error averaged.

An accurate estimation of a fundamental matrix or homography is also used to filter out false
matches. Regarding the homography estimation, Figure 12 depicts results for the computation of the
homography. As shown in the figure, the TLBO algorithm found 103 true positive matched points,
while the other methods found either less true points or more false positives. As can be concluded by
the experiments, the TLBO algorithm is and efficient metaheuristic for estimating epipolar entities.

The comparison experiments with the whole set of methods involved the task of finding the
smallest error given the same threshold (maximum distance in pixels for a point to be considered an
inlier), and the same possibility of space search. Feature detection was performed to sub-pixel accuracy,
which allowed us to compare in this scale. As shown from the results, the TLBO-based estimator
outperformed the rest of the methods overall. The reason for this outcome lies in the capabilities of
the TLBO. The proposed method does not require many sampling executions because it explores and
exploits the search space in a metaheuristic fashion. It also optimizes over the search space guided by
a detailed objective function.
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e) RANSAC 94 mached points f) MLESAC 99 mached points

c) DE 109 mached points d) CSA 99 mached points

a) TLBO 103 mached points b) GA 109 mached points

Figure 12. Results of the experimental evaluation of the methods for computing a homography.
For each image, the number of matched points is shown. The GA and DE estimators found more
matched points. However, some of them are false detections. Clonal Selection Algorithm (CSA),
Random Sample Consensus (RANSAC) and MLESAC also detect false positives. The TLBO, on the
other hand, detected 103 true positive matched points.

Table 6. Data points for the experiment with the Calibration rig image of Figure 7. The number n of
points for model estimation and the average residual error Eres for all methods are shown. The best
result is highlighted in bold.

n
TLBO GA DE CSA RANSAC MLESAC

Average Eres Average Eres Average Eres Average Eres Average Eres Average Eres

8 0.796 0.825 0.805 0.842 0.851 0.802
10 0.587 0.583 0.610 0.585 0.579 0.576
15 0.408 0.463 0.416 0.504 0.415 0.455
20 0.279 0.282 0.299 0.286 0.285 0.269
25 0.173 0.171 0.178 0.182 0.195 0.181
27 0.173 0.174 0.177 0.180 0.195 0.184

Table 7. Data points for the experiment with the Park image of Figure 7. The number n of points for
model estimation and the average residual error Eres for all methods are shown. The best result is
highlighted in bold.

n
TLBO GA DE CSA RANSAC MLESAC

Average Eres Average Eres Average Eres Average Eres Average Eres Average Eres

8 22.127 22.784 22.752 23.446 22.685 23.560
10 15.524 17.285 15.553 15.722 16.048 15.595
15 12.183 13.757 13.573 14.554 12.197 12.694
20 9.220 9.912 9.434 8.965 10.064 9.164
25 2.214 2.224 2.507 2.267 2.248 2.486
27 2.197 2.633 2.352 2.585 2.442 2.256

Table 8. Data points for the experiment with the Corridor image of Figure 7. The number n of points
for model estimation and the average residual error Eres for all methods are shown. The best result is
highlighted in bold.

n
TLBO GA DE CSA RANSAC MLESAC

Average Eres Average Eres Average Eres Average Eres Average Eres Average Eres

8 8.116 8.252 8.479 8.378 8.224 8.791
10 6.873 7.124 6.956 7.243 7.248 7.289
15 5.642 5.748 6.015 6.215 5.951 5.696
20 2.970 2.982 3.049 3.512 3.267 3.226
25 1.896 1.929 1.971 1.964 1.973 1.982
27 1.913 1.942 1.950 1.964 1.913 1.951
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Table 9. Data points for the experiment with the Book image of Figure 7. The number n of points for
model estimation and the average residual error Eres for all methods are shown. The best result is
highlighted in bold.

n
TLBO GA DE CSA RANSAC MLESAC

Average Eres Average Eres Average Eres Average Eres Average Eres Average Eres

8 4.756 5.077 5.046 5.059 4.875 4.923
10 3.483 3.831 3.545 3.715 3.583 3.862
15 2.722 2.715 2.957 2.814 2.965 2.941
20 1.993 2.218 2.150 2.199 2.101 2.346
25 1.530 1.589 1.595 1.535 1.612 1.602
27 1.542 1.579 1.565 1.546 1.548 1.597

Since we constrained the number of samples every method can perform, the RANSAC-like
methods performed poorly. This is because, ideally, the threshold should be computed assuming the
measurement error Gaussian with zero mean, and the number of samples according to the proportion
of outliers. Even when the MLESAC algorithm differs from RANSAC in the error definition, it adopts
the same sampling strategy as RANSAC to generate putative solutions, thus it suffers if the number of
samples is set to low.

Another reason for the proposed method to outperform the RANSAC-like methods is the
definition of the objective function. RANSAC chooses the solution that maximizes the number
of inliers, and MLESAC chooses the solution that maximizes the likelihood. The proposed method,
on the other hand, is guided by an accurate objective function that takes into account both the number
of inliers and the residual of the quadratic error.

Regarding the other metaheuristics, the TLBO algorithm performed better in comparison to
the DE and CSA methods. The GA-based estimator outperformed slightly the TLBO algorithm in
3 different cases. However, given that the objective of this work is to present a method that accurately
estimates epipolar entities without the need to adjust various parameters for different kinds of images,
the proposed approach achieved this task better than the other metaheuristic methods. Differently
from the other metaheuristic-based estimators, the TLBO algorithm does not need the tuning of any
algorithm-specific parameters.

6. Conclusions

This work tackles the problem of computing the fundamental matrix and homography using
the TLBO algorithm. The task of finding multiple view geometric relations is a novel application
of the TLBO metaheuristic. The proposed approach is a robust method for estimating the epipolar
geometry in spite of poorly matched points. The TLBO-based solution computes the best model for the
homography or fundamental matrix, and at the same time it filters out wrong point correspondences.
Instead of being purely random as RANSAC-like methods, the proposed approach improves the
computed solution by performing a metaheuristic search by using the TLBO algorithm.

Differently from the pure random strategy that the RANSAC algorithm performs, the proposed
approach, guided by the TLBO algorithm, builds iteratively new potential solutions considering
previously generated candidate individuals. The method takes into consideration the quality of these
solutions. Furthermore, the proposed method uses a better objective function.

To certainly evaluate the quality of a candidate model (solution), the used objective function
uses both the number of inliers and the residual error. As a result of this approach, a considerable
reduction of the number of iterations in comparison with RANSAC is achieved, still maintaining the
robustness capability of RANSAC. Future work can be directed towards the metaheuristic solution of
the non-linear cases of the epipolar geometry.
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